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Abstract

Few-shot semantic segmentation (FSS) aims to segment

unseen class objects given very few densely-annotated sup-

port images from the same class. Existing FSS methods find

the query object by using support prototypes or by directly

relying on heuristic multi-scale feature fusion. However,

they fail to fully leverage the high-order appearance rela-

tionships between multi-scale features among the support-

query image pairs, thus leading to an inaccurate localiza-

tion of the query objects. To tackle the above challenge, we

propose an end-to-end scale-aware graph neural network

(SAGNN) by reasoning the cross-scale relations among the

support-query images for FSS. Specifically, a scale-aware

graph is first built by taking support-induced multi-scale

query features as nodes and, meanwhile, each edge is mod-

eled as the pairwise interaction of its connected nodes. By

progressive message passing over this graph, SAGNN is

capable of capturing cross-scale relations and overcom-

ing object variations (e.g., appearance, scale and location),

and can thus learn more precise node embeddings. This

in turn enables it to predict more accurate foreground ob-

jects. Moreover, to make full use of the location relations

across scales for the query image, a novel self-node col-

laboration mechanism is proposed to enrich the current

node, which endows SAGNN the ability of perceiving differ-

ent resolutions of the same objects. Extensive experiments

on PASCAL-5i and COCO-20i show that SAGNN achieves

state-of-the-art results.

1. Introduction

Deep convolutional neural networks [14,29,40] have ad-

vanced the development of many downstream vision tasks,

such as semantic segmentation [1, 3, 21, 25, 49], which is a

dense prediction task. To achieve an effective segmentation

model, e.g. Deeplab [3], large amounts of pixel-wise im-

age annotations are required for model training, which are

costly and time consuming to acquire. Weakly supervised
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Figure 1. Comparisons of SAGNN and existing FSS models. (a)

Existing methods usually first generate a global or multiple local

prototypes by masked averaging/clustering over the foreground of

the support image. Then these support prototypes are applied to

query features (and/or their multi-scale counterparts) for the later

prediction of the query mask. However, this paradigm segments

the human region to horse. This happens because it is difficult to

fully capture the object variations (e.g., the scale, appearance, and

spatial location of horse in the support and query images are differ-

ent from each other) by such limited prototypes. (b) Our SAGNN

can well estimate the foreground horse in the query image. It bene-

fits from our scale-aware node embedding and cross-scale relation

reasoning on the scale-aware graph. Zoom in for details.

learning [23, 43] can alleviate the annotation costs to some

extent; however, the model performance drops significantly

under this scenario. Moreover, both fully and weakly super-

vised models suffer poor generalization to unseen domains

with only a few densely-annotated training images avail-

able. As such, few-shot semantic segmentation (FSS) [27]

is proposed for dealing with the unseen object segmentation

and data annotation issue.

FSS aims to segment the foreground object of an unseen

class in a query image by merely utilizing a few (one) anno-

tated support images (image), where both the support/query

images share a common unseen class. Typically, a base

training set with annotations, which has different object

categories from the unseen class set, can assist the learn-

ing of the FSS model. Inspired by few-shot classification

and meta-learning [30], the segmentor can be trained by
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episode-based meta-training – i.e., each episode (sub-task)

is sampled from the base training set and consists of support

and query images – to mimic the testing scheme on the un-

seen classes. During each sub-task, support images are used

as guidance to segment the query image. The difference be-

tween the ground-truth mask and the predicted query mask

can thus supervise the model training.

Specifically, most of the existing FSS models [5,7,22,28,

34] adopt a two-stream (support and query) metric-based

network. The global [48] or multiple local [10, 20, 41]

prototypes (Fig. 1(a)) for a class are first calculated from

the support branch, based on the ground-truth mask of the

support image. Then, these prototypes are applied to the

query feature map (e.g., by cosine similarity) from the query

branch, thus leading to a support-induced matching score

map, which serves as an important clue for encoding the

query mask. At first, since the above process is a few-to-

many matching, it is difficult to fully capture the object

scale/appearance/location variations by such limited pro-

totypes (the human region is mis-segmented as horse in

Fig. 1(a)). In addition, in the query branch, multi-scale

features [19, 31], e.g., ASPP [4], have been widely-used

for accurate foreground estimates. However, the high-

order appearance relationships among them have still not

been completely leveraged for better inferring query ob-

jects. Moreover, some works [33, 42, 46] propose a pixel-

to-pixel matching paradigm among support/query images

based on non-local attention variants [36], which still suf-

fers from the object scale variations. For instance, if the

horse region in the support image is very small, most loca-

tions of the segmented query horse will correspond to the

same location from the support horse region.

To address the above challenges, we propose an end-to-

end scale-aware graph neural network (SAGNN) (§3.3) to

explicitly and comprehensively reason the high-order ap-

pearance relationships across the multi-scale support-query

features for FSS. As in Fig. 1(b), since FSS is a struc-

tural prediction task, SAGNN models the object variations

among support-query images in a structure-to-structure

manner. Here, structure means 1) each node in SAGNN is

a whole feature map (the embedded nodes in Fig. 1(b)) cor-

responding to a specific scale; and 2) the node features are

updated in a holistic manner by aggregating neighborhood

node features (cross-scale relation reasoning in Fig. 1(b)).

In this way, SAGNN can preserve and transfer more struc-

tural context from the seen to the unseen domains. Specif-

ically, we first build a scale-aware graph with each node

representing a support-induced multi-scale query feature.

Meanwhile, the edge in the graph is the pairwise interaction

of its connected nodes. By message passing to encourage

favorable information exchange among support-query pairs

over this graph, SAGNN can capture higher-order cross-

scale relationships and overcome harmful object variations

(e.g., scale, appearance, and spatial location variations for

the horse object in Fig. 1), and thus lead to a precise lo-

calization of query objects in a structural way. Further-

more, we propose a novel self-node collaboration mecha-

nism (Fig. 3) for enriching the current node features during

feature aggregation, which can make full use of the location

relations across scales for the query image. To sum up, our

main contributions are:

• We propose a scale-aware graph neural network

(SAGNN) which explicitly reasons the cross-scale rela-

tionships among support-query images in a structure-to-

structure manner, for tackling the FSS task. To the best of

our knowledge, this is the first work to do this in the FSS

domain.

• We propose a novel self-node collaboration mechanism

for enriching the current node features during feature ag-

gregation, which can bring to SAGNN a significant perfor-

mance gain.

• We set new state-of-the-art results on two FSS bench-

marks. Our SAGNN solves FSS from the perspective of

structural modeling, which sheds light for future research

in this field.

2. Related Work

Graph Neural Networks (GNNs). GNNs [11, 12, 26]

are useful tools for modeling the structural relationships

among various kinds of input data, e.g., they have been

used for video understanding [35,37], biology structure pre-

diction [11], graph-structured data classification [32], ob-

ject detection [45], and zero-shot learning [38, 39], among

others. The key components constituting a GNN are its

nodes, edges, and the parameterized message passing func-

tions among them, which are usually jointly updated in an

end-to-end manner. Recently, the graph convolutional net-

work (GCN) [8, 16] is proposed to endow CNNs with rela-

tion modeling power. The GCN, usually with its edge fixed

as a similarity scalar, can be seen as a special case of GNN.

In contrast, GNNs are more flexible to model various kinds

of data, and both nodes and edges should be updated alter-

natively by the message passing procedure. Our SAGNN

is a general GNN, with its own merits: 1) The nodes of

SAGNN are cross-scale feature maps, thus the structural

context (beneficial for FSS) is preserved automatically. 2)

We make full use of the location relations across scales

while aggregating the neighboring node features.

Semantic Segmentation. Semantic segmentation [21]

is a dense prediction task, which assigns a class label to

each pixel of a given image. Since the succesful application

to the semantic segmentation of fully convolutional neural

networks [21], various network designs have been made

in this field, such as UNet [25], Deeplab [3], SegNet [1],

and PSPNet [49]. In addition, dilated convolutions [44]

have been proposed to enlarge the receptive field while
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Figure 2. SAGNN architecture (three nodes are used). SAGNN (§3.3) takes an episode, i.e., the support-query image pair (xs, xq), as

input. Based on the mid- and high-level backbone features, the support-induced multi-scale features are derived by the Scale-Aware Node

Embedding. Then a scale-aware graph G = (V, E) is built and initialized. Next, SAGNN conducts T times of Message Passing over G to

capture high-order cross-scale relationships among these nodes, thus leading to updated node representations. Finally a concatenation and

readout function are used to segment the query image. Lmain and Lauxiliary (§3.4) are binary cross-entropy losses for SAGNN training.

maintaining the spatial resolution, which has become a

widely-used strategy in modern semantic segmentation sys-

tems. Other representative techniques include the encoder-

decoder structure [25], skip connection [3] and ASPP [3].

However, the fully supervised segmentation systems cannot

generalize to the unseen class segmentation scenario. In this

paper, SAGNN aims to solve the unseen class segmentation

problem.

Few-Shot Semantic Segmentation. Almost all exist-

ing FSS models exploit a two-branch architecture design

to conduct meta-training on a base training set, followed

by meta-testing on a disjoint test set. OSLSM [27] is the

pioneer work for FSS, consisting of a conditional branch

and a segmentation branch. The conditional branch is used

to generate classifier weights for segmenting the query im-

age. Later on, single or multiple prototype-based methods

are proposed under this two-branch paradigm, representa-

tive ones including PL [7], coFCN [24], A-MCG [15], SG-

One [48], PANet [34], FWB [22], CANet [47], SimProp-

Net [10], PPN [20] and PMM [41]. The core of these meth-

ods lies in constructing meaningful prototypes with differ-

ent strategies, which, however, undertake a few-to-many

matching among the support-guided prototypes and query

features. It is thus difficult to well segment query images

with limited prototypes. Some works [19, 33, 42, 46] ex-

plore pixel-to-pixel matching based on dual-image atten-

tion, which still fail to preserve the structural informations.

Recently, PFENet [31] claims two findings about FSS

that CANet and BriNet [42] have also validated, i.e., dur-

ing meta-training of FSS, the backbone weights should be

fixed and both the mid- and high-level features should be

used. By doing so, the generalization of the models can be

preserved as much as possible. As such, in this paper, we

also adopt these strategies for building our SAGNN models.

In the literatures, PGNet [46] and PFENet are two meth-

ods that are most related to SAGNN. They both use multi-

scale features for FSS, however, their designs are heuristic

(e.g., the top-down design in PFENet) and lack the ability to

model the high-order relationships. In contrast, SAGNN is

the first work in FSS field to model object variations among

support-query images in a structural manner.

3. Method

3.1. Task Definition

As mentioned in §1, like most FSS methods, we utilize

episode-based meta-learning [30] to perform model train-

ing. We denote the base training set and the test set as

Dtr and Dts, respectively, and their label sets are disjoint

from each other. To train SAGNN, we randomly sam-

ple multiple episodes from Dtr for meta-training. Each

episode consists of a support set S and a query set Q. Af-

ter completing the SAGNN training, we sample episodes

from Dts for testing. For the K-shot FFS task, suppose

S = {(xs
i ,m

s
i )}

K
i=1, which contains K image-mask pairs,

i.e., xs
i and ms

i are the ith support image and its ground-

truth (GT) binary mask for a specific class c, respectively.

Meanwhile, let Q = {(xq,mq)}, where, xq and mq are

the query image and its GT binary mask sampled from the

same class c. Each episode (S,Q) focuses on a differ-

ent class c and tries to produce a prediction mask m̂q for

the query image, by taking S and xq as inputs. In this

way, the binary cross-entropy loss between m̂q and mq ,

i.e., BCE(m̂q,mq), is further used to supervise the meta-

training. Finally, given the trained model, we sample multi-

ple episodes, {(Sts
i ,Qts

i )}
Nts

i=1, from Dts for meta-testing.

As most FFS model [31,41,42,46], the one-way scenario

is our focus in this paper, i.e., the category number (way)

in each episode is one in our model. In the following, for

simplicity, we consider the 1-shot setting (i.e., K=1 in S) to

illustrate our SAGNN.
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with self-node collaboration among two node embeddings.

3.2. Overview

SAGNN (Fig. 2) [26] improves the mainstream two-

branch FSS models by introducing cross-scale relation rea-

soning in a structure-to-structure manner. Given an episode

(S,Q), SAGNN is parameterized as support-induced multi-

scale query nodes, edges, and the differentiable message

passing functions among them. As such, under the 1-shot

setting, SAGNN builds a scale-aware graph, G = (V, E),
based on the support image-mask pair (xs,ms) (∈ S) and

the query image xq . Here, V = {vi}
|V|
i=1 is the node set

with |V| as the number of scales (or graph size/node num-

ber), and each vi can be initialized as a fused feature map

(node embedding) h0
i under the ith scale, which is thus a

structural representation with spatial layout. To fully ex-

ploit the cross-scale relations among these nodes, G is mod-

elled as a fully-connected graph. Each edge eij ∈ E con-

necting vi and vj denotes a directed relation of vi→vj .

Further, SAGNN conducts T progressive message passing

steps over G to capture the high-order cross-scale relation-

ships among each episode. This leads to an updated node

representation for each node, termed as {hT
i }

|V|
i=1. Next, a

readout module is used to fuse these node features and get

the query prediction mask m̂q . In §3.3, each component of

SAGNN is described in detail.

3.3. ScaleAware Graph Neural Network

Scale-Aware Node Embedding. As discussed in §2, fol-

lowing the findings by [31, 42, 47], we fix the backbone

weights, use mid- and high-level features for node feature

extraction, and adopt the maximum support-foreground-

response mask [31]. Specifically, for ResNet with layers di-

vided into four groups (block1-4), the spatial size of feature

maps after block2 is the same by dilated convolution [3].

As in [31,47], we concatenate the feature maps after block2

and 3, and compress them to a fixed channel dimension C

using a 1×1 convolution. Denoting the above process as B,

given the support/query image xs/xq , we can obtain their

convolutional feature maps under the largest scale:

f
s = B(xs) ∈ R

H×W×C
, f

q = B(xq) ∈ R
H×W×C

, (1)

where H ,W ,C are their height, width, and channel dimen-

sion, respectively, and H ×W is our adopted largest reso-

lution. To obtain the multi-scale node embeddings (Fig. 2),

we first conduct pyramid average-pooling [49] on fq to gen-

erate |V| new-scaled features Fq = {fqi }
|G|
i=1 with f

q
i ∈

R
Hi×Wi×C and fq ∈ Fq . We suppose f

q
1 = fq (i.e., H1=H ,

W1=W ), and Hi>Hj , Wi>Wj when i<j.

In addition, the widely-used global masked average

pooling vector w.r.t. (xs,ms) is calculated as follows:

f
s
avg = avg pool(fs ⊙R(m̄s)) ∈ R

1×1×C
, (2)

where m̄s has a size of W × H by down-sampling ms, R
reshapes m̄s to be the same shape as fs, and ⊙ denotes

element-wise multiplication. Motivated by [31], we further

use the high-level features fsh and f
q
h (also having H × W

spatial size due to the dilated convolution) w.r.t. xs,xq after

block4, to get the maximum support-foreground-response

(sfr) mask f
q
sfr (∈ R

H×W ). The mask value f
q
sfr(x, y)

in location (x,y) is obtained by first using fsh ⊙ R(m̄s) to

achieve a cosine similaritiy vector with f
q
h(x, y), followed

by finding the maximum response in it. To this end, based

on Fq , fs
avg and f

q
sfr, we construct the node embedding

h0
i ∈ R

H×W×C w.r.t. the ith scale as follows:

h
0
i = IH×W (C(fqi ⊕ PHi×Wi

(fs
avg)⊕ IHi×Wi

(fq

sfr))), (3)

where Px×y expands the input vector to a spatial size x×y,

Ix×y down- or up-samples the input to a spatial size x × y

by interpolation, C consists of one 1 × 1 and two 3 × 3
convolutions for channel compression and feature fusion,

and ⊕ is the concatenating operation.

Edge Embedding. G is a fully-connected graph without

self-connections. An edge eij ∈ E indicates a directed con-

nection of node vi→vj . Since we have achieved the initial

node embeddings (or representations) h0
i (Eq. (3)) w.r.t. vi

for a given episode, for the tth GNN reasoning, we utilize

the edge embedding etij to represent the relation of vi→vj
(Fig. 2). As node embeddings are structural feature maps,

we use the dual-image attention variant [36,42] to grasp the

relation of vi → vj and vice versa:

e
t
ij = ĥ

t
iUĥ

tT

j ∈ R
HW×HW

, (4)

where ĥt
i ∈ R

WH×C (ĥt
j ∈ R

WH×C) is reshaped by

ht
i ∈ R

W×H×C (ht
j ∈ R

W×H×C), and U ∈ R
C×C is a

learnable matrix during all the episodes (Fig. 3). Similarly,

we leverage etji=e
tT

ij =ĥt
jU

TĥtT

i to represent the relation of

vj → vi. etij reflects the long-range similarity between

node features with different resolutions (scales).

Message Passing with Self-Node Collaboration. In a

standard GNN, in iteration t, the message gt
ji passed from

vj to vi is defined as (Fig. 3):

g
t
ji = M(ĥt−1

j , e
t−1
ij ) = softmax(et−1

ij )ĥt−1
j ∈ R

HW×C
,

(5)

where softmax(·) is a row-wise softmax normalization.

Under SAGNN, taking the kth row of et−1
ij as an exam-

ple, it represents the similarity of location k in node feature
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i with all locations in node feature j. Since different node

features (i.e., ĥt−1
i and ĥt−1

j , with the same spatial size)

represent different-resolution features for the same query

image (Eq. (3)), softmax(et−1
ij )ĥt−1

i ∈ R
HW×C becomes

meaningful, and each of its rows is thus a weighted sum-

mation of each location of ĥt−1
i and weights in columns

of softmax(et−1
ij ). Notably, ĥt−1

i itself contains the cross-

resolution location information. As such, to enable SAGNN

to perceive different resolutions of the same object, we im-

prove Eq. (5) by including a self-node collaboration:

g
t
ji =M(ĥt−1

i , ĥ
t−1
j , e

t−1
ij )

=softmax(et−1
ij )(ĥt−1

j + ĥ
t−1
i ) ∈ R

HW×C
.

(6)

Experimental evaluation shows performance gains by our

simple self-node collaboration (Fig. 3 and Table 6). Finally,

the total messages to vi from all neighboring nodes are:

g
t
i = Freshape(

∑

vj∈V(i)

g
t
ji) ∈ R

H×W×C
, (7)

where Freshape(·) reshapes the input size to H ×W × C.

Node-State Updating. In iteration t, after acquiring

the self-node collaborated message gt
i (Eq. (7)) and the

node feature in the (t-1)th iteration ht−1
i , we utilize Con-

vGRU [2] to update the state of the node vi:

h
t
i = UGRU(h

t−1
i ,g

t
i) ∈ R

H×W×C
. (8)

SAGNN is the first work using ConvGRU to update the

node-state of the whole feature maps in the FSS field.

Episodic Readout Module. As discussed in §3.2, we

achieve the updated node representations {hT
i }

|V|
i=1, after

T times of message passing. To fuse them, we conduct

the following sequential operations to readout the predicted

segmentation mask m̂q for the query xq under the current

episode.

m̂
q = Fcls(FASPP(Fconv(h

T
1 ⊕h

T
2 ⊕ · · ·⊕h

T
|V|))) ∈ R

h×w×2
,

(9)

where Fconv, FASPP and Fcls together constitute the fusion

operations; details of their implementations are provided in

§4.2. In Eq. (9), h and w are the height and width of the

ground-truth mask mq , and O(·)=Fcls(FASPP(Fconv(·)))
is dubbed our readout function.

Our SAGNN undergoes an episode-based meta-training

process; we therefore call this module an episodic read-

out module. The components (Eq. (3)-(9)) in SAGNN are

all differentiable and their weights are shared during meta-

training. As such, SAGNN can be trained in an end-to-end

manner and can transfer structural knowledge from the seen

to unseen domain (meta-testing).

3.4. Training Loss for SAGNN

Our SAGNN is trained in a meta-learning paradigm,

and each episode is equivalent to a data sample in gen-

eral learning algorithms. §3.3 shows the whole process

of SAGNN training over a single episode, under a 1-shot

setting. In practice, we train SAGNN in a batch mode by

sampling a batch of Ne episodes ({(Si,Qi)}
Ne

i=1). Suppose

Qi = (xq
i ,m

q
i ), based on Eq. (9). We can get the predicted

mask, denoted as m̂
q
i ∈ R

h×w×2, for each query x
q
i . To this

end, we leverage the binary cross entropy (BCE) loss (over

all spatial locations) among m̂
q
i and m

q
i to update all param-

eters in SAGNN. This loss is denoted as our main loss:

Lmain =
1

Ne

Ne∑

i=1

BCE(m̂q
i ,m

q
i ). (10)

In addition, motivated by the deeply-supervised nets and

PFENet [17,31], after obtaining the initial node embeddings

without the IH×W operation (see Eq. (3)) for |V| scales –

denoted as {h̃0
i }

|V|
i=0 – we use |V| encoding branches to pre-

dict the segmentation masks for each of these scales. These

|V| encoding branches are implemented as one 3 × 3 and

one 1×1 convolutions. As such, under the Ne episodes, we

obtain another auxiliary loss:

Lauxiliary =
1

Ne × |V|

Ne∑

i=1

|V|∑

k=1

BCE(Fk
enc(h̃

0
k),m

q
i ), (11)

where Fk
enc(·) is the encoding function of the kth scale fea-

tures. Our final training loss for SAGNN is:

L = Lmain + αLauxiliary, (12)

where α is set to 1.0 in all the experiments. More imple-

mentation details of SAGNN are in §4.2.

4. Experiments

4.1. Settings

Datasets. We use two standard FFS datasets, i.e.,

PASCAL-5i [27] and COCO-20i [22], to evaluate SAGNN.

PASCAL-5i is built from PASCAL VOC 2012 [9] with ad-

ditional annotations from SDS [13], meanwhile, COCO-20i

is created from MSCOCO [18].

For the two datasets used, the cross-validation results are

reported by evenly dividing the data into different folds –

i.e., four folds for both of them – according to the cate-

gories. We use the same data splits as [27] and [22] on

PASCAL-5i and COCO-20i, respectively. As such, for each

cross-validation on PASCAL-5i and COCO-20i, 15 and 60

object classes serve as the training data with the remaining

(5 and 20 object classes) used as the test data. For meta-

testing under each cross-validation for the two datasets, we

randomly sample 1,000 episodes (support-query pairs) from

the test set and evaluate their metrics.

Metrics. Like other methods [27,34,35], two evaluation

metrics, i.e., mean-IoU and FB-IoU, are adopted in this pa-

per. mean-IoU is calculated by averaging the intersection-

over-unions (IoUs) over different foreground classes in the
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Methods Backbone
mean-IoU (1-shot) FB-IoU

(1-shot)

mean-IoU (5-shot) FB-IoU

(5-shot)Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean

OSLSM (BMVC’17) [27] VGG-16 33.6 55.3 40.9 33.5 40.8 61.3 35.9 58.1 42.7 39.1 43.9 61.5

co-FCN (ICLRW’18) [24] VGG-16 31.7 50.6 44.9 32.4 41.1 60.1 37.5 50.0 44.1 33.9 41.4 60.2

AMP (ICCV’19) [28] VGG-16 41.9 50.2 46.7 34.7 43.4 62.2 41.8 55.5 50.3 39.9 46.9 63.8

SG-One (TCYB’19) [48] VGG-16 40.2 58.4 48.4 38.4 46.3 63.1 41.9 58.6 48.6 39.4 47.1 65.9

PANet (ICCV’19) [34] VGG-16 42.3 58.0 51.1 41.2 48.1 66.5 51.8 64.6 59.8 46.5 55.7 70.7

CANet (CVPR’19) [47] ResNet-50 52.5 65.9 51.3 51.9 55.4 66.2 55.5 67.8 51.9 53.2 57.1 69.6

PGNet (ICCV’19) [46] ResNet-50 56.0 66.9 50.6 50.4 56.0 69.9 57.7 68.7 52.9 54.6 58.5 70.5

FWB (ICCV’19) [22] ResNet-101 51.3 64.5 56.7 52.2 56.2 - 54.8 67.4 62.2 55.3 59.9 -

PMMs (ECCV’20) [41] ResNet-50 52.0 67.5 51.5 49.8 55.2 - 55.0 68.2 52.9 51.1 56.8 -

PPNet (ECCV’20) [20] ResNet-50 47.8 58.8 53.8 45.6 51.5 - 58.4 67.8 64.9 56.7 62.0 -

DAN (ECCV’20) [33] ResNet-101 54.7 68.6 57.8 51.6 58.2 71.9 57.9 69.0 60.1 54.9 60.5 72.3

PFENet (TPAMI’20) [31] ResNet-50 61.7 69.5 55.4 56.3 60.8 73.3 63.1 70.7 55.8 57.9 61.9 73.9

BriNet (BMVC’20) [42] ResNet-50 56.5 67.2 51.6 53.0 57.1 - - - - - - -

SimPropNet (IJCAI’20) [10] ResNet-50 54.9 67.3 54.5 52.0 57.2 73.0 57.2 68.5 58.4 56.1 60.0 72.9

Baseline ResNet-50 62.1 68.2 55.3 53.8 59.9 71.7 63.3 68.7 55.1 55.3 60.6 71.8

SAGNN ResNet-50 64.7 69.6 57.0 57.2 62.1 73.2 64.9 70.0 57.0 59.3 62.8 73.3

Table 1. Results under 1-shot and 5-shot settings on PASCAL-5i. mean-IoU under each fold, and the averaged mean-IoU (termed as Mean)

and averaged FB-IoU under four folds are reported. Baseline results are obtained by removing the graph reasoning in SAGNN. The best

mean-IoUs are marked in bold. FB-IoU is biased towards and benefits from the background class to achieve a good number, as such it is a

reference indicator (See also italic text in §4.3). In addition, some of the leading methods, e.g., FWB, do not even report their FB-IoUs.

Methods Backbone
mean-IoU (1-shot) FB-IoU

(1-shot)

mean-IoU (5-shot) FB-IoU

(5-shot)Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean

PANet (ICCV’19) [34] VGG-16 - - - - 20.9 59.2 - - - - 29.7 63.5

FWB (ICCV’19) [22] VGG-16 18.4 16.7 19.6 25.4 20.0 - 20.9 19.2 21.9 28.4 22.6 -

PFENet (TPAMI’20) [31] VGG-16 33.4 36.0 34.1 32.8 34.1 60.0 35.9 40.7 38.1 36.1 37.7 61.6

FWB (ICCV’19) [22] ResNet-101 17.0 18.0 21.0 28.9 21.2 - 19.1 21.5 23.9 30.1 23.7 -

PMMs (ECCV’20) [41] ResNet-101 29.3 34.8 27.1 27.3 29.6 - 33.0 40.6 30.1 33.3 34.3 -

DAN (ECCV’20) [33] ResNet-101 - - - - 24.4 62.3 - - - - 29.6 63.9

PPNet (ECCV’20) [20] ResNet-50 28.1 30.8 29.5 27.7 29.0 - 39.0 40.8 37.1 37.3 38.5 -

BriNet (BMVC’20) [42] ResNet-50 32.9 36.2 37.4 30.9 34.4 - - - - - - -

PFENet (TPAMI’20) [31] ResNet-101 34.3 33.0 32.3 30.1 32.4 58.6 38.5 38.6 38.2 34.3 37.4 61.9

Baseline VGG-16 32.1 36.1 35.2 32.3 33.9 60.1 35.0 40.1 37.1 36.5 37.2 61.8

SAGNN VGG-16 35.0 40.5 37.6 36.0 37.3 61.2 37.2 45.2 40.4 40.0 40.7 63.1

Baseline ResNet-101 32.0 36.3 35.0 33.0 34.1 60.2 36.8 40.5 36.8 37.2 37.8 62.4

SAGNN ResNet-101 36.1 41.0 38.2 33.5 37.2 60.9 40.9 48.3 42.6 38.9 42.7 63.4

Table 2. Results under 1-shot and 5-shot settings on COCO-20i. mean-IoU under each fold, and the averaged mean-IoU (termed as Mean)

and averaged FB-IoU under four folds are reported. Baseline results are obtained by removing the graph reasoning in SAGNN. The best

mean-IoUs are marked in bold. As in Table 1, FB-IoU serves as a reference indicator as well (See also italic text in §4.3).

test set. The mean-IoU of each fold and averaged mean-IoU

of four folds are reported during cross-validations. FB-IoU

is the foreground/background IoU, which takes all object

classes in the test set as a single foreground class and the

IoUs of foreground/background are averaged to obtain the

FB-IoU. The mean-IoU is the key evaluation criterion for

FFS, since the performance bias of scarce classes can be

alleviated by considering the differences of all classes. As

such, we solely report the averaged FB-IoU over four folds.

4.2. Implementation Details and Parameters

We use ResNet-50 [14] (VGG-16 [29] and ResNet-101)

to conduct our main body experiments on PASCAL-5i

(COCO-20i). Ablation experiments for different backbones

on PASCAL-5i are carried out and shown in Table 3. As

in [10, 31, 42, 47], all of the backbones used are initialized

by the ImageNet [6] pre-trained models and are fixed during

SAGNN training. The reasons for doing so can be found in

§3.3 w.r.t. the scale-aware node embedding. The channel

dimension C (Eq. (1)) is fixed as 256 in all of the experi-

ments. For ResNet, dilated convolutions are used to make

the feature maps after block2 have a size of about 1/8 of

the input. As such, by taking images with size 473×473

as input for ResNet-50, we can get the largest feature map

with spatial size 60×60, i.e., H = W = 60 in Eq. (1). In

fact, the resolutions (scales) used in Fq on PASCAL-5i and

COCO-20i are [60×60, 15×15, 8×8] and [40×40, 20×20,

10×10], respectively. This also means that the node number

|V| = 3. Ablation studies show that three scales have better

results than scales larger than three. Furthermore, the 1×1

and 3×3 convolutions in C (Eq. (3)) all have 256 channel

outputs. The readout functions in Eq. (9) are specified as:

Fconv: two 1×1 convolutions all with 256 output channels,

followed by two 3×3 convolutions all with 256 channel and

residual connections, finally another two 3×3 convolutions
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Figure 4. Segmentation results on unseen classes under 1-shot setting. The left panel is from PASCAL-5i, and right panel from COCO-20i.

Each column indicates one test episode and its predictions. From top to bottom, each row represents support images and their ground-truth

(GT) masks (green), query images and their GT masks (yellow), baseline predictions (red), SAGNN predictions (red), respectively (§4.5).

with 256 channels and residual connections. FASPP: atrous

spatial pyramid pooling with dilation rates 6, 12, 18 of 3×3

convolution and a 1×1 convolution without dilation. Fcls: a

3×3 convolution with 256 channels, and a 1×1 convolution

with 2 channels for predicting foreground/background.

We implement SAGNN using Pytorch on a Tesla V100

GPU. SAGNN is trained in an episode-based meta-learning

fashion; the batch size Ne in Eq. (11) for PASCAL-5i and

COCO-20i is 4 and 8, respectively. The SGD optimizer is

used with a learning rate of 0.0025 (for 100 epochs) and

0.005 (for 50 epochs) on PASCAL-5i and COCO-20i, re-

spectively. In addition, momentum and weight decay are

0.9 and 0.0001, and ‘poly’ strategy is also used. We try dif-

ferent times (T ) of message passing, and find that the results

with T = 1 and T = 2 are all promising.

For the K-shot setting (K>1), as in [22, 42, 47], we

leverage a feature-level early fusion strategy [24] by averag-

ing the support image features to get a single fused support

feature. Then, the subsequent operations are the same as

the 1-shot case. Table 4 shows the comparisons to other late

fusion methods.

4.3. Comparisons with StateoftheArts

We compare SAGNN (details are depicted in §3.3 and

§4.2) with all the leading FFS methods under the same

evaluation metrics on the two datasets used. Notably, un-

like [46, 47] that use multi-scale testing, we use a single

scale as input during meta-testing.

PASCAL-5i. The mean-IoU and FB-IoU under 1-shot

and 5-shot are shown in Table 1. We conclude that (i)

SAGNN consistently outperforms the compared methods

under the averaged mean-IoU (on four folds), although it

is only slightly better than [31] on fold1. (ii) SAGNN sig-

nificantly outperforms its vallina baseline method (e.g., the

averaged mean-IoU is 62.1 versus 59.9), which is imple-

mented with the same multi-scale nodes as SAGNN, yet

without the graph reasoning among them. This further

demonstrates that the proposed scale-aware message pass-

ing model intrinsically captures the high-order relationships

of the cross-scale features and can advance the FSS task

greatly. (iii) Since most foreground classes only occupy a

small spatial region of the whole image, the FB-IoU is bi-

ased torwards and benefits from the background class to

achieve a good number, which makes it not convincing to

evaluate the performances. However, we also show the av-

eraged FB-IoU on four folds, and the numbers are compet-

itive (Table 1 and 2).

COCO-20i. Similarly, we illustrate the mean-IoU and

FB-IoU in Table 2, from which it can be seen that SAGNN

achieves state-of-the-art results under both 1-shot and 5-

shot settings by a clear margin. For instance, with the same

protocols and the same VGG-16 backbone, taking the av-

eraged mean-IoU as the metric, we have (1) SAGNN out-

performs PFENet [31] by 3.2 and 3.0 on 1-shot and 5-shot

respectively. (2) SAGNN outperforms FWB [22] by even

17.3 and 18.1 on 1-shot and 5-shot, respectively. As such,

the cross-scale structural relation modeling in SAGNN in-

deed captures some inner benefits for boosting FFS perfor-

mance, and we hope our model can shed light for future

research in FFS.

4.4. Ablation Study

PASCAL-5i is used to perform the following ablation

studies, and unless specified, we mainly report averaged
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Backbone
mean-IoU

1-shot 5-shot

VGG-16 58.4 59.3

ResNet-50 62.1 62.8

ResNet-101 60.8 61.5

Table 3. Effects of backbones.

5-shot testing mean-IoU FB-IoU

1-shot baseline 62.1 73.2

Feature-Avg 62.8 73.3

Mask-Avg 62.5 72.4

Mask-OR 61.8 72.0

Table 4. Feature fusion under 5-shot setting.

Setting mean-IoU

|V| T 1-shot 5-shot

1 1 n.a. n.a.

2 1 61.0 61.7

3 1 62.1 62.8

4 1 61.0 61.9

3 1 62.1 62.8

3 2 62.4 62.9

3 3 62.1 62.5

Table 5. Effects of |V| and T .

Models
mean-IoU

1-shot 5-shot

SAGNN w SC 61.2 62.7

SAGNN w OI 61.1 62.4

Full SAGNN 62.1 62.8

Table 6. Effects of self-node

collaboration.

mean-IoU over 4 folds under 1-shot and 5-shot settings.

Effects of Node Number |V|. The node number |V| is the

key parameter in SAGNN, which controls the tradeoff be-

tween the accuracy and training cost. We vary |V| from 1 to

4 to observe the performances of SAGNN. In Table 5, |V|=3

performs best, which indicates that SAGNN equipped with

3 nodes (scales) is desirable to model the cross-scale rela-

tions. As such, we set |V|=3 in all of our experiments.

Effects of Self-Node Collaboration (SC). Since Eq. (5) es-

sentially captures opposite-node information (OI), we thus

denote the SAGNN model variants using the message for-

mulas in Eq. (5) and Eq. (6) as SAGNN w OI and the full

SAGNN, respectively. Another variant solely using SC is

also considered, i.e., gt
ji = softmax(et−1

ij )ĥt−1
i , termed as

SAGNN w SC. Results in Table 6 show that a sizable gains

are achieved by our simple SC.

Message Passing Iteration Number T . We take the values

of T from 1, 2, 3 to investigate the performances of our full

SAGNN model. We conclude from Table 5 that T=2 and

T=1 achieve the overall best and second best result. How-

ever, the performance becomes slightly worse when T=3.

We take T = 1 to conduct our main experiments.

Coefficient α of Lauxiliary. We set α = 1.0 (Eq. (12)) in all

experiments. We further vary its values from {0.0, 0.5, 1.0}
to observe the mean-IoU under each fold and the aver-

aged mean-IoU of four folds, under 1- and 5-shot set-

tings (Fig. 5). As in Fig. 5, the performances are robust w.r.t.

different α and better results are achieved when α=1.0.

Effects of Backbones. To evaluate the effects of different

backbones on the full SAGNN model, VGG-16, ResNet-

50, and ResNet-101 are used to conduct experiments under

the same settings. As shown in Table 3, ResNet-50 yields a
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Figure 5. mean-IoUs under different auxiliary loss coefficients α.

superior result.

Feature Fusion under 5-shot Setting. As stated in § 4.2,

SAGNN averages five support image features for fusion

(Feature Fusion), which is an early fusion strategy. Two

late fusion methods, i.e., OR fusion on masks [27] and av-

erage fusion on masks [47], are compared in Table 4. For

SAGNN, feature fusion performs best, and is thus adopted

to derive the 5-shot results.

4.5. Qualitative Results

We take testing episodes from PASCAL-5i and COCO-

20i to visualize the segmentation results, under a 1-shot set-

ting. Fig. 4 depicts the qualitative comparisons of SAGNN

with the baseline without graph reasoning (i.e., T=0 in

Eq. (9)) yet still using the same scales as SAGNN. By con-

trast, besides the intrinsic nature for graph-based model to

capture the appearance relationships, SAGNN also has sev-

eral other merits: (1) It can overcome object scale variations

by mutual passing of scale messages, e.g., the sofa and cake

objects are well segmented. (2) It can alleviate the clut-

tered background issue thanks to the support-induced query

node construction strategy (see §3.3), thus leading to accu-

rate estimates for bird and clock. (3) It can mitigate object

location variations using self-node collaboration (Eq. (6)),

e.g., flower pot and motorbike.

5. Conclusion

In this paper, a scale-aware graph neural network

(SAGNN) is proposed to tackle the challenging and impor-

tant few-shot semantic segmentation (FSS) task. Specifi-

cally, a scale-aware graph is first built upon the support-

induced query nodes, followed by graph reasoning on these

nodes. A novel self-node collaboration mechanism is also

proposed to enrich the current node features during fea-

ture aggregation. SAGNN sets new state-of-the-arts on both

PASCAL-5i and COCO-20i.
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