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Abstract

Image denoising, demosaicing and super-resolution are

key problems of image restoration well studied in the recent

decades. Often, in practice, one has to solve these prob-

lems simultaneously. A problem of finding a joint solution

of the multiple image restoration tasks just begun to attract

an increased attention of researchers. In this paper, we pro-

pose an end-to-end solution for the joint demosaicing, de-

noising and super-resolution based on a specially designed

deep convolutional neural network (CNN). We systemati-

cally study different methods to solve this problem and com-

pared them with the proposed method. Extensive experi-

ments carried out on large image datasets demonstrate that

our method outperforms the state-of-the-art both quantita-

tively and qualitatively. Finally, we have applied various

loss functions in the proposed scheme and demonstrate that

by using the mean absolute error as a loss function, we can

obtain superior results in comparison to other cases.

1. Introduction

Image demosaicing, denoising, and super-resolution

(SR) are classical image restoration problems. With the

recent advancement of deep convolutional neural networks

(CNNs) and their application in image restoration, several

deep learning-based methods achieve the state-of-the-art

(SOTA) performance [19, 42, 37, 47].

In many practical applications an acquired image is dis-

torted by multiple degradations, thus the above mentioned

individual image restoration problems have to be solved si-

multaneously. A most natural choice is to apply best meth-

ods of individual image restoration tasks in a sequence.

However, the existing solutions are not ideal. Addressing a

problem of image denoising, most of the algorithms smooth

out high-frequency content, such as image details and tex-

ture, while eliminating noise in flat areas. Image demosaic-

ing and super-resolution algorithms often introduce color

artifacts especially in the texture regions and around image

edges. Thus, a sequential application of the individual im-

age restoration methods will result in an accumulation of

errors produced by the individual methods. Another draw-

back of the sequential methods is an increased complexity

of a solution (considering both speed and memory).

As an alternative to this, joint solutions for the combined

problems have been proposed in the literature [3, 6, 7, 8, 18,

21, 26, 36, 44, 49]. However, the problem of finding a joint

solution for a triplet of problems of image demosaicing, de-

noising and SR has received much less attention [26, 29]. In

2019, Qian et al. [29] proposed a trinity network (TENet) to

jointly solve this composite problem. Although the TENet

is an end-to-end network, the execution order of different

tasks is fixed. To this end, Qian et al. have divided the

network into two modules and calculated the middle loss

to supervise the functionality of the first module and op-

timize the network. Recently, Liu et al. proposed another

solution to the joint problem, SGNet [26]. In order to im-

prove the performance of demosaicing, SGNet introduces

two self-guidance methods, the green channel guidance and

the density map guidance.

In this paper, we comprehensively study various solu-

tions of this combined problem. First, in subsection 3.1, we

adjust the execution order, and investigate possible joint so-

lutions under this execution order. Then, in subsection 3.2,

we propose an end-to-end learning for the combined prob-

lem by designing a very deep convolutional neural net-

work JDNDMSR. Differently from TENet and SGNet,

our network uses the residual channel connection block

(RCAB) [47] instead of residual-in-residual dense block

(RRDB) [37] as the basic block (see subsection 6.1). We

have carried out numerous experiments and demonstrate

that the proposed method outperforms other joint solutions

both quantitatively and qualitatively (Section 4). To further

optimize the proposed network, different loss functions are

utilized, and the comparative analysis of the resulting so-

lutions is demonstrated in subsection 5.1. A comparison

with the state-of-the-art method TENet [29] and the abla-

tion study (see Fig. 1) are presented in subsection 5.2 and

Section 6, respectively.
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(a) kodim03 from Kodak.

σ = 10, sf = 2.

(b) Image055 from B100.

σ = 10, sf = 2.

(c) Image006 from Urban100.

σ = 10, sf = 2.

(d) Image062 from Urban100.

σ = 10, sf = 2.

GT TENet Ours GT TENet Ours GT TENet Ours GT TENet Ours

(e) Image9 from McMaster.

σ = 0, sf = 2.

(f) Image002 from Urban100.

σ = 0, sf = 2.

(g) Image4 from McMaster.

σ = 20, sf = 2.

(h) Image13 from McMaster.

σ = 20, sf = 2.

GT TENet Ours GT TENet Ours GT TENet Ours GT TENet Ours

Figure 1: Qualitative comparison between the SOTA model TENet and the proposed JDNDMSR+. sf means the scale

factor. The noise levels (σ) of (e-f), (a-d), (g-h) are 0, 10 and 20, respectively.

The main contributions of this paper are listed below.

1. We propose an end-to-end network (JDNDMSR+)

based on residual channel attention blocks for joint im-

age demosaicing, denoising and super-resolution. This

network is universal: one can turn off denoising and/or

super-resolution operations of the network by setting

the noise level parameter to 0 and the scale factor pa-

rameter to 1.

2. We systematically compare our JDNDMSR+ with

diverse solutions to the joint problem. The quantitative

and qualitative experimental results on the benchmark

datasets show that the proposed method not only sur-

passes other solutions, but also outperforms the state-

of-the-art, including cases when denoising or super-

resolution operations are not performed.

2. Related work

Denoising. The advanced image denoising methods can

be classified into two main categories: model-based and

deep learning-based methods. BM3D [4], often regarded

as a denoising benchmark, belongs to the first category. In

2017, Zhang et al. applied a deep convolutional neural net-

work (CNN) , called DnCNN [42]. DnCNN adopts residual

learning and batch normalization on CNN for blind Gaus-

sian denoising and attains top performance. Later on, many

other machine-learning based methods of image denoising

have appeared [2, 15, 38, 42, 43].

Demosaicing. To reduce manufacturing costs, most dig-

ital camera sensors capture only one color (red, green and
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blue) at each pixel. The camera sensor is covered by the

color filter arrays (CFAs). Image demosaicing is the process

of interpolating full-resolution color image from incomplete

color samples output by an image sensor. Most demosaicing

methods have been specifically designed for the Bayer CFA

which is the most popular CFA. Existing algorithms can

be also classified into two categories: model-based meth-

ods [12, 27, 31, 45], which recover images based on mathe-

matical models and image priors in the spatial-spectral do-

main; and learning-based methods [11, 32], based on pro-

cess mapping learned from abundant training data. The

deep learning methods [9, 17, 33] of image demosaicing

also attain the state-of-the-art performance.

Single image super-resolution. Single image super-

resolution aims at recovering a high-resolution (HR) im-

age from its corresponding low-resolution (LR) image. The

emergence of convolutional neural network has made the

performance of super-resolution methods advance by leaps

and bounds. In 2015, Dong et al. proposed SRCNN [5],

which utilizes a three-layers CNN in a single image super-

resolution task. Inspired by VGG-net, Kim et al. have pre-

sented a very deep residual learning super-resolution net-

work, VDSR [19]. To reduce the occupation of mem-

ory and accelerate the speed of computation, Shi et al.

have introduced a sub-pixel CNN ESPCN [30] to upscale

feature maps to the desired solution. In 2017, Ledig et

al. [23] have applied ResNet architecture in SR and pro-

posed a SRResNet scheme. EDSR [24] further ameliorate

the residual block and develop a very deep and wide CNN

to enhance the performance of SR. In 2018, Zhang et al.

have presented RDN, which is a residual dense network for

SR. They have also proposed an attention-based network,

RCAN [47], which introduces the channel attention into

residual blocks (RCAB). Wang et al. [37] have proposed a

perceptual-driven method ESRGAN based on the proposed

Residual-in-Residual Dense Block (RRDB). In 2020, Liu

et al. [25] proposed the RFANet by improving the chain of

residual modules and adding an enhanced spatial attention

(ESA) block at the end of each residual block.

Joint solutions. In practical applications, multiple im-

age restoration problems appear simultaneously, resulting

in the combined problems that one needs to solve. Recently,

the combined solutions to the mixture problem of multiple

image distortions replace traditional sequential solutions.

Examples are joint denoising and demosaicing [3, 6, 8, 10,

16, 18, 21], joint demosaicing and SR [7, 36, 39, 49], and

joint denoising and SR [44, 50]. However, a research on

the triplet of denoising, demosaicing and SR is still lack-

ing a special attention. In 2019, Qian et al. [29] proposed a

trinity network to jointly solve this composite problem. In

2020, Liu et al. proposed the SGNet [26] for joint image de-

mosaicing and super-resolution, which also can handle the

mixture problem of denoising, demosaicing and SR.

In this paper, we propose the end-to-end solution of de-

mosaicing, denoising and SR, JDNDMSR, and compared

it with the sequential application of SOTA methods for each

of these sub-problems, as well as with the state-of-the-art

method to solve this mixture problem.

3. Proposed method

In what follows, we first study the execution order of

image demosaicing, denoising and super-resolution. Then,

solutions of this execution order are analysed. Later, we

propose a deep CNN for the mixture problem. Note that we

only consider the CNN-based methods in this paper.

3.1. Joint solutions

For the mixture problem of image demosaicing, denois-

ing and super-resolution, a clean high-resolution color im-

age IHR should be estimated from its noisy low-resolution

raw image ILRN

M

. For the execution order, demosaicing

should follow denoising, like in [29], to avoid complica-

tions in filtering correlated noise after demosaicing. In ad-

dition, the demosaicing should be performed before super-

resolution because the correlation across color channels can

be exploited when super-resolving color image. Besides

this reason, performing super-resolution on raw image will

destroy the original mosaic pattern, which increases the dif-

ficulty of demosaicing. Therefore, for the fixed execution

order: DN → DM → SR, the first solution is to sequen-

tially utilize three targeted methods to solve the correspond-

ing image restoration problems one by one:

ÎHR = MSR(MDM
(MDN

(ILRN

M

))). (1)

where M denotes image restoration method, DN , DM ,

SR denote denoising, demosaicing and super-resolution,

respectively, and ÎHR is the estimation of high-resolution

image IHR.

Naturally, another approach is to combine two image

restoration tasks and then execute the remaining one:

ÎHR = MSR(MJDNDM
(ILRN

M

)), (2)

and

ÎHR = MJDMSR(MDN
(ILRN

M

)), (3)

where J indicates joint processing. Similarly, the third so-

lution is a fully combined end-to-end solution:

ÎHR = MJDNDMSR(ILRN

M

). (4)

A comparison of the solutions (Eqn. 1-4) is presented in

Section 4.2.
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Figure 2: The featured visualization of the proposed deep joint denoising, demosaicing and super-resolution network

JDNDMSR.

3.2. Network architecture

The proposed end-to-end solution of the mixture

problem is based on the deep CNN-based network,

JDNDMSR shown in Fig. 2, and consists of three parts:

color extraction, feature extraction and reconstruction. In-

spired by the method presented in [8], the Bayer input is

first reshaped to a quarter-resolution multi-channel image,

which is concatenated with the noise level estimation input.

In this paper, we assume that a noise level is known in ad-

vance or is properly estimated, thus, one can parametrize a

network with it. One way is to add a noise level input σ, and

replicate it spatially, concatenating with the packed mosaic

vector. Every layer downstream depends on it, which effec-

tively parametrizes the learned filters. The color extraction

step includes a convolutional layer with a large filter (256),

and a transposed convolution layer to upscale the feature

maps to the prime resolution. Upsampling the features be-

fore the next module improves the performance of the net-

work (Section 6.2). The feature extraction module is com-

posed of several basic blocks and a Long Skip Connection

(LSC). The basic block can be any effective block applied

in SOTA, such as the residual block (RB) [24], the residual-

in-residual dense block (RRDB) [37], or the residual group

(RG) with residual channel attention block (RCAB) [47].

Through the ablation study of the basic blocks (see Sec-

tion 6.1), we have chosen the RCAB to be our basic block

of feature extraction module. We utilize 4 residual groups

in the JDNDMSR network structure, each group includ-

ing 20 RCABs. In the reconstruction part, the transposed

convolution layer is used again to convert the extracted fea-

tures into full resolution features. The following is the final

convolutional layer to generate the desired resolution color

image. The proposed JDNDMSR can be changed to a

noise-free version JDMSR by removing the noise level in-

put σ (σ = 0). The experiments presented in Section 5 will

demonstrate that the proposed JDNDMSR and JDMSR

achieve notable performance improvement in comparison

with the other solutions including the state-of-the-art.

4. Experiments

4.1. Settings

For the training, we have applied Nvidia Tesla P100

GPU with 16 GB memory from the Tampere University

TCSC Narvi computing cluster. All experiments run on a

Linux computer with 3.4 GHz Intel i7-3770 CPU, 32 GB of

RAM, and Nvidia GTX 1050Ti GPU with 4GB of memory.

Dataset. For network training and validation, we used

publicly available dataset DIV2K [1] consisting of 900 2K

resolution images (800 for training, 100 for validation). We

compared different joint solutions on two public datasets,

McMaster [46] and Kodak, widely used in the papers on

image restoration [8, 19, 29, 35, 40, 42].

Data preprocessing. For data preprocessing of denois-

ing, noisy input images are generated by adding Gaussian

noise with the noise levels (σ) 10, 20 and 30. For data pre-

processing of demosaicing, we mosaic the color image to

a single-channel image in the Bayer CFA pattern. For data

preprocessing of super-resolution, the HR image is BICU-

BIC down scaled with the scale factors (SF) 2.

Training details. Data augmentation is performed on

images, which are randomly rotated by 90◦, 180◦, 270◦

and flipped horizontally. For each training epoch, the mini-

batch size is 16, and the patch size is 64 × 64. All models

are implemented in Python with the platform Keras. For

the optimization of network parameters, we use Adam [20]

with β1 = 0.9, β2 = 0.999 and the learning rate is initial-

ized to 0.001. All training continue 100 epochs. There are

2000 training steps and 200 validation steps in each epoch.

For the first 10 epochs, the learning rate is constant, then

the learning rate is decreased by 10 times for the remaining

90 epochs. Only a model with the smallest validation loss

is saved.

Loss function. The proposed JDNDMSR is opti-

mized with different loss functions. Given a training set

{Ii
LRN

M

, Ii
HR

}N
i=1, which contains N low-resolution inputs

and corresponding high-resolution counterparts, the goal of
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Table 1: Quantitative comparison of different solutions on the mixture problem of joint denoising, demosaicing and super-

resolution using datasets Kodak and McMaster [46]. ∗ represents the model is re-trained by our. The noise level is 10 and

the scale factor is set to 2. The best, second and third best results are highlighted with red, blue and green, respectively. The

efficiency is computed as an average time to process an image.

Solution
Pipeline

McMaster Kodak
Parameters Efficiency

type cPSNR SSIM cPSNR SSIM

DN → DM → SR
DnCNN→DJDD→VDSR 25.99 0.8522 26.18 0.7868

21.1MB 0.36s
DnCNN∗ →DJDD∗ →VDSR∗ 29.14 0.9248 28.53 0.8913

Joint DNDM → SR
DJDD→VDSR 28.40 0.9248 28.13 0.8812

14.2MB 0.23s
DJDD∗ →VDSR∗ 28.88 0.9212 28.43 0.8887

DN →Joint DMSR
DnCNN→ JDMSR 25.91 0.8522 26.11 0.7846

85.1MB 0.77s
DnCNN∗ → JDMSR∗ 29.51 0.9293 28.75 0.8948

Joint DNDMSR
JDNDMSR 29.34 0.9274 28.80 0.8942

78.2MB 0.64s
JDNDMSR+ 29.56 0.9296 28.80 0.8965

training JDNDMSR is to minimize the loss function:

L(Θ) =
1

N

N∑

i=1

L(JDNDMSR(Ii
LRN

M

), IiHR). (5)

where Θ denotes the parameter set of JDNDMSR. The

models in this part are trained with mean squared error

(MSE). We also further optimize our network by training

it with different error criteria and comparing the results by

different loss functions (see Section 5.1).

4.2. Comparison of solutions

In this section, we compare the joint solutions, presented

in Eqns. (1)-(4), of the mixture problem of image demo-

saicing, denoising and super-resolution. Except MJDMSR

in Eqn. (3), solved by the proposed JDMSR, other meth-

ods in Eqn. (1)-(3) are replaced by the state-of-the-art im-

age restoration networks, DnCNN [42], DJDD [8], and

VDSR [19], used for denoising, demosaicing and super-

resolution, respectively. It should be noted that there are

two versions of DJDD (for noisy and noise-free inputs). The

noisy version model is used in Eqn. (2) for joint demosaic-

ing and denoising (MJDNDM
). In contrast, the noise-free

version is adopted in Eqn. (1) for MDN
. Here we mainly fo-

cus on the comparison of various joint solutions, rather than

aiming at obtaining state-of-the-art results. Therefore, we

chose simple yet effective methods instead of computation-

ally more demanding ones with better performances. Simi-

lar to [41], we introduce a transfer-learning strategy to fur-

ther improve JDNDMSR (we name the transfer-learning

method as JDNDMSR+). JDNDMSR+ transfers the

learned parameters from the trained model of JDMSR for

joint ×2 super-resolution and image demosaicing. The de-

tails of the pre-trained JDMSR model and the ablation

study of transfer learning are provided in the supplementary

material.

Quantitative results. Quantitative analysis was per-

formed with cPSNR and SSIM metrics, by calculating them

on full RGB image. The results are averaged over whole

dataset. For super-resolved image, the borders of the image

are shaved off, with the scaling factor as the width of the

shaved border.

Table 1 shows the quantitative comparison of all solu-

tions for joint image demosaicing, denoising and super-

resolution. We fix a noise level to 10 and a scale factor

to 2. The loss function used in this comparison is MSE.

Since CNN models are sensitive to the input data, all mod-

els in (Eqn. (1)-(3)) are re-trained with the specific input and

output pairs. In order to reduce the interaction among dif-

ferent tasks, a model should input the results of the previous

model and try to correct the errors produced by the previous

processing at the same time. Comparing to other solutions,

our combined solution JDNDMSR+ performs better on

both datasets. Even without transfer-learning, our closest

combined solution JDNDMSR also outperforms most of

the compared solutions. On the other hand, the re-trained

models can obtain better performance than the directly ex-

ploiting trained models. We also presented the qualitative

results in Fig. 3. Our JDNDMSR+ not only eliminates

the noise but also recovers more details in high frequency

region.

Effects of combined solution. In Table 1, one can

observe that our JDNDMSR is the third best joint solu-

tion. In contrast, the specific re-trained models of solution

in Eqn. (3) achieves the second best performance. In ad-

dition, the fourth best solution is the retrained version of

Eqn. (1). These two solutions both begin from the spe-

cific re-trained DnCNN model. Therefore, a specific trained

DnCNN model can support a good start for joint denoising,

demosaicing and SR.

However, our JDNDMSR can achieve a comparable

performance by the additional noise level estimation input.

Our JDNDMSR+ demonstrates a superior performance.
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This observation indicates that the combined solution can

avoid an accumulation of errors. According to Table 1, the

combined solution, JDNDMSR+, outperforms other so-

lutions in consideration of performance, storage, and com-

putation efficiency.

5. Optimization

5.1. Comparison on cost functions

In subsection 4.2, the proposed JDNDMSR+ surpasses

other joint solutions both quantitatively and qualitatively. In

order to further optimize JDNDMSR+, we train several

models with different cost functions besides MSE, includ-

ing MAE, SSIM, MS-SSIM, Mix1. Inspired by [48], the

Mix1 cost function is defined as αLMS−SSIM+(1−α)L1
1.

These five models are compared on three evaluation met-

rics: cPSNR, SSIM, and MS-SSIM. The results of their

comparison on McMaster and Kodak datasets are shown in

Table 2. As one can see, the model trained with MAE (mean

absolute error) cost function attains the best performance

for all image quality metrics and on both datasets. Com-

pared with the model trained with MSE, the cPSNR values

of MAE version is improved by 0.25dB on two datasets.

Table 2: Quantitative comparison of different cost func-

tions. The results are averaged both on McMaster and Ko-

dak. The noise level is 10 and the scale factor is 2. For

cPSNR, SSIM, MS-SSIM, the value reported here has been

obtained as an average of the three color channels. Best

results are shown in bold.

Metric
Training cost function

MSE MAE SSIM MS-SSIM Mix1

cPSNR 28.48 28.73 26.64 26.64 27.36

SSIM 0.8991 0.9041 0.8513 0.8531 0.8733

MS-SSIM 0.9452 0.9487 0.9312 0.9326 0.9297

5.2. Comparison with StateoftheArt

In this section, we compare the proposed

JDNDMSR+-MAE with the state-of-the-art method

TENet [29] on four datasets with four noise levels (see

Table 3). For a fair comparison, we re-trained the TENet

network and our JDNDMSR+-MAE on both DIV2K

and Flickr2K [34] datasets with ×2 scale factor and the

noise level randomly sampled from [0, 20]. In addition

to McMaster and Kodak datasets, we also test them on

B100 [28] and Urban100 [14] datasets, which are often

applied in the comparison of different super-resolution

methods. The dataset B100 contains 100 human segmented

natural images, and the dataset Urban100 contains 100

urban images with many similar structures. For the

1We tested a few different values for α, and set α = 0.1

pre-processing of the test images, the scale factor is set

to 2 and the noise levels to 0, 10, 20 and 30. We use

cPSNR and SSIM metrics for the quantitative evaluation.

As shown in Table 3, our model outperforms the TENet

over all noise levels on all datasets. We also present the

visual comparison both on noisy and noise-free versions in

Fig. 1. In comparison with the resulting images of TENet,

our JDNDMSR+-df2k enables to reconstruct the high

resolution images more accurately with less blur and less

color artifacts. Although JDNDMSR+-df2k can handle

higher noise (σ > 20), more details are eliminated along

with the noise (see our supplementary material).

Joint denoising and demosaicing. As it was mentioned

above, our JDNDMSR+ can switch off denoising by set-

ting the parameter σ to 0. In addition, the super-resolution

can also be turned off by setting the scale factor to 1.

Based on this idea, we train our JDNDMSR network with

scale factor 1 on DIV2K dataset, named as JDNDM . We

compare the JDNDM with three state-of-the-art methods:

DJDD [8], Kokkinos [22], and SGNet [26]. The compar-

ison on three datasets with four noise levels is shown in

Table 42. This table demonstrates that the performance of

our JDNDM surpasses the state-of-the-art joint denoising

and demosaicing methods on both noisy and noise-free data.

When the noise level of JDNDM is 0, the model works

as demosaicing only, i.e. denoising and super-resolution

are turned off. Therefore, our JDNDMSR network can

be adjusted according to different requirements, includ-

ing switching on/off super-resolution, switching on/off de-

noise, and setting scale factor and noise level. Meanwhile,

our JDNDMSR attains favorable performance on differ-

ent mixture problems, such as denoising and demosaicing

(Table 4), demosaicing and super-resolution (Table 3), and

denoising, demosaicing and super-resolution (Table 3).

6. Ablation study

6.1. Basic blocks of feature extraction module

In order to study the effects of each component in the

proposed model JDNDMSR+, we gradually modify the

baseline JDNDMSR+ model and compare their differ-

ences. The investigation starts from the selection of the

basic blocks of feature extraction module. We compare

three types of residuals in the residual blocks: RRDB [37],

RCAB [13] and RAB [47]. For a fair comparison, we tuned

the number of three basic blocks to keep all networks to

have similar parameters (Table 5). The performance curves

of different basic blocks is shown in Fig. 4. With a similar

model size, the network with RCAB blocks performs bet-

2For fair comparison, the models we tested for noise-free data are the

noisy version supported by the authors. The max noise level of Kokkinos

is 10. Since the public pre-trained model are not available, the values of

SGNet are from the corresponding paper.
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Figure 3: Visual comparison of the joint solutions of denoising, demosaicing and super-resolution. The scale factor is 2 and

noise level is 10. The upper half part is the Image01 from McMaster dataset. The lower half part is the kodim19 from Kodak

dataset. The sequence of ground truth image, corrupted image and resulting images corresponds to the illustration in the

lower right corner.

ter than those with the other two basic blocks. Besides the

selection of the basic blocks, we find that LSC and transfer

learning can also improve the performance of the network

(See our supplementary material).
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Table 3: Quantitative comparison for joint denoising, demosaicing and super-resolution. The evaluation metrics are cPSNR

and SSIM. The best values are shown in bold. The scale factor is 2 and the noise levels are 0, 10, 20 and 30.

Noise McMaster Kodak B100 Urban100
level TENet JDNDMSR+ TENet JDNDMSR+ TENet JDNDMSR+ TENet JDNDMSR+

0 31.48/0.9574 32.59/0.9652 30.80/0.9386 31.49/0.9456 29.24/0.9200 29.87/0.9283 28.05/0.9225 28.99/0.9331

10 29.28/0.9269 29.66/0.9315 28.70/0.8963 28.85/0.8982 27.25/0.8711 27.37/0.8725 26.53/0.8872 26.89/0.8922

20 27.29/0.8943 27.54/0.9000 27.04/0.8558 27.13/0.8595 25.60/0.8230 25.67/0.8250 24.98/0.8464 25.22/0.8524

30 25.88/0.8636 26.11/0.8724 25.90/0.8226 26.03/0.8309 24.50/0.7854 24.57/0.7924 23.75/0.8072 24.01/0.8156

Table 4: Quantitative comparison for joint denoising and

demosaicing. The best values are shown in bold.

Method
Noise McMaster Kodak Urban100
level cPSNR SSIM cPSNR SSIM cPSNR SSIM

DJDD[8]

5

35.48 0.9775 36.21 0.9749 34.04 0.9728

kokkinos[22] 32.41 0.9601 34.65 0.9665 33.09 0.9654

SGNet[26] – – – – 34.54 0.9533

JDNDM 36.05 0.9805 36.87 0.9782 35.07 0.9767

DJDD[8]

10

33.14 0.9629 33.22 0.9537 31.80 0.9547

kokkinos[22] 29.30 0.9253 30.70 0.9215 30.02 0.9246

SGNet[26] – – – – 32.14 0.9229

JDNDM 33.74 0.9677 33.90 0.9599 32.83 0.9619

DJDD[8]

15

31.49 0.9478 31.43 0.9323 30.14 0.9356

kokkinos[22] 25.98 0.8517 27.17 0.8295 26.74 0.8492

SGNet[26] – – – – 30.37 0.8923

JDNDM 32.11 0.9550 32.05 0.9420 31.25 0.9477

DJDD[8]

0

37.90 0.9880 40.33 0.9918 36.47 0.9858

kokkinos[22] 33.82 0.9655 37.64 0.9815 33.94 0.9570

JDNDM 38.85 0.9904 42.23 0.9947 38.34 0.9895

Table 5: Performance comparison of different basic blocks.

The performance is the best cPSNR value on McMaster

dataset.

Basic block Amounts Total parameters Performance

RAB 7 3,247,063 28.55

RRDB 6 3,299,031 28.59

RCAB 40 3,504,855 28.97

Figure 4: The comparison of convergence curves of differ-

ent basic modules.

6.2. Color extraction module

Fig. 2 shows that the color extraction module of our net-

work is composed of two layers: a convolutional layer with

a large filter (256) for color extraction (CE) and a deconvo-

lutional layer for upsampling (UP1). In this part, we prove

the importance of this module. Table 6 displays the effect of

the CE layer and the position of the deconvolutional layer.

When the features are upsampled before feature extraction,

performance of the network improves by 0.19 dB compared

to the case when the features are upsampled after feature

extraction. The CE layer can also provide a small perfor-

mance improvement.

Table 6: Investigation of color extraction module. The mod-

els are tested on McMaster dataset. The scale factor is set

to 2 and the noise sigma is 10.

CE? ✗ ✓ ✗ ✓

UP1? After After Before Before

cPSNR on McMaster 28.86 28.87 29.05 29.07

7. Conclusion

We have systematically compared possible solutions of

the joint problem of image demosaicing, denoising and

super-resolution, under fixed execution order. Extensive

experiments have demonstrated that the proposed end-to-

end learning-based solution, JDNDMSR+ surpasses oth-

ers, both quantitatively and qualitatively. Besides, the per-

formance of JDNDMSR+ is improved by training with

the mean absolute error cost function used instead of mean

square error. The performance of this optimized model sur-

passed the state-of-the-art method TENet on four bench-

mark datasets for noisy and noise-free data. In addition,

the denoising operation and the super-resolution operation

of the proposed network can be turned off (by setting the

noise level to 0 and the scale factor to 1). When the super-

resolution operation is switched off, our JDNDM model

for joint denoising and demosaicing outperforms the state-

of-the-art methods. In the future, we will explore more prior

information to further improve the performance of joint im-

age demosaicing, denoising and super-resolution.
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