
MobileDets: Searching for Object Detection Architectures for Mobile

Accelerators

Yunyang Xiong∗

University of Wisconsin-Madison

yxiong43@wisc.edu

Hanxiao Liu∗

Google

hanxiaol@google.com

Suyog Gupta

Google

suyoggupta@google.com

Berkin Akin, Gabriel Bender, Yongzhe Wang, Pieter-Jan Kindermans, Mingxing Tan

Google

{bakin,gbender,yongzhe,pikinder,tanmingxing}@google.com

Vikas Singh

University of Wisconsin-Madison

vsingh@biostat.wisc.edu

Bo Chen

Google

bochen@google.com

Abstract

Inverted bottleneck layers, which are built upon depth-

wise convolutions, have been the predominant building

blocks in state-of-the-art object detection models on mobile

devices. In this work, we investigate the optimality of this

design pattern over a broad range of mobile accelerators

by revisiting the usefulness of regular convolutions. We dis-

cover that regular convolutions are a potent component to

boost the latency-accuracy trade-off for object detection on

accelerators, provided that they are placed strategically in

the network via neural architecture search. By incorporat-

ing regular convolutions in the search space and directly

optimizing the network architectures for object detection,

we obtain a family of object detection models, MobileDets,

that achieve state-of-the-art results across mobile acceler-

ators. On the COCO object detection task, MobileDets

outperform MobileNetV3+SSDLite by 1.7 mAP at compa-

rable mobile CPU inference latencies. MobileDets also

outperform MobileNetV2+SSDLite by 1.9 mAP on mobile

CPUs, 3.7 mAP on Google EdgeTPU, 3.4 mAP on Qual-

comm Hexagon DSP and 2.7 mAP on Nvidia Jetson GPU

without increasing latency. Moreover, MobileDets are com-

parable with the state-of-the-art MnasFPN on mobile CPUs

even without using the feature pyramid, and achieve better

mAP scores on both EdgeTPUs and DSPs with up to 2×
speedup. Code and models are available in the TensorFlow

Object Detection API [16]: https://github.com/

tensorflow/models/tree/master/research/

object_detection.

∗Equal contribution.

1. Introduction

In many computer vision applications it can be observed

that higher capacity networks lead to superior performance

[29, 44, 15, 24]. However, they are often more resource-

consuming. This makes it challenging to find models with

the right quality-compute trade-off for deployment on edge

devices with limited inference budgets.

A lot of effort has been devoted to the manual design

of lightweight neural architectures for edge devices [14, 27,

42, 39]. Unfortunately, relying on human expertise is time-

consuming and can be sub-optimal. This problem is made

worse by the speed at which new hardware platforms are re-

leased. In many cases, these newer platforms have differing

performance characteristics which make a previously devel-

oped model sub-optimal.

To address the need for automated tuning of neural net-

work architectures, many methods have been proposed.

In particular, neural architecture search (NAS) methods

[5, 32, 30, 13, 10] have demonstrated a superior ability in

finding models that are not only accurate but also efficient

on a specific hardware platform.

Despite many advancements in NAS algorithms [43, 24,

1, 19, 5, 32, 40, 30, 13, 10], it is remarkable that inverted

bottlenecks (IBN) [27] remain the predominant building

block in state-of-the-art mobile models. IBN-only search

spaces have also been the go-to setup in a majority of the

related NAS publications [30, 5, 32, 13]. IBN layers rely

heavily on depthwise and depthwise separable convolutions

[28]. The resulting models have relatively low FLOPS and

parameter counts, and can be executed efficiently on CPUs.

However, the advantage of depthwise convolutions for

13825

mobile inference is less clear for hardware accelerators such

as DSPs or EdgeTPUs which are becoming increasingly

popular on mobile devices. For example, for certain ten-

sor shapes and kernel dimensions, a regular convolution can

run 3× as fast as the depthwise variation on an EdgeTPU

despite having 7× as many FLOPS. This observation leads

us to question the exclusive use of IBN-only search spaces

in most current state-of-the-art mobile architectures.

Our work seeks to rethink the use of IBN-only search

space on modern mobile accelerators. To this end, we pro-

pose the MobileDet search space family, which includes not

only IBNs but also flexible full convolution sequences mo-

tivated by the structure of tensor decomposition [33, 6, 21].

Using the task of object detection as an example (one of the

most popular mobile vision applications), we show the Mo-

bileDet search space family enables NAS methods to iden-

tify models with substantial better latency-accuracy trade-

offs on mobile CPUs, DSPs, EdgeTPUs and edge GPUs.

To evaluate our proposed MobileDet search space, we

perform latency-aware NAS for object detection, target-

ing a diverse set of mobile platforms. Experimental re-

sults show that by using our MobileDet search space family

and directly searching on detection tasks, we can consis-

tently improve the performance across all hardware plat-

forms. By leveraging full convolutions at selected posi-

tions in the network, our method outperforms IBN-only

models by a significant margin. Our searched models, Mo-

bileDets, outperform MobileNetV2 classification backbone

by 1.9mAP on CPU, 3.7mAP on EdgeTPU, 3.4mAP on

DSP, and 2.7mAP on edge GPU at comparable inference

latencies. MobileDets also outperform the state-of-the-art

MobileNetV3 classification backbone by 1.7mAP at simi-

lar CPU inference efficiency. Further, the searched models

achieved comparable performance with the state-of-the-art

mobile CPU detector, MnasFPN [7], without leveraging the

NAS-FPN head which may complicate the deployment. On

both EdgeTPUs and DSPs, MobileDets are more accurate

than MnasFPN while being more than twice as fast.

Our main contributions can be summarized as follows:

• Unlike many existing works which exclusively focused

on IBN layers for mobile applications, we propose an

augmented search space family with building blocks

based on regular convolutions. We show that NAS

methods can substantially benefit from this enlarged

search space to achieve better latency-accuracy trade-

off on a variety of mobile devices.

• We deliver MobileDets, a set of mobile object detec-

tion models with state-of-the-art quality-latency trade-

offs on multiple hardware platforms, including mobile

CPUs, EdgeTPUs, DSPs and edge GPUs. Code and

models will be released to benefit a wide range of on-

device object detection applications.

2. Related Work

2.1. Mobile Object Detection

Object detection is a classic computer vision challenge

where the goal is to learn to identify objects of interest in

images. Existing object detectors can be divided into two

categories: two-stage detectors and one-stage single shot

detectors. For two-stage detectors, including Faster RCNN

[26], R-FCN [9] and ThunderNet [23], region proposals

must be generated first before the detector can make any

subsequent predictions. Two-stage detectors are not effi-

cient in terms of inference time due to this multi-stage na-

ture. On the other hand, one-stage single shot detectors,

such as SSD [20], SSDLite [27], YOLO [25], SqueezeDet

[38] and Pelee [35], require only one single pass through

the network to predict all the bounding boxes, making them

ideal candidates for efficient inference on edge devices. We

therefore focus on one-stage detectors in this work.

SSDLite [27] is an efficient variant of SSD that has be-

come one of the most popular lightweight detection heads.

It is well suited for use cases on mobile devices. Efficient

backbones, such as MobileNetV2 [27] and MobileNetV3

[13], are paired with SSDLite to achieve state-of-the-art

mobile detection results. Both models will be used as

baselines to demonstrate the effectiveness of our proposed

search spaces over different mobile accelerators.

2.2. Mobile Neural Architecture Search (NAS)

NetAdapt [41] and AMC [12] were among the first at-

tempts to utilize latency-aware search to finetune the num-

ber of channels of a pre-trained model. MnasNet [31]

and MobileNetV3 [13] extended this idea to find resource-

efficient architectures within the NAS framework. With a

combination of techniques, MobileNetV3 delivered state-

of-the-art architectures on mobile CPU. As a complemen-

tary direction, there are many recent efforts aiming to im-

prove the search efficiency of NAS [3, 1, 22, 19, 5, 37, 4].

2.3. NAS for Mobile Object Detection

A large majority of the NAS literature [32, 30, 13] fo-

cuses on classification and only re-purposes the learned fea-

ture extractor as the backbone for object detection without

further searches. Recently, multiple papers [8, 34, 7] have

shown that better latency-accuracy trade-offs are obtained

by searching directly for object detection models.

One strong detection-specific NAS baseline for mobile

detection models is MnasFPN [7], which searches for the

feature pyramid head with a mobile-friendly search space

that heavily utilizes depthwise separable convolutions. Sev-

eral factors limit its generalization towards mobile accel-

erators: (1) so far both depthwise convolutions and fea-

ture pyramids are less optimized on these platforms, and

(2) MnasFPN does not search for the backbone, which is a

23826

Figure 1: Platform-aware NAS and our MobileDet search space work synergistically to boost object detection performance on accelerators. SSDLite

object detection performance on Pixel-4 DSPs with different backbone designs: manually-designed MobileNetV2, searched with IBN-only search space,

and searched with the proposed MobileDet space (with both IBNs and full conv-based building blocks). Layers are visualized as vertical bars where color

indicates layer type and length indicates expansion ratio. C4 and C5 mark the feature inputs to the SSDLite head. While conducting platform-aware NAS

in an IBN-only search space achieves a 1.6 mAP boost over the handcrafted baseline, searching within the MobileDet space brings another 1.6 mAP gain.

bottleneck for latency. By comparison, our work relies on

SSD heads and proposes a new search space for the back-

bone based on full-convolutions, which are more amenable

to mobile acceleration. While it is challenging to develop a

generic search space family that spans a set of diverse and

dynamically-evolving mobile platforms, we take a first step

towards this goal, starting from the most common platforms

such as mobile CPUs, DSPs and EdgeTPUs.

3. Revisiting Full Convolutions for Mobile

Search Spaces

In this section, we first explain why IBN layers may not

be sufficient to handle mobile accelerators beyond mobile

CPUs. We then propose new building blocks based on reg-

ular convolutions to enrich our search space, and discuss the

connections between these building blocks and Tucker/CP

decompositions [33, 6].

Are IBNs all we need? The layout of an Inverted Bot-

tleneck (IBN) is illustrated in Figure 2. IBNs are designed

to reduce the number of parameters and FLOPS, and lever-

age depthwise and pointwise (1x1) convolutional kernels to

achieve high efficiency on mobile CPUs. However, not all

FLOPS are the same, especially for modern mobile accel-

erators such as EdgeTPU and DSPs. For example, a regu-

lar convolution may run 3× as fast on EdgeTPUs than its

depthwise variation even with 7× as many FLOPS. The ob-

servation indicates that the widely used IBN-only search

space can be suboptimal for modern mobile accelerators.

This motivated us to propose new building blocks by revis-

iting regular (full) convolutions to enrich IBN-only search

spaces for mobile accelerators. Specifically, we propose

two flexible layers to perform channel expansion and com-

pression, respectively, which are detailed below.

H1
W

1
C

1

H1
W

1

s
×

C
1

H2
W

2

s
×

C
1

H2
W

2

C
21× 1 conv K ×K dconv 1× 1 conv

Figure 2: Inverted bottleneck layer: 1 × 1 pointwise convolution trans-

forms the input channels from C1 to s × C1 with input expansion ratio

s > 1, then K ×K depthwise convolution transforms the input channels

from s × C1 to s × C1, and the last 1 × 1 pointwise convolution trans-

forms the channels from s × C1 to C2. The highlighted C1, s,K,C2 in

IBN layer are searchable.

H1
W

1

C
1

H2
W

2

s
×

C
1

H2
W

2
C

2K ×K conv 1× 1 conv

Figure 3: Fused inverted bottleneck layer: K ×K regular convolution

transforms the input channels from C1 to s×C1 with input expansion ratio

s > 1, and the last 1 × 1 pointwise convolution transforms the channels

from s × C1 to C2. The highlighted C1,K, s, C2 in the fused inverted

bottleneck layer are searchable.

H1
W

1

C
1

H1
W

1

s
×
C

1

H2
W

2e
×
C

2

H2
W

2

C
21× 1 conv K ×K conv 1× 1 conv

Figure 4: Tucker layer: 1 × 1 pointwise convolution transforms the

input channels C1 to s × C1 with input compression ratio s < 1, then

K ×K regular convolution transforms the input channels from s×C1 to

e×C2 with output compression ratio e < 1, and the last 1× 1 pointwise

convolution transforms the channels from e × C2 to C2. The highlighted

C1, s,K, e, C2 in Tucker layer are searchable.

33827

3.1. Fused Inverted Bottleneck Layers (Expansion)

The depthwise-separable convolution [28] is a critical el-

ement of an inverted bottleneck [14] (Figure 2). The idea

behind the depthwise-separable convolution is to replace

an “expensive” full convolution with a combination of a

depthwise convolution (for spatial dimension) and a 1 × 1
pointwise convolution (for channel dimension). However,

the notion of expensiveness was largely defined based on

FLOPS or the number of parameters, which are not nec-

essarily correlated with the inference efficiency on modern

mobile accelerators. To incorporate regular convolutions,

we propose to modify an IBN layer by fusing together its

first 1×1 convolution and its subsequent K×K depthwise

convolution into a single K ×K regular convolution (Fig-

ure 3). Like a standard inverted bottleneck layer, the initial

convolution in our fused inverted bottleneck increases the

number of filters by a factor s > 1. The expansion ratio of

this layer will be determined by the NAS algorithm.

3.2. Tucker Convolution Layers (Compression)

Bottleneck layers were introduced in ResNet [11] reduce

the cost of large convolutions over high-dimensional feature

maps. A bottleneck layer with compression ratio s < 1
consists of a 1 × 1 convolution with C1 input filters and

s ·C1 output filters, followed by a K ×K convolution with

s · C1 output filters, followed by a 1 × 1 convolution with

C2 output filters. We generalize these bottlenecks (Figure

4) by allowing the initial 1 × 1 convolution to potentially

have a different number of output filters than the K × K

convolution and let the NAS algorithm to decide the best

configurations.

We refer to these new building blocks as Tucker convo-

lution layers because of their connections with Tucker de-

composition. (See supplement for details.)

4. Architecture Search Method

Search Algorithm. Our proposed search spaces are com-

plementary to any neural architecture search algorithms. In

our experiments, we employ TuNAS [2] for its scalability

and its reliable improvement over random baselines. Tu-

NAS constructs a one-shot model that encompasses all ar-

chitectural choices in a given search space, as well as a con-

troller whose goal is to pick an architecture that optimizes

a platform-aware reward function. The one-shot model and

the controller are trained together during a search. In each

step, the controller samples a random architecture from a

multinomial distribution that spans over the choices, then

the portion of the one-shot model’s weights associated with

the sampled architecture are updated, and finally a reward

is computed for the sampled architecture, which is used to

update the controller. The update is given by applying RE-

INFORCE algorithm [36] on the following reward function:

R(M) = mAP(M) + ⌧

�

�

�

�

c(M)

c0
− 1

�

�

�

�

where mAP(M) denotes the mAP of an architecture M ,

c(M) is the inference cost (in this case, latency), c0 is the

given cost budget, and ⌧ < 0 is a hyper-parameter that bal-

ances the importance of accuracy and inference cost. The

search quality tends to be insensitive to ⌧ , as shown in [2].

Cost Models. We train a cost model, c(·) – a linear

regression model whose features are composed of, for

each layer, an indicator of the cross-product between in-

put/output channel sizes and layer type. This model has

high fidelity across platforms (r2 ≥ 0.99). The linear cost

model is related to previously proposed methods based on

lookup tables [41, 12, 30], but only requires us to bench-

mark the latencies of randomly selected models within the

search space, and does not require us to measure the costs

of individual network operations such as convolutions.

Since R(M) is computed at every update step, efficiency

is key. During search, we estimate mAP (M) based on

a small mini-batch for efficiency, and use the regression

model as a surrogate for on-device latency c(M). To collect

training data for the cost model, we randomly sample sev-

eral thousand network architectures from our search space

and benchmark each one on device. This is done only once

per hardware and prior to search, eliminating the need for

direct communication between server-class ML hardware

and mobile phones. For final evaluation, the found archi-

tectures are benchmarked on the actual hardware instead of

the cost model.

5. Experiments

We use the COCO dataset for our object detection exper-

iments. We report mean average precision (mAP) for object

detection and the real latency of searched models on accel-

erators with image size 320×320. We conduct our experi-

ments in two stages: architecture search for optimal archi-

tecture and architecture evaluation via retraining the found

architecture from scratch.

5.1. Implementation Details

Standalone Training. We use 320×320 image size for

both training and evaluation. The training is carried out us-

ing 32 Cloud TPU v2 cores. For fair comparison with ex-

isting models, we use standard preprocessing in the Tensor-

flow object detection API without additional enhancements

such as drop-block or auto-augment. We use SGD with mo-

mentum 0.9 and weight decay 5 × 10−4. The learning rate

is warmed up in the first 2000 steps and then follows cosine

decay. All models are trained from scratch without any Im-

ageNet pre-trained checkpoint. We consider two different

training schedules:

43828

• Short-schedule: Each model is trained for 50K steps

with batch size 1024 and an initial learning rate of 4.0.

• Long-schedule: Each model is trained for 400K steps

with batch size 512 and an initial learning rate of 0.8.

The short schedule is about 4× faster than the long schedule

but would result in slightly inferior quality. Unless other-

wise specified, we use the short schedule for ablation stud-

ies and the long schedule for the final results in Table 1.

Architecture Search. To avoid overfitting the true valida-

tion dataset, we split out 10% of the COCO training data

to evaluate the models and compute rewards during search.

Hyperparameters for training the shared weights follow the

short schedule for standalone training. As for reinforcement

learning, we use Adam optimizer with an initial learning

rate of 5× 10−3, � = (0, 0.999) and ✏ = 10−8. We search

for 50K steps for ablation studies and search for 100K steps

to obtain the best candidates in the main results table.

5.2. Latency Benchmarking

We report on-device latencies for all of our main results.

We benchmark using TF-Lite for CPU, EdgeTPU and DSP,

which relies on NNAPI to delegate computations to accel-

erators. For all benchmarks, we use single-thread and a

batch size of 1. In Pixel 1 CPU, we use only a single large

core. For Pixel 4 EdgeTPU and DSP, the models are fake-

quantized [17] as required. The GPU models are optimized

and benchmarked using TensorRT 7.1 converted from an in-

termediate ONNX format.

5.3. Search Space Definitions

The overall layout of our search space resembles that of

ProxylessNAS [5] and TuNAS [2]. We consider three vari-

ants with increasing sizes:

• IBN: The smallest search space that contains IBN lay-

ers only. Each layer may choose from kernel sizes

(3, 5) and expansion factors (4, 8).

• IBN+Fused: An enlarged search space that not only

contains all the IBN variants above, but also Fused

convolution layers in addition with searchable kernel

sizes (3, 5) and expansion factors (4, 8).

• IBN+Fused+Tucker: A further enlarged search space

that contains Tucker (compression) layers in addition.

Each Tucker layer allows searchable input and output

compression ratios within (0.25, 0.75).

For all search spaces variants above, we also search for

the output channel sizes of each layer among the options

of (0.5, 0.625, 0.75, 1.0, 1.25, 1.5, 2.0) times a base chan-

nel size (rounded to multiples of 8 to be more hardware-

friendly). Layers in the same block share the same base

channel size, though they can end up with different ex-

pansion factors. The base channel sizes for all the blocks

(from stem to head) are 32-16-32-48-96-96-160-192-192.

The multipliers and base channel sizes are designed to ap-

proximately subsume several representative architectures in

the literature, such as MobileNetV2 and MnasNet.

Hardware-Specific Adaptations. The aforementioned

search spaces are slightly adapted depending on the target

hardware. Specifically: (a) all building blocks are aug-

mented with Squeeze-and-Excitation blocks and h-Swish

activation functions (to replace ReLU-6) when targeting

CPUs. This is necessary to obtain a fair comparison against

the MobileNetV3+SSDLite baseline, which also includes

these operations. Neither primitive is well supported on Ed-

geTPUs or DSPs; (b) when targeting DSPs, we exclude

5×5 convolutions from the search space, since they are

highly inefficient due to hardware/software constraints.

5.4. Search Space Ablation

With a perfect architecture search algorithm, the largest

search space is guaranteed to outperform the smaller ones

because it subsumes the solutions of the latter. This is not

necessarily the case in practice, however, as the algorithm

may end up with sub-optimal solutions, especially when the

search space is large [7]. In this work, a search space is

considered useful if it enables NAS methods to identify suf-

ficiently good architectures even if they are not optimal. In

the following, we evaluate the usefulness of different search

spaces by pairing them with TuNAS [2], a scalable latency-

aware NAS implementation.

CPU. Figure 5 shows the NAS results for Pixel-1 CPUs.

As expected, MobileNetV3+SSDLite is a strong baseline

as the efficiency of its backbone has been heavily optimized

for the same hardware platform over the classification task

on ImageNet. We also note that the presence of regular con-

volutions does not offer clear advantages in this particular

case, as IBN-only is already strong under FLOPS/CPU la-

tency. Nevertheless, conducting domain-specific architec-

ture search w.r.t. the object detection task offers non trivial

gains on COCO (+1mAP in the range of 150-200ms).

EdgeTPU. Figure 6 shows the NAS results when targeting

Pixel-4 EdgeTPUs. Conducting hardware-aware architec-

ture search with any of the three search spaces significantly

improves the overall quality. This is largely due to the fact

that the baseline architecture (MobileNetV2)1 is heavily op-

timized towards CPU latency, which is strongly correlated

with FLOPS/MAdds but not well calibrated with the Ed-

geTPU latency. Notably, while IBN-only still offers the

best accuracy-MAdds trade-off (middle plot), having reg-

ular convolutions in the search space (either IBN+Fused

1MobileNetV3 is not well supported on EdgeTPUs due to h-swish and

squeeze-and-excite blocks.

53829

 21

 22

 23

 24

 25

 26

 27

 28

 29

 100 150 200 250 300 350

C
O

C
O

 V
a
li
d
 m

A
P
 (

%
)

Pixel-1 CPU Simu. Latency (ms)

IBN
IBN+Fused

IBN+Fused+Tucker
MobileNetV2
MobileNetV3

 21

 22

 23

 24

 25

 26

 27

 28

 29

 0.4 0.6 0.8 1 1.2 1.4 1.6

C
O

C
O

 V
a
li
d
 m

A
P
 (

%
)

MAdds (B)

IBN
IBN+Fused

IBN+Fused+Tucker
MobileNetV2
MobileNetV3

 21

 22

 23

 24

 25

 26

 27

 28

 29

 3 4 5 6 7 8 9 10 11

C
O

C
O

 V
a
li
d
 m

A
P
 (

%
)

Params (M)

IBN
IBN+Fused

IBN+Fused+Tucker
MobileNetV2

Figure 5: NAS results on Pixel-1 CPU using different search space variants.

 21

 22

 23

 24

 25

 26

 27

 28

 2 3 4 5 6 7 8

C
O

C
O

 V
a
li
d
 m

A
P
 (

%
)

Pixel-4 EdgeTPU Simu. Latency (ms)

IBN
IBN+Fused

IBN+Fused+Tucker
MobileNetV2

 21

 22

 23

 24

 25

 26

 27

 28

 0.5 1 1.5 2 2.5 3 3.5

C
O

C
O

 V
a
li
d
 m

A
P
 (

%
)

MAdds (B)

IBN
IBN+Fused

IBN+Fused+Tucker
MobileNetV2

 21

 22

 23

 24

 25

 26

 27

 28

 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

C
O

C
O

 V
a
li
d
 m

A
P
 (

%
)

Params (M)

IBN
IBN+Fused

IBN+Fused+Tucker
MobileNetV2

Figure 6: NAS results on Pixel-4 EdgeTPU using different search space variants.

 21

 22

 23

 24

 25

 26

 27

 28

 29

 9 10 11 12 13 14 15

C
O

C
O

 V
a
li
d
 m

A
P
 (

%
)

DSP Latency (ms)

IBN
IBN+Fused

IBN+Fused+Tucker
MobileNetV2

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

C
O

C
O

 V
a
li
d
 m

A
P
 (

%
)

MAdds (B)

IBN
IBN+Fused

IBN+Fused+Tucker
MobileNetV2

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 3 4 5 6 7 8 9 10 11 12

C
O

C
O

 V
a
li
d
 m

A
P
 (

%
)

Params (M)

IBN
IBN+Fused

IBN+Fused+Tucker
MobileNetV2

Figure 7: NAS results on Pixel-4 DSP using different search space variants.

or IBN+Fused+Tucker) offers clear further advantages in

terms of accuracy-latency trade-off. The results demon-

strate the usefulness of full convolutions on EdgeTPUs.

DSP. Figure 7 shows the search results for Pixel-4 DSPs.

Similar to EdgeTPUs, it is evident that the inclusion of reg-

ular convolutions in the search space leads to substantial

mAP improvement under comparable inference latency.

5.5. Main Results

We compare our architectures obtained via latency-

aware NAS against state-of-the-art mobile detection mod-

els on COCO [18]. For each target hardware platform, we

report results obtained by searching over each of the three

search space variants. Results are presented in Table 1. On

CPUs, we find that searching directly on a detection task

allows us to improve mAP by 1.7mAP over MobileNetV3,

but do not find evidence that our proposed fused IBNs and

Tucker bottlenecks are required to obtain high quality mod-

els. On DSPs and EdgeTPUs, however, we find that our

new primitives allow us to significantly improve the trade-

off between model speed and accuracy.

On mobile CPUs, MobileDet outperforms Mo-

bileNetV3+SSDLite [13], a strong baseline based on

the state-of-the-art image classification backbone, by 1.7

mAP at comparable latency. The result confirms the

effectiveness of detection-specific NAS. The models also

63830

Model/Search Space
Target mAP (%) Latency (ms) MAdds Params

hardware Valid Test CPU EdgeTPU DSP (B) (M)

MobileNetV2⌃‡ – 22.1 162 8.4 11.3 0.80 4.3

MobileNetV2 (ours)⌃ 22.2 21.8 129 6.5 9.2 0.62 3.17

MobileNetV2 × 1.5 (ours)⌃ 25.7 25.3 225 9.0 12.1 1.37 6.35

MobileNetV3†‡ – 22.0 119 ∗ ∗ 0.51 3.22

MobileNetV3 (ours)† 22.2 21.8 108 ∗ ∗ 0.46 4.03

MobileNetV3 × 1.2 (ours)† 23.6 23.1 138 ∗ ∗ 0.65 5.58

MnasFPN (ours)C 25.6 26.1 185 18.5 25.1 0.92 2.50

MnasFPN (ours)× 0.7C 24.3 23.8 120 16.4 23.4 0.53 1.29

IBN+Fused+Tucker†

CPU

24.2 23.7 122 ∗ ∗ 0.51 3.85

IBN+Fused† 23.0 22.7 107 ∗ ∗ 0.39 3.57

IBN† 23.9 23.4 113 ∗ ∗ 0.45 4.21

IBN+Fused+Tucker

EdgeTPU

25.7 25.5 248 6.9 10.8 1.53 4.20

IBN+Fused 26.0 25.4 272 6.8 9.9 1.76 4.79

IBN 25.1 24.7 185 7.4 10.4 0.97 4.17

IBN+Fused+Tucker⌃

DSP

28.9 28.5 420 8.6 12.3 2.82 7.16

IBN+Fused⌃ 29.1 28.5 469 8.6 11.9 3.22 9.15

IBN⌃ 27.3 26.9 259 8.7 12.2 1.43 4.85

Table 1: Test AP scores are based on COCO test-dev. †: Augmented with Squeeze-Excite and h-Swish (CPU-only); ∗: Not well supported by the hardware

platform; ♦: 3×3 kernel size only (DSP-friendly); C: Augmented with NAS-FPN head; ‡: Endpoint C4 located after the 1×1 expansion in IBN.

achieved competitive results with MnasFPN, the state-of-

the-art detector for mobile CPUs, without leveraging the

NAS-FPN head which may complicate the deployment

process. It is also interesting to note that the incorporation

of full convolutions is quality-neutral over mobile CPUs,

indicating that IBNs are indeed promising building blocks

for this particular hardware platform.

On EdgeTPUs, MobileDet outperforms Mo-

bileNetV2+SSDLite by 3.7 mAP on COCO test-dev

at comparable latency. We attribute the gains to both task-

specific search (w.r.t. COCO and EdgeTPU) and the pres-

ence of full convolutions. Specifically, IBN+Fused+Tucker

leads to 0.8 mAP improvement together with 7% latency

reduction as compared to the IBN-only search space.

On DSPs, MobileDet achieves 28.5 mAP on COCO with

12.3 ms latency, outperforming MobileNetV2+SSDLite

(×1.5) by 3.2 mAP at comparable latencies. The same

model also outperforms MnasFPN by 2.4 mAP with more

than 2× speed-up. Again it is worth noticing that includ-

ing full convolutions in the search space clearly improved

the architecture search results from 26.9 mAP @ 12.2 ms to

28.5 mAP @ 11.9ms.

These results support the fact that mobile search spaces

have traditionally targeted CPU, which heavily favors sepa-

rable convolutions, and that we need to rethink this decision

for networks targeting other hardware accelerators.

Cross-Hardware Transferability of Searched Architec-

tures. Fig. 8 compares MobileDets (obtained by targeting

 22

 24

 26

 28

 30

 32

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

C
O

C
O

 V
a
li
d
 m

A
P
 (

%
)

Pixel-1 CPU Latency (ms)

CPU Search
EdgeTPU Search

DSP Search
MobileNetV2
MobileNetV3 22

 24

 26

 28

 30

 32

 6 7 8 9 1
0

 1
1

 1
2

 1
3

C
O

C
O

 V
a
li
d
 m

A
P
 (

%
)

Pixel-4 EdgeTPU Latency (ms)

EdgeTPU Search
DSP Search

MobileNetV2
 22

 24

 26

 28

 30

 32

 8 1
0

 1
2

 1
4

 1
6

 1
8

 2
0

C
O

C
O

 V
a
li
d
 m

A
P
 (

%
)

Pixel-4 DSP Latency (ms)

EdgeTPU Search
DSP Search

MobileNetV2

Figure 8: Transferability of architectures (searched for different target

platforms) across hardware platforms. For each given architecture, we re-

port the original model and its scaled version with channel multiplier 1.5×.

at different accelerators) w.r.t. different hardware platforms.

Our results indicate that architectures searched on EdgeT-

PUs and DSPs are mutually transferable. In fact, both

searched architectures extensively leveraged regular convo-

lutions. On the other hand, architectures specialized w.r.t.

EdgeTPUs or DSPs (which tend to be FLOPS-intensive) do

not transfer well to mobile CPUs.

Generalization to New Hardware. The proposed search

space family was specifically developed for CPUs, EdgeT-

PUs and DSPs. It remains an interesting question whether

the search space can extrapolate to new hardware. To an-

swer this, we conduct architecture search for NVIDIA Jet-

son GPUs as a “holdout” device. We follow the DSP setup

in Table 1, except that the number of filters are rounded to

the multiples of 16. Results are reported in Table 2. The

searched model within our expanded search space achieves

+3.7mAP boost over MobileNetV2 while being faster. The

73831

Target: Pixel-1 CPU

(23.7 mAP @ 122 ms)

Target: Pixel-4 EdgeTPU

(25.5 mAP @ 6.8 ms)

Target: Pixel-4 DSP

(28.5 mAP @ 12.3 ms)

Target: Jetson Xavier GPU

(28.0 mAP @ 3.2 ms)

Figure 9: Best architectures searched in the IBN+Fused+Tucker space w.r.t. different mobile accelerators. Endpoints C4 and C5 are used by the SSDLite

head. In the figures above, e refers to the expansion factor, s refers to the stride, and “Tucker 3×3, 0.25-0.75” refers to a Tucker layer with kernel size 3×3,

input compression ratio 0.25 and output compression ratio 0.75.

Model
mAP (%) Jetson Xavier

Valid Test FP16 Latency (ms)

MobileNetV2 (ours) 22.2 21.8 2.6

MobileNetV2 × 1.5 (ours) 25.7 25.3 3.4

Searched (IBN+Fused+Tucker) 27.6 28.0 3.2

Table 2: Generalization of the MobileDet search space family to unseen

hardware (edge GPU).

results confirm that the proposed search space family is

generic enough to handle a new hardware platform.

Architecture visualizations. Fig. 9 illustrates our searched

object detection architectures, MobileDets, by targeting

at different mobile hardware platforms using our largest

search space. One interesting observation is that Mo-

bileDets use regular convolutions extensively on EdgeTPU

and DSP, especially in the early stage of the network where

depthwise convolutions tend to be less efficient. The results

confirm that IBN-only search space is not optimal for these

accelerators.

6. Conclusion

In this work, we question the predominant design pattern

of using depthwise inverted bottlenecks as the only build-

ing block for vision models on the edge. Using the object

detection task as a case study, we revisit the usefulness of

regular convolutions over a variety of mobile accelerators,

including mobile CPUs, EdgeTPUs, DSPs and edge GPUs.

Our results reveal that full convolutions can substantially

improve the accuracy-latency trade-off on several accelera-

tors when placed at the right positions in the network, which

can be efficiently identified via neural architecture search.

The resulting architectures, MobileDets, achieve superior

detection results over a variety of hardware platforms, sig-

nificantly outperforming the prior art by a large margin.

83832

References

[1] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay

Vasudevan, and Quoc Le. Understanding and simplifying

one-shot architecture search. In International Conference on

Machine Learning, pages 550–559, 2018. 1, 2

[2] Gabriel Bender, Hanxiao Liu, Bo Chen, Grace Chu, Shuyang

Cheng, Pieter-Jan Kindermans, and Quoc V Le. Can weight

sharing outperform random architecture search? an investi-

gation with tunas. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

14323–14332, 2020. 4, 5

[3] Andrew Brock, Theodore Lim, James M Ritchie, and Nick

Weston. Smash: one-shot model architecture search through

hypernetworks. arXiv preprint arXiv:1708.05344, 2017. 2

[4] Han Cai, Chuang Gan, and Song Han. Once for all: Train

one network and specialize it for efficient deployment. arXiv

preprint arXiv:1908.09791, 2019. 2

[5] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct

neural architecture search on target task and hardware. In In-

ternational Conference on Learning Representations, 2019.

1, 2, 5

[6] J Douglas Carroll and Jih-Jie Chang. Analysis of individual

differences in multidimensional scaling via an n-way gener-

alization of “eckart-young” decomposition. Psychometrika,

35(3):283–319, 1970. 2, 3

[7] Bo Chen, Golnaz Ghiasi, Hanxiao Liu, Tsung-Yi Lin,

Dmitry Kalenichenko, Hartwig Adams, and Quoc V Le.

MnasFPN: Learning latency-aware pyramid architecture for

object detection on mobile devices. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2020. 2, 5

[8] Yukang Chen, Tong Yang, Xiangyu Zhang, Gaofeng Meng,

Xinyu Xiao, and Jian Sun. Detnas: Backbone search for ob-

ject detection. In Advances in Neural Information Processing

Systems, pages 6638–6648, 2019. 2

[9] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object

detection via region-based fully convolutional networks. In

Advances in neural information processing systems, pages

379–387, 2016. 2

[10] Xiaoliang Dai, Peizhao Zhang, Bichen Wu, Hongxu Yin, Fei

Sun, Yanghan Wang, Marat Dukhan, Yunqing Hu, Yiming

Wu, Yangqing Jia, et al. Chamnet: Towards efficient network

design through platform-aware model adaptation. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 11398–11407, 2019. 1

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 770–778, 2016. 4

[12] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and

Song Han. Amc: Automl for model compression and accel-

eration on mobile devices. In Proceedings of the European

Conference on Computer Vision, pages 784–800, 2018. 2, 4

[13] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh

Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,

Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-

bilenetv3. In Proceedings of the IEEE International Con-

ference on Computer Vision, pages 1314–1324, 2019. 1, 2,

6

[14] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017. 1, 4

[15] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-

works. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 7132–7141, 2018. 1

[16] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu,

Anoop Korattikara, Alireza Fathi, Ian Fischer, Zbigniew Wo-

jna, Yang Song, Sergio Guadarrama, et al. Speed/accuracy

trade-offs for modern convolutional object detectors. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 7310–7311, 2017. 1

[17] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,

Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry

Kalenichenko. Quantization and training of neural networks

for efficient integer-arithmetic-only inference. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2704–2713, 2018. 5

[18] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

European conference on computer vision, pages 740–755.

Springer, 2014. 6

[19] Hanxiao Liu, Karen Simonyan, and Yiming Yang.

Darts: Differentiable architecture search. arXiv preprint

arXiv:1806.09055, 2018. 1, 2

[20] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. Ssd: Single shot multibox detector. In European con-

ference on computer vision, pages 21–37. Springer, 2016. 2

[21] Ronak Mehta, Rudrasis Chakraborty, Yunyang Xiong, and

Vikas Singh. Scaling recurrent models via orthogonal

approximations in tensor trains. In Proceedings of the

IEEE/CVF International Conference on Computer Vision,

pages 10571–10579, 2019. 2

[22] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and

Jeff Dean. Efficient neural architecture search via parameter

sharing. arXiv preprint arXiv:1802.03268, 2018. 2

[23] Zheng Qin, Zeming Li, Zhaoning Zhang, Yiping Bao, Gang

Yu, Yuxing Peng, and Jian Sun. Thundernet: Towards real-

time generic object detection on mobile devices. In Proceed-

ings of the IEEE International Conference on Computer Vi-

sion, pages 6718–6727, 2019. 2

[24] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V

Le. Regularized evolution for image classifier architecture

search. In Proceedings of the aaai conference on artificial

intelligence, volume 33, pages 4780–4789, 2019. 1

[25] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 779–788, 2016. 2

[26] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

93833

proposal networks. In Advances in neural information pro-

cessing systems, pages 91–99, 2015. 2

[27] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 4510–4520, 2018. 1, 2

[28] Laurent Sifre. Rigid-motion scattering for image classifica-

tion. Ph.D. thesis section 6.2, 2014. 1, 4

[29] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and

Alexander A Alemi. Inception-v4, inception-resnet and the

impact of residual connections on learning. In Thirty-first

AAAI conference on artificial intelligence, 2017. 1

[30] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-

net: Platform-aware neural architecture search for mobile.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2820–2828, 2019. 1, 2, 4

[31] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

Mark Sandler, Andrew Howard, and Quoc V. Le. Mnasnet:

Platform-aware neural architecture search for mobile. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion, June 2019. 2

[32] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking

model scaling for convolutional neural networks. arXiv

preprint arXiv:1905.11946, 2019. 1, 2

[33] Ledyard R Tucker. Some mathematical notes on three-mode

factor analysis. Psychometrika, 31(3):279–311, 1966. 2, 3

[34] Ning Wang, Yang Gao, Hao Chen, Peng Wang, Zhi Tian, and

Chunhua Shen. Nas-fcos: Fast neural architecture search for

object detection. arXiv preprint arXiv:1906.04423, 2019. 2

[35] Robert J Wang, Xiang Li, and Charles X Ling. Pelee: A

real-time object detection system on mobile devices. In

Advances in Neural Information Processing Systems, pages

1963–1972, 2018. 2

[36] R. J. Williams. Simple statistical gradient-following algo-

rithms for connectionist reinforcement learning. Machine

Learning, 8:229–256, 1992. 4

[37] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,

Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing

Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-

vnet design via differentiable neural architecture search. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 10734–10742, 2019. 2

[38] Bichen Wu, Forrest Iandola, Peter H Jin, and Kurt Keutzer.

Squeezedet: Unified, small, low power fully convolu-

tional neural networks for real-time object detection for au-

tonomous driving. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition Workshops,

pages 129–137, 2017. 2

[39] Yunyang Xiong, Hyunwoo J Kim, and Varsha Hedau.

Antnets: Mobile convolutional neural networks for re-

source efficient image classification. arXiv preprint

arXiv:1904.03775, 2019. 1

[40] Yunyang Xiong, Ronak Mehta, and Vikas Singh. Re-

source constrained neural network architecture search: Will

a submodularity assumption help? In Proceedings of the

IEEE/CVF International Conference on Computer Vision,

pages 1901–1910, 2019. 1

[41] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec

Go, Mark Sandler, Vivienne Sze, and Hartwig Adam. Ne-

tadapt: Platform-aware neural network adaptation for mobile

applications. In Proceedings of the European Conference on

Computer Vision, pages 285–300, 2018. 2, 4

[42] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.

Shufflenet: An extremely efficient convolutional neural net-

work for mobile devices. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

6848–6856, 2018. 1

[43] Barret Zoph and Quoc V Le. Neural architecture search with

reinforcement learning. arXiv preprint arXiv:1611.01578,

2016. 1

[44] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V

Le. Learning transferable architectures for scalable im-

age recognition. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 8697–

8710, 2018. 1

103834

