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Abstract

Pan-sharpening is an important technique for remote

sensing imaging systems to obtain high resolution multi-

spectral images. Recently, deep learning has become the

most popular tool for pan-sharpening. This paper devel-

ops a model-based deep pan-sharpening approach. Specif-

ically, two optimization problems regularized by the deep

prior are formulated, and they are separately responsible

for the generative models for panchromatic images and low

resolution multispectral images. Then, the two problems

are solved by a gradient projection algorithm, and the iter-

ative steps are generalized into two network blocks. By al-

ternatively stacking the two blocks, a novel network, called

gradient projection based pan-sharpening neural network,

is constructed. The experimental results on different kinds

of satellite datasets demonstrate that the new network out-

performs state-of-the-art methods both visually and quanti-

tatively. The codes are available at https://github.

com/xsxjtu/GPPNN .

1. Introduction

Multispectral images store multiple images correspond-

ing to each band (or say, channel) in an optical spectrum,

and they are widely utilized in literature of remote sens-

ing. With the limitation of imaging devices, satellites how-

ever often measure the low spatial resolution multispectral

(LRMS) images [4, 21, 29]. Compared with the multispec-

tral image, the panchromatic (PAN) image is characterized

by the high spatial resolution but only one band. Lots of

satellites carry both multispectral and panchromatic sensors

to simultaneously measure the complementary images, such

as Landsat8, GaoFen2 and QuickBird. To obtain the high

resolution multispectral (HRMS) image, a promising way

is to fuse the complementary information of the LRMS im-

age and the PAN image. This technique is called as pan-

sharpening [4, 21].

Pan-sharpening can be cast as a typical image fusion on
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Figure 1. (a) The observation models for LRMS and PAN images.

(b) Two formulated optimization problems and iterative steps of

the gradient projection algorithm. (c) The main blocks in our pro-

posed GPPNN.

super-resolution problems. The past decades witnessed the

development of pan-sharpening. The classic algorithms in-

cluding component substitution (CS) [7, 12], multiresolu-

tion analysis (MRA) [1, 23] and other techniques. In the

era of deep learning, convolutional neural networks have

emerged as a significant tool for pan-sharpening [19]. One

of the seminal work is the pan-sharpening neural network

(PNN) proposed by Masi et al. [20]. Borrowing the idea of

the first super-resolution network [2], PNN is fed with the

concatenation of a PAN image and an upsampled LRMS
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image to regress the HRMS image.

In fact, there are only three convolutional units in PNN,

so it is a relatively shallow network. Recently, numerous

models have been proposed to improve the PNN. Owing to

the triumphs of residual networks [8], several papers utilize

the shortcut or residual convolutional units to build deep

networks, including MIPSM [16], DRPNN [34] and Pan-

Net [38]. They generally contain 10 or more convolutional

units. Besides these networks, to make the best of advan-

tages of neural networks, some researchers build deeper net-

works. For example, Wang et al. employ the densely con-

nected convolutional unit [10] to design a 44-layer network

[31] for pan-sharpening.

It is well-known that deepening the layers of networks

does not necessarily improve the performance, since it is

difficult to train deeper networks and redundant parameters

make them easily over-fit. Very recently, the remote sens-

ing community begins to rethink how to make the full use

of PAN images’ information [9, 24]. It is worthy noting

that most the pan-sharpening networks regard the PAN im-

age as a channel of the input. This manner ignores different

characteristics between PAN and LRMS images. A growing

number of researchers attempt to propose the two-branch

networks [18, 40]. In the first stage, the two branches sep-

arately extract the features for PAN and LRMS images. In

the second stage, the features are fused to reconstruct the

HRMS image.

Although convolutional neural networks exhibit promis-

ing performance in pan-sharpening, they require a large

amount of training samples [22, 33], and they do not ac-

count for the observation progress of PAN and LRMS im-

ages, i.e., lacking the interpretability. Therefore, there still

leaves the room for improvement. The research on model-

based deep learning is the trend in image processing field

to close the gap between classic models and neural net-

works, and it is found that model-based deep networks usu-

ally outperform the intuitively designed networks [22, 33].

Xie et al. present a multispectral and hyperspectral (HS)

image fusion network (MHNet) for the hyperspectral pan-

sharpening task [35]. There is no doubt that MHNet can

be naturally adapted to pan-sharpening [36]. Nonetheless,

MHNet is designed to describe the low-rank property for

hyperspectral images, and our experiments show that MH-

Net may perform badly in the pan-sharpening scenario.

In this paper, we develop a novel model-based deep net-

work for pan-sharpening. Our contributions are summa-

rized as follows:

Firstly, this paper considers the generative models for

PAN and LRMS images. That is, as shown in Fig. 1(a),

PAN images are the linear combination of the bands in

HRMS images, and LRMS images are generated by blur-

ring and downsampling HRMS images. Combining the ob-

servation models and the deep prior, we propose two opti-

mization problems, and they can be effectively solved by

the gradient projection method as illustrated in Fig. 1(b).

Secondly, inspired by the idea of algorithm unrolling

techniques, the iterative steps are generalized as two neu-

ral blocks separately justifying the generative models for

PAN and LRMS images. The computational flows in the

proposed neural blocks are interpretable. As show in Fig.

1(c), for the MS Block, given a current estimation of the

HRMS image, it generates corresponding LRMS image and

computes the residual between the generated LRMS image

and the real one. This residual then is upsampled and is

added into the current estimation to reconstruct the next

HRMS image. The PAN block can be interpreted simi-

larly. We build a new network by alternatively stacking the

two blocks. In what follows, it calls the gradient projection

based pan-sharpening neural network (GPPNN). To the best

of our knowledge, it is the first model-driven deep network

for pan-sharpening.

Thirdly, the proposed GPPNN is compared with the 13

state-of-the-art (SOTA) and classic pan-sharpening meth-

ods. The extensive experiments conducted on three popular

satellites (i.e., Landsat8, QuickBird, GF2) demonstrate that

our networks outperform other counterparts both quantita-

tively and visually.

2. Related work

2.1. Classic pan­sharpening methods

The classic pan-sharpening methods mainly consists of

CS based algorithms, MRA based algorithms and other al-

gorithms. CS methods assume that the spatial and spectral

information of a multispectral image can be decomposed.

Therefore, an HRMS image is reconstructed by combin-

ing the spatial information of a PAN image and the spectral

information of an LRMS image. In the past decades, re-

searchers have designed various decomposition algorithms.

For example, intensity-hue-saturation (IHS) fusion [7] em-

ploys the IHS transformation, Brovey method [5] uses a

multiplicative injection scheme, and Gram-Schmidt (GS)

method [12] exploits the Gram-Schmidt orthogonalization

procedure. The main drawback of CS methods is that the

image contains artifacts if the spectral and spatial infor-

mation is not appropriately decomposed. The MRA meth-

ods apply the multi-scale transformation to PAN images to

extract spatial details which then are injected into the up-

sampled LRMS images. Typical algorithms include high-

pass filter (HPF) fusion [26], and Indusion method [11],

smoothing filter-based intensity modulation (SFIM) [15].

The performance of the MRA method strongly depends on

the multi-scale transformation.
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2.2. Deep learning based methods

Recently, convolutional neural networks have been one

of the most effective tools for remote sensing. Given a pa-

rameterized network, it is fed with an LRMS image and

a PAN image to regress an HRMS image, and its param-

eters (or say, weights) are learned from data in the end-

to-end fashion. The first attempt is the PNN with three

convolutional units [20]. Recently, thanks to the rapid de-

velopment of computer vision [8, 10], it is able to train

very deep networks. Researchers propose the deep pan-

sharpening networks with dozens of layers and the per-

formance has been greatly improved [27, 31, 38, 40]. At

the same time, researchers also explore the two-branch net-

works to separately extract the features from MS and PAN

images [18, 40]. Recently, one of the research trends of the

pan-sharpening community is to combine the classic meth-

ods with deep neural networks to improve the interpretabil-

ity of the deep learning based methods. For example, in-

spired by the idea of MRA algorithms, MIPSM [16] designs

a spatial detail extraction network for the PAN images and

injects the details into the LRMS images. Liu et al. propose

an adaptive weight network for integrating the advantages

of different classic methods [14]. It overcomes the short-

comings of the CS and MRA algorithms, and outperforms

some SOTA deep learning based methods.

2.3. Model­driven deep networks

Most of the deep neural networks are designed intu-

itively. Recently, a growing number of researchers focus

on model-based neural networks for image processing tasks

[22, 33]. The basic idea of model-driven deep learning is

to formulate an observation model or optimization problem

by integrating the prior knowledge for a specific task and to

translate each iteration of the algorithm step into a layer of

deep neural networks [22, 33]. Passing through the stacked

layers corresponds to execute the algorithm with a certain

number of times. Model-based deep learning builds the

bridge between classic models and deep neural networks.

This idea has been successfully applied in various tasks, in-

cluding sparse coding [6], compressive sensing [39], image

deblurring [13], image dehazing [37] and image deraining

[32]. It is worth mentioning the MHNet, a model-driven

network for the hyperspectral pan-sharpening task [35] to

super-resolve HS images with the guidance of MS images.

It can be naturally adapted to pan-sharpening, but MHNet

mainly focuses on the low-rank property for HS images, i.e.,

its rank rHS is far lower than the number of bands BHS. In

practice, there are dozens or hundreds of bands in an HS im-

age, while there are no more than 10 bands in an MS image.

So, the low-rank property is not evident for MS images, and

MHNet may break down in pan-sharpening task.

3. GPPNN

In this section, we develop a model-driven network for

pan-sharpening. For convenience, we summarize the no-

tations in this paper before presentation of the GPPNN.

L ∈ Rmn×B is an LRMS image with a height of m, a

width of n and the number of bands of B. H ∈ RMN×B

is an HRMS image with a height of M , a width of N and

the number of bands of B. P ∈ RMN×b is a PAN im-

age whose spatial resolution is the same with that of H , but

there is only one band (i.e., b = 1). r = M/m = N/n is

the spatial resolution ratio. With abuse of notations, we use

their tensor versions in the context of deep learning (namely,

L ∈ Rm×n×B ,H ∈ RM×N×B ,P ∈ RM×N×b). Notation

Conv(·; cin, cout) is the convolutional operator whose input

and output are with cin and cout channels, respectively. In

what follows, the function Conv(·; cin, cmid, cout) denotes

the cascaded convolutional operator, that is,

Conv

(

·; cin, cmid, cout
)

=Conv
(

ReLU

(

Conv

(

·; cin, cmid
))

; cmid, cout
)

.
(1)

3.1. Model formulation

Our network starts with the observation model for the

LRMS, HRMS and PAN images. It is assumed that an

LRMS image is obtained by downsampling and blurring

an HRMS image, while a PAN image is the result of spec-

tral response for an HRMS image. In formula, we have

L = DKH,P = HS, where D ∈ Rmn×MN denotes

a downsampling matrix and K is the (low-passing) circular

convolution matrix, and S ∈ RB×b is the so-called spec-

tral response function. It is well-known that inferring the

HRMS image is an ill-posed problem. Hence, it often for-

mulates the following penalized optimization,

min
H

f(L,H) + g(P ,H) + λh(H), (2)

where h(·) is the prior term, and f(L,H) = ‖L −
DKH‖22/2 and g(P ,H) = ‖P − HS‖22/2 are data fi-

delity terms which are responsible to LRMS and PAN im-

ages, respectively. In the classic methods, h(·) is usually

designed as a hand-craft function, such as the total variation

or nuclear norm [17]. However, in the era of deep learn-

ing, it is suggested to set h(·) as a deep prior [28, 41]. In

other words, it is better to set an implicit prior captured by

the neural network parametrization. Additionally, the deep

prior is learned from data and can adapt to different tasks

and observation models. To make the best of deep prior, in-

stead of the above issue, we consider an LRMS-aware prob-

lem and a PAN-aware problem:

min
H

1

2
‖L−DKH‖

2
2 + λhl(H), (3a)

min
H

1

2
‖P −HS‖

2
2 + λhp(H). (3b)
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Here, hl(·) and hp(·) are two deep priors accounting for

the observations of LRMS and PAN images, respectively.

The ablation experiment in section 4.4 verifies that Eq. (3)

achieves better results than Eq. (2). In the next, we describe

how to solve the two problems. Moreover, the solutions are

generalized into an LRMS-aware block (MS Block) and a

PAN-aware block (PAN block) that can be embedded into

neural networks.

3.2. MS Block

We employ the gradient projection method [25] to solve

Eq. (3a) and the updating rule is

H
(t) = proxhl

(

H
(t−1) − ρ∇f(H(t−1))

)

, (4)

where ρ is the step size, proxhl
(·) is a proximal oper-

ator corresponding to penalty hl(·) and ∇f(H(t−1)) =
−(DK)T (L − DKH) denotes the gradient of the data

fidelity term.

Inspired by the principle of model-driven deep learning

[22], we generalize Eq. (4) as a network block. To begin

with, Eq. (4) is split into four steps as follows,

L̂
(t) = DKH

(t−1), (5a)

R
(t)
l = L− L̂

(t), (5b)

R
(t)
h = ρ (DK)

T
R

(t)
l , (5c)

H
(t) = proxhl

(

H
(t−1) +R

(t)
h

)

. (5d)

Then, each step is translated with deep learning termi-

nologies. For convenience, we use the tensor versions to

represent the variables in the context of deep learning. In

Eq. (5a), given a current HRMS image H(t−1), it gener-

ates an LRMS image L̂(t) by applying a low-passing filter

and downsampling. In neural networks, this step is imple-

mented by

L̂(t) = Conv

(

H(t−1);B,C,B
)

↓, (6)

where downsampling is conducted with a bicubic interpola-

tion ↓ and the filter K is replaced by a cascaded convolu-

tional operator Conv(·;B,C,B) to obtain more expressive

features. C is the number of channels for the feature maps,

and we set it to 64 in this paper. B is the number of channels

for MS images, and it depends on the input data.

Afterwards, Eq. (5b) computes residuals between the

real LRMS image L and the generated LRMS image L̂(t),

and the translation is trivial as shown in following equation,

R
(t)
l = L − L̂(t). (7)

In the next, Eq. (5c) obtains the high-resolution residuals.

Analogous to Eqs. (5a) and (6), this step is rewritten as

R
(t)
h = ρConv

(

R
(t)
l ;B,C,B

)

↑ . (8)

Remark that the filters in Eqs. (5a) and (5c) transpose to

each other, but we do not force the convolutional kernels in

Eqs. (6) and (8) to satisfy this requirement for flexibility.

The ablation experiment in section 4.4 shows that it slightly

improves GPPNN’s performance. At last, Eq. (5d) outputs

the HRMS image by taking the residual into account with a

proximal operator. As illustrated before, proximal operators

regarding the deep prior are modeled by the deep networks

[28, 41]. In this manner, the deep prior can be learned im-

plicitly from data. So, we have

H(t) = Conv

(

H(t−1) +R
(t)
h ;B,C,B

)

. (9)

In what follows, Eqs. (6), (7), (8) and (9) are named as

an MS Block. For better understanding, the computational

flow for an MS Block is displayed in Fig. 1(c).

3.3. PAN block

In this subsection, we consider the observation model for

PAN (i.e., Eq. (3b)). With the gradient projection method,

the updating rule is

H
(t) = proxhp

(

H
(t−1) − ρ∇g(H(t−1))

)

, (10)

where ∇g(H(t−1)) = −(P − HS)ST . With the similar

techniques, it is able to translate Eq. (10) into a block of

neural networks. At first, Eq. (10) is split into four steps as

follows,

P̂
(t) = H

(t−1)
S, (11a)

R
(t)
p = P − P̂

(t), (11b)

R
(t)
h = ρR(t)

p S
T , (11c)

H
(t) = proxhp

(

H
(t−1) +R

(t)
h

)

. (11d)

In the context of deep learning, as shown in Fig. 1(c), these

steps are rewritten as,

P̂(t) = Conv

(

H(t−1);B,C, b
)

, (12a)

R(t)
p = P − P̂(t), (12b)

R
(t)
h = ρConv

(

R(t)
p ; b, C,B

)

, (12c)

H(t) = Conv

(

H(t−1) +R
(t)
h ;B,C,B

)

. (12d)

Here, b = 1 is the number of channel for PAN images. Re-

mark that the underlying assumption of Eq. (3b) is that the

PAN image is a linear combination of the HRMS image.

S/ST is regarded as a band reduction/expansion operator.

With this assumption, convolutional units in Eqs. (12a) and

(12c) should be with the kernel size of 1.
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Figure 2. The structure of GPPNN.

3.4. GPPNN

Now, with the MS Block and the PAN block, we

are ready to construct the gradient projection based pan-

sharpening neural network (GPPNN). The structure of our

GPPNN is shown in Fig. 2. The network starts with an

input layer, and it requires an initial value of the HRMS im-

age. We initialize H(0) ∈ RM×N×B by applying the bicu-

bic interpolation to the input LRMS image L ∈ Rm×n×B .

The network is followed by a backbone subnetwork. There

are K layers, each of which consists of an MS Block and a

PAN block. In formula, there are

H(t+0.5) = MS Block

(

H(t),L
)

(13)

and

H(t+1) = PAN Block

(

H(t+0.5),P
)

. (14)

The output of the last layer, denoted by Ĥ ∈ RM×N×B , is

the final reconstructed HRMS.

3.5. Training details

Our GPPNN is supervised by the ℓ1 loss between Ĥ and

the ground truth H, ‖Ĥ−H‖1. The paired training samples

are unavailable in practice. When we construct the train-

ing set, the Wald protocol [30] is employed to generate the

paired samples. For example, given the multispectral im-

age H ∈ RM×N×B and the PAN image P ∈ RrM×rN×b,

both of them are downsampled with ratio r, and the down-

sampled versions are denoted by L ∈ RM/r×N/r×B and

P̃ ∈ RM×N×b. In the training set, L and P̃ are regarded as

the inputs, while H is the ground-truth.

GPPNN is implemented with Pytorch framework. They

are optimized by Adam over 100 epochs with a learning

rate of 5× 10−4 and a batch size of 16. In our experiments,

kLR = 3 and kPAN = 1. In section 4.2, we report the per-

formance of GPPNN with different C and K. As a balance,

C and K are set to 64 and 8, respectively.

Table 1. The information of datasets. B is the number of bands for

multispectral images.

Landsat8 GaoFen2 QuickBird

B 10 4 4

Resolution-MS 256 256 256

Resolution-PAN 512 1024 1024

# Train/Val/Test 350/50/100 350/50/100 474/103/100

4. Experiments

A series of experiments are carried out to evaluate the

performance of GPPNN. SOTA deep learning based meth-

ods are selected for comparison, namely, MIPSM [16],

DRPNN [34], MSDCNN [40], RSIFNN [27], PanNet [38],

and MHNet [35]. Our method is also compared with seven

classic methods, including BDSD [3], Brovey [5], GS [12],

HPF [26], IHS fusion [7], Indusion [11], SFIM [15]. The

experiments are conducted on a computer with an Intel i7-

9700K CPU at 3.60GHz and an NVIDIA GeForce RTX

2080ti GPU.

4.1. Datasets and metrics

Remote sensing images acquired by three satellites are

used in our experiments, including Landsat8, QuickBird

and GaoFen2, the basic information of which is listed in Ta-

ble 1. For each satellite, we have hundreds of image pairs,

and they are divided into three parts for training, validation

and test. Note that we determine K and C on the valida-

tion dataset. In the training set, the multispectral images are

cropped into patches with the size of 32 × 32, and the cor-

responding PAN patches are with the size of 64 × 64 (for

Landsat8) or 128× 128 (for GaoFen2 and QuickBird). For

numerical stability, each patch is normalized by dividing the

maximum value to make the pixels range from 0 to 1.

Four popular metrics are used to evaluate the algo-

rithms’ performances, including peak signal-to-noise ra-
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(a) LRMS (b) PAN (c) GT(PSNR) (d) BDSD(17.23) (e) GS(14.21) (f) MIPSM(19.80)

(g) DRPNN(21.45) (h) MSDCNN(21.94) (i) RSIFNN(17.14) (j) PANNET(20.09) (k) MHNet(19.58) (l) GPPNN(24.40)

Figure 3. Visual inspection on Landsat8 dataset. The caption of each subimage displays the corresponding PSNR value.

Table 2. The PSNR values on validation datasets for GPPNN with different K and C. The best value is highlighted by the bold.

Satellites
K layers C Filters

2 4 6 8 10 12 14 8 16 32 64 128

Landsat8 39.0648 39.5878 39.9876 40.0368 40.1336 39.9531 40.0509 36.6455 39.6156 39.6702 40.0368 39.0841

QuickBird 30.4994 30.4392 30.6370 30.5636 30.4803 30.4773 30.5560 30.2962 30.4681 30.4592 30.5636 30.5979

GaoFen2 36.7583 36.9740 36.2181 37.5606 37.0589 36.7835 36.6840 35.8116 36.9061 36.2810 37.5606 36.5873

tio (PSNR), structural similarity (SSIM) and erreur relative

globale adimensionnelle de synthese (ERGAS) and spec-

tral angle mapper (SAM). The first three metrics measure

the spatial distortion, and the last one measures the spectral

distortion. An image is better if its PSNR and SSIM are

higher, and ERGAS and SAM are lower.

4.2. The effect of depth and width

The network’s depth K and width C play significant

roles. Table 2 lists the PSNR values on validation datasets

for GPPNN with different K and C. At first, C is fixed to

64, and K is set to 2, 4, · · · , 14. It is shown that more lay-

ers do not necessarily increase the PSNR value, and K = 8
strikes the balance between performance and the number of

weights. The reason may be that it is not easy to train a

GPPNN with more layers. Then, we fix K to 8 and set C to

8, 16, 32, 64 and 128. The similar conclusion can be drawn,

and the best choice for C is 64. In summary, our GPPNN

is configured with K = 8 layers and C = 64 filters in the

next experiments.

4.3. Comparison with SOTA methods

The evaluation metrics on three datasets are reported in

Table 3. It is found that GPPNN outperforms other meth-

ods regarding all metrics on three satellites. Figs. 3, 4 and 5

show the RGB bands of the three satellites for some repre-

sentative methods. Our GPPNN is the closest to the ground

truth. From the amplified local regions in Fig. 3, it found

that BDSD, GS, MIPSM, DRPNN, PANNET suffer from

spatial distortion, and GS, MSDCNN, RSIFNN and MH-

Net suffer from spectral distortion. However, our GPPNN

has the smallest spatial and spectral distortions. As for Fig.

4, it is a difficult case. It is shown that the most methods

have obvious artifacts or noise, and their images are blur-

ring or spectrally distorted. Our GPPNN is without arti-

facts, noise or spectral distortion. As shown in Fig. 5, it

is observed that compared with other methods, our GPPNN

has finer-grained textures and coarser-grained structures.

4.4. Ablation experiments

To further investigate the role of some modules in the

proposed GPPNN, a series of ablation experiments are car-
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Table 3. The four metrics on test datasets. The best and the second best values are highlighted by the bold and underline, respectively. The

up or down arrow indicates higher or lower metric corresponds to better images.

Landsat8 QuickBird GaoFen2

PSNR↑ SSIM↑ SAM↓ ERGAS↓ PSNR↑ SSIM↑ SAM↓ ERGAS↓ PSNR↑ SSIM↑ SAM↓ ERGAS↓

BDSD 33.8065 0.9128 0.0255 1.9128 23.5540 0.7156 0.0765 4.8874 30.2114 0.8732 0.0126 2.3963

Brovey 32.4030 0.8533 0.0206 1.9806 25.2744 0.7370 0.0640 4.2085 31.5901 0.9033 0.0110 2.2088

GS 32.0163 0.8687 0.0304 2.2119 26.0305 0.6829 0.0586 3.9498 30.4357 0.8836 0.0101 2.3075

HPF 32.6691 0.8712 0.0250 2.0669 25.9977 0.7378 0.0588 3.9452 30.4812 0.8848 0.0113 2.3311

IHS 32.8772 0.8615 0.0245 2.3128 24.3826 0.6742 0.0647 4.6208 30.4754 0.8639 0.0108 2.3546

Indusion 30.8476 0.8168 0.0359 2.4216 25.7623 0.6377 0.0674 4.2514 30.5359 0.8849 0.0113 2.3457

SFIM 32.7207 0.8714 0.0248 2.0775 24.0351 0.6409 0.0739 4.8282 30.4021 0.8501 0.0129 2.3688

MIPSM 35.4891 0.9389 0.0209 1.5769 27.7323 0.8411 0.0522 3.1550 32.1761 0.9392 0.0104 1.8830

DRPNN 37.3639 0.9613 0.0173 1.3303 31.0415 0.8993 0.0378 2.2250 35.1182 0.9663 0.0098 1.3078

MSDCNN 36.2536 0.9581 0.0176 1.4160 30.1245 0.8728 0.0434 2.5649 33.6715 0.9685 0.0090 1.4720

RSIFNN 37.0782 0.9547 0.0172 1.3273 30.5769 0.8898 0.0405 2.3530 33.0588 0.9588 0.0112 1.5658

PANNET 38.0910 0.9647 0.0152 1.3021 30.9631 0.8988 0.0368 2.2648 34.5774 0.9635 0.0089 1.4750

MHNet 37.0049 0.9566 0.0189 1.3509 31.1557 0.8947 0.0368 2.1931 33.8930 0.9291 0.0176 1.3697

GPPNN 38.9939 0.9727 0.0138 1.2483 31.4973 0.9075 0.0351 2.1058 35.9680 0.9725 0.0084 1.2798

(a) LRMS (b) PAN (c) GT(PSNR) (d) BDSD(16.23) (e) GS(15.80) (f) MIPSM(16.84)

(g) DRPNN(18.85) (h) MSDCNN(18.15) (i) RSIFNN(17.33) (j) PANNET(18.22) (k) MHNet(19.50) (l) GPPNN(21.13)

Figure 4. Visual inspection on QuickBird dataset. The caption of each subimage displays the corresponding PSNR value.

ried out. There are 5 different configurations and the results

of ablation experiments are shown in Table 4.

(I) The proximal operators make the current HRMS im-

age restricted to deep priors. In the first experiment, we

delete proximal modules (namely, the convolutional units

in Eqs. (9)&(12d)) to verify the necessity of deep priors.

Table 4 shows that deleting proximal modules make all met-

rics dramatically get worse. Therefore, the deep prior plays

a significant role in our network.

(II) In the second experiment, we share the weights of

all layers. In other words, the network contains only an

MS Block and a PAN block, and the network is repeatedly

fed with the current HRMS image K times. The results in

Table 4 demonstrate that sharing the weights will weaken

our network’s performance.

(III) As illustrated in Section 3.1, the original problem

Eq. (2) is split into an LRMS-aware subproblem and a PAN-

aware subproblem. Now, to verify the rationality, we gener-

alize Eq. (2) as a neural network with the same techniques

for GPPNN. We exploit this block to build a neural network

corresponding to Eq. (2). From Table 4, we learn that the

network for Eq. (2) is worse than GPPNN. It is necessary to
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(a) LRMS (b) PAN (c) GT(PSNR) (d) BDSD(21.86) (e) GS(21.43) (f) MIPSM(22.11)

(g) DRPNN(26.41) (h) MSDCNN(26.90) (i) RSIFNN(24.74) (j) PANNET(26.72) (k) MHNet(25.17) (l) GPPNN(28.70)

Figure 5. Visual inspection on GaoFen2 dataset. The caption of each subimage displays the corresponding PSNR value.

Table 4. The results of ablation experiments on the Landsat8 dataset.

Configurations
Proximal Sharing Block for Transpose-

PSNR↑ SSIM↑ SAM↓ ERGAS↓Module Weights Eq. (2) ment

I × × × × 37.0404 0.9498 0.0180 1.4246

II X X × × 38.1650 0.9669 0.0164 1.2943

III X × X × 38.3213 0.9682 0.0155 1.3215

IV X × × X 38.5487 0.9700 0.0150 1.2746

GPPNN X × × × 38.9939 0.9727 0.0138 1.2483

consider two deep priors to separately account for the gen-

erative models of LRMS and PAN images.

(IV) In the last experiment, the convolutional kernel in

Eq. (8)/(12c) is replaced by the kernel in Eq. (6)/(12a) with

the rotation of 180° to force them to satisfy the transposing

requirement. It is found that, if the two kernels transpose to

each other, the metrics will slightly become worse. The rea-

son may be that the model with transposed kernels has fewer

degrees of freedom weakening network’s performance.

5. Conclusion and Future Work

This paper provides a new paradigm combining deep un-

rolling and observation models of pan-sharpening. We de-

velop a model-driven pan-sharpening network, GPPNN, by

alternatively stacking MS and PAN blocks whose designs

are inspired by two optimization problems. Experiments on

three satellites show that our network outperforms SOTA

methods. And a series of ablation experiments verify the

rationality of our network structure.

Remark that each satellite has its unique imaging param-

eters, including D,K and S. GPPNN trained on a satellite

cannot be generalized to another satellite. Hence, the future

work is how to improve the generalization of GPPNN.
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