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Abstract

Recently, several Space-Time Memory based networks

have shown that the object cues (e.g. video frames as well

as the segmented object masks) from the past frames are

useful for segmenting objects in the current frame. How-

ever, these methods exploit the information from the mem-

ory by global-to-global matching between the current and

past frames, which lead to mismatching to similar objects

and high computational complexity. To address these prob-

lems, we propose a novel local-to-local matching solution

for semi-supervised VOS, namely Regional Memory Net-

work (RMNet). In RMNet, the precise regional memory is

constructed by memorizing local regions where the target

objects appear in the past frames. For the current query

frame, the query regions are tracked and predicted based

on the optical flow estimated from the previous frame. The

proposed local-to-local matching effectively alleviates the

ambiguity of similar objects in both memory and query

frames, which allows the information to be passed from the

regional memory to the query region efficiently and effec-

tively. Experimental results indicate that the proposed RM-

Net performs favorably against state-of-the-art methods on

the DAVIS and YouTube-VOS datasets.

1. Introduction

Video object segmentation (VOS) is a task of estimating

the segmentation masks of class-agnostic objects in a video.

Typically, it can be grouped into two categories: unsuper-

vised VOS and semi-supervised VOS. The former does not

resort to any manual annotation and interaction, while the

latter needs the masks of the target objects in the first frame.

In this paper, we focus on the latter. Even the object masks

in the first frame are provided, semi-supervised VOS is still

challenging due to object deformation, occlusion, appear-

ance variation, and similar objects confusion.

With the recent advances in deep learning, there has

been tremendous progress in semi-supervised VOS. Early

methods [10, 18, 24] propagate object masks from previ-
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Figure 1. A representative example of video object segmentation

on the DAVIS 2017 dataset. Compared to existing methods rely

on optical flows (e.g. PReMVOS [18]) and global feature match-

ing (e.g. STM [22], EGMN [17], and CFBI [41]), the proposed

RMNet is more robust in segmenting similar objects.

ous frames using optical flow and then refine the masks

with a fully convolutional network. However, mask prop-

agation usually causes error accumulation, especially when

target objects are lost due to occlusions and drifting. Re-

cently, matching-based methods [4, 17, 22, 28, 32, 41]

have attracted increasing attention as a promising solution

to semi-supervised VOS. The basic idea of these methods

is to perform global-to-global matching to find the corre-

spondence of target objects between the current and past

frames. Among them, the Space-Time Memory (STM)

based approaches [17, 22, 28] exploit the past frames saved

in the memory to better handle object occlusion and drift-

ing. However, these methods memorize and match features

in the regions without target objects, which lead to mis-

matching to similar objects and high computational com-

plexity. As shown in Figure 1, they are less effective to track

and distinguish the target objects with similar appearance.

The mismatching in the global-to-global matching can

be divided into two categories, as illustrated in Figure 2. (i)

The target object in the current frame matches to the wrong

object in the past frame (solid red line). (ii) The target ob-
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Figure 2. Comparison between global-to-global matching and

local-to-local matching. The green and red lines represent correct

and incorrect matches, respectively. The proposed local-to-local

matching performs feature matching between the local regions

containing target objects in past and current frames (highlighted

by the yellow bounding box), which alleviates the ambiguity of

similar objects.

ject in the past frame matches to the wrong object in the cur-

rent frame (dotted red line). The two types of mismatching

are caused by unnecessary matching between the regions

without target objects in the past and current frames, re-

spectively. Actually, the target objects appear only in small

regions in each frame. Therefore, it is more reasonable to

perform local-to-local matching in the regions containing

target objects.

In this paper, we present the Regional Memory Network

(RMNet) for semi-supervised VOS. To better leverage the

object cues from the past frames, the proposed RMNet only

memorizes the features in the regions containing target ob-

jects, which effectively alleviates the mismatching in (i).

To track and predict the target object regions for the cur-

rent frame, we estimate the optical flow from two adjacent

frames and then warp the previous object masks to the cur-

rent frame. The warped masks provide rough regions for the

current frame, which reduces the mismatching in (ii). Based

on the regions in the past and current frames, we present

Regional Memory Reader, which performs feature match-

ing between the regions containing target objects. The pro-

posed Regional Memory Reader is time efficient and effec-

tively alleviates the ambiguity of similar objects.

The main contributions are summarized as follows:

• We propose Regional Memory Network (RMNet) for

semi-supervised VOS, which memorizes and tracks

the regions containing target objects. RMNet effec-

tively alleviates the ambiguity of similar objects.

• We present Regional Memory Reader that performs

local-to-local matching between object regions in the

past and current frames, which reduces the computa-

tional complexity.

• Experimental results on the DAVIS and YouTube-VOS

datasets indicate that the proposed RMNet outper-

forms the state-of-the-art methods with much faster

running speed.

2. Related Work

Propagation-based Methods. Early methods treat video

object segmentation as a temporal label propagation prob-

lem. ObjectFlow [31], SegFlow [6] and DVSNet [39] con-

sider video segmentation and optical flow estimation simul-

taneously. To adapt to specific instances, MaskTrack [24]

fine-tunes the network on the first frame during testing.

MaskRNN [10] predicts the instance-level segmentation of

multiple objects from the estimated optical flow and bound-

ing boxes of objects. CINN [1] introduces a Markov Ran-

dom Field to establish spatio-temporal dependencies for

pixels. DyeNet [16] and PReMVOS [18] combine tem-

poral propagation and re-identification functionalities into

a single framework. Apart from propagating masks with

optical flows, object tracking is also widely used in semi-

supervised VOS. FAVOS [5] predicts the mask of an ob-

ject from several tracking boxes of the object parts. Lucid-

Tracker [14] synthesizes in-domain data to train a special-

ized pixel-level video object segmenter. SAT [3] takes ad-

vantage of the inter-frame consistency and deals with each

target object as a tracklet. Despite promising results, these

methods are not robust to occlusion and drifting, which

causes error accumulation during the propagation [21].

Matching-based Methods. To handle object occlusion and

drifting, recent methods perform feature matching to find

objects that are similar to the target objects in the rest of

the video. OSVOS [2] transfers the generic semantic in-

formation to the task of foreground segmentation by fine-

tuning the network on the first frame. RGMP [20] takes

the mask of the previous frame as input, which provides

a spatial prior for the current frame. PML [4] learns a

pixel-wise embedding using a triplet loss and assigns a la-

bel to each pixel by nearest neighbor matching in pixel

space to the first frame. VideoMatch [11] uses a soft

matching layer that maps the pixels of the current frame

to the first frame in the learned embedding space. Fol-

lowing PML and VideoMatch, FEELVOS [32] extends the

pixel-level matching mechanism by additionally matching

between the current frame and the first frame. Based on

FEELVOS, CFBI [41] promotes the results by explicitly

considering the feature matching of the target foreground

object and the corresponding background. STM [22] lever-

ages a memory network to perform pixel-level matching

from past frames, which outperforms all previous meth-

ods. Based on STM, KMN [28] applies a Gaussian ker-

nel to reduce the mismatched pixels. EGMN [17] employs

an episodic memory network to store frames as nodes and

capture cross-frame correlations by edges. Other STM-

based methods [36, 42] use depth estimation and spatial

constraint modules to improve the accuracy of STM. How-

ever, matching-based methods perform unnecessary match-

ing in regions without target objects and are less effective to

distinguish objects with similar appearance.
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Figure 3. Overview of RMNet. The proposed network considers the object motion for the current frame and the object cues from the past

frames in memory. To alleviate the mismatching to similar objects, the regional memory and query embedding are extracted from the

regions containing target objects. Regional Memory Reader efficiently performs local-to-local matching only in these regions. Note that

“Reg. Att. Map” denotes “Regional Attention Map”.

3. Regional Memory Network

The architecture of the proposed Regional Memory Net-

work (RMNet) is shown in Figure 3. As in STM [22], the

current frame is used as the query, and the past frames with

the estimated masks are used as the memory. Different from

STM that constructs the global memory and query embed-

ding from all regions, RMNet only embeds the regions con-

taining target objects in the memory and query frames. The

regional memory and query embedding are generated by

the dot product of the regional attention maps and feature

embedding extracted from the memory and query encoders,

respectively. Both of them consist of a regional key and a

regional value.

In STM, the space-time memory reader is employed for

global-to-global matching between all pixels in the memory

and query frames. However, Regional Memory Reader in

RMNet is proposed for local-to-local matching between the

regional memory embedding and query embedding in the

regions containing target objects, which alleviates the mis-

matching to similar objects and also accelerates the compu-

tation. Given the output of Regional Memory Reader, the

decoder predicts the object masks for the query frame.

3.1. Regional Feature Embedding

3.1.1 Regional Memory Embedding

Recent Space-Time Memory based methods [17, 22, 28]

construct the global memory embedding for the past frames

by using the features of the whole images. However, the

features outside the regions where the target objects appear

may lead to the mismatching to the similar objects in the

query frame, as shown with the red solid line in Figure 2. To

solve this issue, we present the regional memory embedding

that only memorizes the features in the regions containing

the target objects.

Mask to Regional Attention Map. To generate the re-

gional memory embedding, we apply a regional attention

map to the global memory embedding. At the time step i,
given the object mask Mi ∈ N

H×W at the feature scale, the

regional attention map A
j
i ∈ R

H×W for the j-th object is

obtained as

A
j
i (x, y) =

{

1, xmin ≤ x ≤ xmax and ymin ≤ y ≤ ymax

0, otherwise

(1)

where (xmin, ymin) and (xmax, ymax) are the top-left and

bottom-right coordinates of the bounding box for the target

object, which are determined by

xmin = max((argmin
x

Mi(x, y) = j)− φ, 0)

xmax = min((argmax
x

Mi(x, y) = j) + φ,W )

ymin = max((argmin
y

Mi(x, y) = j)− φ, 0)

ymax = min((argmax
y

Mi(x, y) = j) + φ,H) (2)

where φ denotes the padding of the bounding box, which

1288



Figure 4. The changes of matching regions for the target object

before and after occlusion, which is highlighted by red bounding

boxes for each frame.

determines the error tolerance of the estimated masks in the

past frames. Specially, we define A
j
i = 0 if the j-th object

disappears in Mi.

Regional Memory Key/Value. Given the regional attention

map A
j
M = [Aj

0
, . . . ,Aj

t−1
] of j-th object in the memory

frames, the key k
j
M and value v

j
M in the regional memory

embedding are obtained by the dot product of A
j
M and the

global memory embedding from the memory encoder.

3.1.2 Regional Query Embedding

As illustrated by the red dotted line in Figure 2, multiple

similar objects in the query frame are easily mismatched in

the global-to-global matching. Similar to the regional mem-

ory embedding, we present the regional query embedding

that alleviates the mismatching to the similar objects in the

query frame.

Object Mask Tracking. To obtain the possible regions of

target objects in the current frame, we track and predict a

rough mask M̂
j
t . Specifically, we warp the mask M

j
t−1

of

the previous frame with the optical flow Ft estimated by the

proposed TinyFlowNet.

Mask to Regional Attention Map. As in regional memory

embedding (Sec. 3.1.1), the estimated mask M̂
j
t is used to

generate the regional attention map A
j
Q for the j-th object

in the query frame. To better deal with occlusions, we define

A
j
Q = 1 if the number of pixels is lower than a threshold η,

which triggers the global matching for the target object in

the query frame. As illustrated in Figure 4, the matching re-

gion is expanded to the whole image when the target object

disappears. Then, it shrinks to the region containing the tar-

get object when the object appears again. This mechanism

benefits the optical flow based tracking, which allows the

network to perceive the disappearance of objects and makes

it more robust to object occlusion.

Regional Query Key/Value. Similar to regional memory

embedding, the key k
j
Q and value v

j
Q in the regional query

embedding are obtained by the dot product of A
j
Q and the

global query embedding from the query encoder.

3.2. Regional Memory Reader

In STM [22], the space-time memory reader is proposed

to measure the similarities between the pixels in the query

frame and memory frames. Given the embedded key of the

memory k
j
M = {kjM (p)} ∈ R

T ·H·W×C/8 and the query

k
j
Q = {kjQ(q)} ∈ R

H·W×C/8 of the j-th object, the simi-

larity between p and q can be computed as

sj(p,q) = exp
(

kjM (p)kjM (q)T
)

(3)

where C and T denote the channels of the embedded key

and the number of frames in memory, respectively. Let p =
[pt, px, py] and q = [qx, qy] be the grid cell locations in k

j
M

and k
j
Q, respectively. Then, the query at position q retrieves

the corresponding value from the memory by

vj(q) =
∑

p

s(p,q)
∑

p
s(p,q)

vjM (p) (4)

where v
j
M = {vjM (p)} ∈ R

T×H×W×C/2 is the embedded

value of the memory. The output of the space-time memory

reader at position q is

yj(q) =
[

vjQ(q), v
j(q)

]

(5)

where v
j
Q = {vjQ(q)} ∈ R

H×W×C/2 denotes the embed-

ded value of the query and [·] represents the concatenation.

Based on the regional feature embedding, we propose

Regional Memory Reader, which performs local-to-local

matching in the regions containing the target objects, as

shown in Figure 3. Compared to the global-to-global mem-

ory readers in [17, 21, 28], the proposed Regional Memory

Reader alleviates the mismatching to the similar objects in

both the memory and query frames.

Let Rj
M = {p} and Rj

Q = {q} be the feature matching

regions of the j-th object in the memory and query frames,

respectively. In the global-to-global memory readers, the

similarities are derived by a large matrix product. That is,

Rj
M and Rj

Q are all locations in the feature embedding of

key and value, respectively. While in the proposed Re-

gional Memory Reader, Rj
M and Rj

Q are defined as

Rj
M =

{

p|Aj
M (p) 6= 0

}

Rj
Q =

{

q|Aj
Q(q) 6= 0

}

(6)

Therefore, for locations p /∈ Rj
M or q /∈ Rj

Q, the similarity

between p and q is defined as

sj(p,q) = 0,p /∈ Rj
M or q /∈ Rj

Q (7)

Let hj
Q and wj

Q be the height and width of the region

for the j-th object in the query frame, respectively. hj
M and

wj
M denote the maximum height and width of the regions in

the memory frames, respectively. Therefore, the time com-

plexity of the space-time memory reader is O(TCH2W 2).
Compared to the space-time memory reader, the proposed

1289



Regional Memory Reader is computationally efficient with

the time complexity of O(TChj
Qw

j
Qh

j
Mwj

M ). As shown in

Figure 6, hj
Q, h

j
M ≪ H and wj

Q, w
j
M ≪ W . Actually, the

space-time memory reader is also a non-local network [35],

which usually suffers from high computational complex-

ity [43] due to the global-to-global feature matching. The

proposed local-to-local matching enables the time complex-

ity of the memory reader to be significantly reduced.

3.3. Network Architecture

TinyFlowNet. Compared to existing methods for opti-

cal flow estimation [8, 27, 29, 37], TinyFlowNet does

not use any time-consuming layers such as correlation

layer [8], cost volume layer [29, 37], and dilated convo-

lutional layers [27]. To reduce the number of parameters

of TinyFlowNet, we use small numbers of input and out-

put channels. Consequently, TinyFlowNet is 1/3 the size

of FlowNetS [12]. To further accelerate the computation,

the input images are downsampled by 2 before fed into

TinyFlowNet.

Encoder. The memory encoder takes an RGB frame along

with the object mask as input, in which the object mask

is represented as a single channel probability map between

0 and 1. The input to the query encoder is only the

RGB frame. Both the memory and query encoders use

ResNet50 [9] as the backbone network. To take a 4-channel

tensor, the number of the input channels of the first convo-

lutional layer in the memory encoder is changed to 4. The

first convolutional layer in the query encoder remains un-

changed as in ResNet50. The output key and value features

are embedded by two parallel convolutional layers attached

to the convolutional layer that outputs a 1/16 resolution fea-

ture with respect to the input image.

Decoder. The decoder takes the output of Regional Mem-

ory Reader and predicts the object mask for the current

frame. The decoder consists of a residual block and two

stacks of refinement modules [22] that gradually upscale the

compressed feature map to the size of the input image.

4. Experiments

4.1. Datasets

DAVIS. DAVIS 2016 [25] is one of the most popular bench-

marks for video object segmentation, whose validation set is

composed of 20 videos annotated with high-quality masks

for individual objects. DAVIS 2017 [26] is a multi-object

extension of DAVIS 2016. The training and validation sets

contain 60 and 30 videos, respectively.

YouTube-VOS. YouTube-VOS [38] is the latest large-scale

dataset for the video object segmentation, which contains

4,453 videos annotated with multiple objects. Specifically,

YouTube-VOS contains 3,471 videos from 65 categories

Table 1. The quantitative evaluation on the DAVIS 2016 valida-

tion set. † indicates using YouTube-VOS for training. The time is

measured on an NVIDIA Tesla V100 GPU without I/O time.

Methods J Mean F Mean Avg. Time (s)

OnAVOS [33] 0.861 0.849 0.855 0.823

OSVOS [2] 0.798 0.806 0.802 0.642

MaskRNN [10] 0.807 0.809 0.808 -

RGMP [20] 0.815 0.820 0.818 0.104

FAVOS [5] 0.824 0.795 0.810 0.816

CINN [1] 0.834 0.850 0.842 -

LSE [7] 0.829 0.803 0.816 -

VideoMatch [11] 0.810 0.808 0.819 -

PReMVOS [18] 0.849 0.886 0.868 3.286

A-GAME † [13] 0.822 0.820 0.821 0.258

FEELVOS † [32] 0.817 0.881 0.822 0.286

STM † [22] 0.887 0.899 0.893 0.097

KMN † [28] 0.895 0.915 0.905 -

CFBI † [41] 0.883 0.905 0.894 0.156

RMNet 0.806 0.823 0.815 0.084

RMNet † 0.889 0.887 0.888 0.084

for training and 507 videos with additional 26 unseen cate-

gories for validation.

4.2. Evaluation Metrics

Following the previous works [22, 41], we take the re-

gion similarity and contour accuracy as evaluation metrics.

Region Similarity J . We employ the region similarity J
to measure the region-based segmentation similarity, which

is defined as the intersection-over-union of the estimated

segmentation and the ground truth segmentation. Given an

estimated segmentation M and the corresponding ground

truth mask G, the region similarity J is defined as

J =

∣

∣

∣

∣

M ∩G

M ∪G

∣

∣

∣

∣

(8)

Contour Accuracy F . Let c(M) be the set of the closed

contours that delimits the spatial extent of the mask M . The

contour points of the estimated mask M and ground truth G
are denoted as c(M) and c(G), respectively. The precision

Pc and recall Rc between c(M) and c(G) can be computed

by a bipartite graph matching [19]. Therefore, the contour

accuracy F between c(M) and c(G) is defined as

F =
2PcRc

Pc +Rc
(9)

4.3. Implementation Details

We implement the network using PyTorch [23] and

CUDA. All models are optimized using the Adam opti-

mizer [15] with β1 = 0.9 and β2 = 0.999. Following [22, 28],

the network is trained in two phases. First, it is pre-

trained on the synthetic dataset generated by applying ran-

dom affine transforms to a static image with different pa-
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Table 2. The quantitative evaluation on the DAVIS 2017 validation

set. † indicates using YouTube-VOS for training.

Methods J Mean F Mean Avg.

OnAVOS [33] 0.645 0.713 0.679

OSMN [40] 0.525 0.571 0.548

OSVOS [2] 0.566 0.618 0.592

RGMP [20] 0.648 0.686 0.632

FAVOS [5] 0.546 0.618 0.582

CINN [1] 0.672 0.742 0.707

VideoMatch [11] 0.565 0.682 0.624

PReMVOS [18] 0.739 0.817 0.778

A-GAME † [13] 0.672 0.727 0.700

FEELVOS † [32] 0.691 0.740 0.716

STM † [22] 0.792 0.843 0.818

KMN † [28] 0.800 0.856 0.828

EGMN † [17] 0.800 0.859 0.829

CFBI † [41] 0.791 0.846 0.819

RMNet 0.728 0.772 0.750

RMNet † 0.810 0.860 0.835

Table 3. The quantitative evaluation on the DAVIS 2017 test-dev

set.

Methods J Mean F Mean Avg.

OnAVOS [33] 0.534 0.596 0.565

OSMN [40] 0.377 0.449 0.413

RGMP [20] 0.513 0.544 0.529

PReMVOS [18] 0.675 0.757 0.716

FEELVOS [32] 0.552 0.605 0.578

STM [22] 0.680 0.740 0.710

CFBI [41] 0.711 0.785 0.748

RMNet 0.719 0.781 0.750

rameters. Then, it is fine-tuned on DAVIS and YouTube-

VOS. The parameters φ and η are set to 4 and 10, respec-

tively. For all experiments, the network is trained with a

batch size of 4 on two NVIDIA Tesla V100 GPUs. All batch

normalization layers are fixed during training and testing.

The initial learning rate is set to 10−5 and the optimization

is set to stop after 200 epochs.

4.4. Video Object Segmentation on DAVIS

Single object. We compare proposed RMNet with state-

of-the-art methods on the validation set of the DAVIS 2016

dataset for single-object video segmentation. DAVIS con-

tains only a small number of videos, which leads to over-

fitting and affects the generalization ability. Following the

latest works [5, 22, 28, 41], we also present the results

trained with additional data from YouTube-VOS, which are

denoted as † in Table 1. The experimental results indicate

that the proposed RMNet is comparable to other competi-

tive methods but with a faster inference speed.

Table 4. The quantitative evaluation on the YouTube-VOS valida-

tion set (2018 version). The results of other methods are directly

copied from [22, 41].

Methods
Seen Unseen

Avg.

J F J F

OnAVOS [33] 0.601 0.627 0.466 0.514 0.552

OSMN [40] 0.600 0.601 0.406 0.440 0.512

OSVOS [2] 0.598 0.605 0.542 0.607 0.588

RGMP [20] 0.595 - 0.452 - 0.538

BoLTVOS [34] 0.716 - 0.643 - 0.711

PReMVOS [18] 0.714 0.759 0.565 0.637 0.669

A-GAME [13] 0.678 - 0.608 - 0.661

STM [22] 0.797 0.842 0.728 0.809 0.794

KMN [28] 0.814 0.856 0.753 0.833 0.814

EGMN [17] 0.807 0.851 0.740 0.809 0.802

CFBI [41] 0.811 0.858 0.753 0.834 0.814

RMNet 0.821 0.857 0.757 0.824 0.815

Multiple objects. To evaluate the performance of multi-

object video segmentation, we test the proposed RMNet on

the DAVIS 2017 benchmark. We report the performance of

the val set of DAVIS 2017 in Table 2, which shows that RM-

Net outperforms all competitive methods. With additional

YouTube-VOS data, RMNet archives a better accuracy and

outperforms all state-of-the-art methods. We also evaluate

RMNet on the test-dev set of DAVIS 2017, which is much

more challenging than the val set. As shown in Table 3,

RMNet surpasses the state-of-the-art methods. The qualita-

tive results on DAVIS 2017 are shown in Figure 1.

4.5. Video Object Segmentation on YouTubeVOS

Following the latest works [22, 28], we compare the

proposed RMNet to the state-of-the-art methods on the

YouTube-VOS validation set (2018 version). As shown in

Table 4, RMNet achieves an average score of 0.815, which

outperforms other methods. The qualitative results on the

YouTube-VOS dataset are shown in Figure 5, which demon-

strate that RMNet is more effective in distinguishing similar

objects and performs better in segmenting small objects.

4.6. Ablation Study

To demonstrate the effectiveness of each component in

the proposed RMNet, we conduct the ablation study on the

DAVIS 2017 val set.

Regional Memory Reader. The proposed Regional Mem-

ory Reader performs regional feature matching in both the

memory and query frames, which reduces the number of

mismatched pixels and therefore saves computational time.

To evaluate the effectiveness and efficiency of Regional

Memory Reader, we replace the regional feature match-

ing with global matching in the query frame and memory
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value of the area ratio of bounding boxes for both datasets.

frame. Compared to the memory readers that adopt global

matching for memory or query frames, the proposed Re-

gional Memory Reader achieves better results in terms of

both accuracy and efficiency. As shown in Figure 6, the

areas of the regions containing target objects are usually

smaller than 20% of the whole image. Table 5 shows that

the local-to-local matching in Regional Memory Reader is

about 5 times faster (around 25 times smaller in FLOPS)

than the global-to-global matching. Figure 7 presents the

visualization of the similarity scores of the target object in

the memory readers, where the target object is highlighted

in a red bounding box. Given the estimated mask of the

target object in the query frame, we compute the similarity

scores in the previous frame, where the label of the target

object in the query frame is determined by the pixels with

high similarities. Similarly, the pixels with similarity scores

in the query frame are assigned with the label of the target

object in the previous frame. As shown in Figure 7, the pro-

posed Regional Memory Reader avoids the mismatching in

the regions outside the target object in memory and query

frames, which obtains better segmentation results.

Query Region Prediction. In RMNet, the regions for

feature matching in the query frame are determined by
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Table 5. The effectiveness of Regional Memory Reader. “M.R.”

and “Q.R.” denote for “Memory Region” and “Query Region”,

where X and × represent the feature matching is regional or global

for the frame, respectively. The time for feature matching is mea-

sured on an NVIDIA Tesla V100 GPU without I/O time.

M.R. Q.R. J Mean F Mean Avg. Time (ms)

× × 0.792 0.843 0.818 10.68

X × 0.798 0.847 0.822 5.50

× X 0.803 0.853 0.828 5.50

X X 0.810 0.860 0.835 2.09

Table 6. The effectiveness of the “Flow-based Region” com-

pared to “Previous Region” and “Best-match Region” used in

FEELVOS [32] and KMN [28], respectively.

Method J Mean F Mean Avg.

Previous Region 0.762 0.822 0.792

Best-match Region 0.792 0.845 0.819

Flow-based Region 0.810 0.860 0.835

Table 7. The effectiveness of TinyFlowNet compared to

FlowNet2-CSS [12] and RAFT [30] for optical flow estimation.

The time for optical flow estimation is measured on an NVIDIA

Tesla V100 GPU without I/O time.

Method J Mean F Mean Avg. Time (ms)

FlowNet2-CSS 0.814 0.860 0.837 59.93

RAFT 0.808 0.859 0.834 157.78

TinyFlowNet 0.810 0.860 0.835 10.05

the previous mask and the estimated optical flow. In

FEELVOS [32], the regions for local feature matching are a

local neighborhood of the locations where the target objects

appear in the previous frame. KMN [28] performs feature

matching in the regions determined by a 2D Gaussian ker-

nel whose center is the best-matched pixel with the highest

similarity score. To evaluate the effectiveness of our “Flow-

based Region”, we compare its performance with different

regions used for feature matching. In Table 6, “Previous

Region” and “Best-match Region” represent the regions de-

termined by the methods used in FEELVOS and KMN, re-

spectively. As shown in Table 6, “Flow-based Region” out-

performs “Previous Region” and “Best-match Region” in

segmentation. “Previous Region” is based on the assump-

tion that the motion between two frames is usually small,

which is not robust to object occlusion and drifting. “Best-

match Region” only considers the region determined by the

best-matched pixels. However, the best-matched pixels are

easily affected by lighting conditions and may be wrong for

similar objects.

TinyFlowNet. TinyFlowNet is designed to estimate opti-

cal flow between two adjacent frames. To evaluate the ef-

fectiveness of the proposed TinyFlowNet, we replace the

TinyFlowNet with FlowNet2-CSS [12] and RAFT [30] that

are pretrained on the FlyingChairs [8]. As shown in Ta-

ble 7, the segmentation accuracies are almost the same

when TinyFlowNet is replaced with FlowNet2-CSS and

RAFT, which indicates that TinyFlowNet meets the need

of region prediction in the query frame. Moreover, the pro-

posed RMNet with TinyFlowNet is 6 and 16 times faster

than with FlowNet2-CSS and RAFT, respectively.

5. Conclusion

In this paper, we propose Regional Memory Network

(RMNet) for semi-supervised VOS. Compared to the STM-

based methods, RMNet memorizes and tracks the regions

containing target objects, which effectively alleviates the

ambiguity of similar objects and also reduces the compu-

tational complexity for feature matching. Experimental re-

sults on DAVIS and YouTube-VOS indicate that the pro-

posed method outperforms the state-of-the-art methods with

much faster running speed.
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