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Abstract

Recently, with the emergence of retrieval requirements

for certain individual in the same superclass, e.g., birds,

persons, cars, fine-grained recognition task has attracted a

significant amount of attention from academia and industry.

In fine-grained recognition scenario, the inter-class differ-

ences are quite diverse and subtle, which makes it challeng-

ing to extract all the discriminative cues. Traditional train-

ing mechanism optimizes the overall discriminativeness of

the whole feature. It may stop early when some feature ele-

ments has been trained to distinguish training samples well,

leaving other elements insufficiently trained for a feature.

This would result in a less generalizable feature extractor

that only captures major discriminative cues and ignores

subtle ones. Therefore, there is a need for a training mech-

anism that enforces the discriminativeness of all the ele-

ments in the feature to capture more the subtle visual cues.

In this paper, we propose a Discrimination-Aware Mecha-

nism (DAM) that iteratively identifies insufficiently trained

elements and improves them. DAM is able to increase the

number of well learned elements, which captures more vi-

sual cues by the feature extractor. In this way, a more infor-

mative representation is learned, which brings better gen-

eralization performance. We show that DAM can be easily

applied to both proxy-based and pair-based loss functions,

and thus can be used in most existing fine-grained recog-

nition paradigms. Comprehensive experiments on CUB-

200-2011, Cars196, Market-1501, and MSMT17 datasets

demonstrate the advantages of our DAM based loss over

the related state-of-the-art approaches.

1. Introduction

Fine-grained recognition aims at distinguishing each

subclasses on a specific superclass dataset, such as birds,

persons, cars. There are only a few effective cues that can

distinguish samples of different classes due to the samples

belong to a superclass. Meanwhile, images are usually cap-

tured at different times/places, resulting in various visual

differences appear in the same subclass. The extremely low
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Figure 1. Illustration of DAM for representation learning. On top

left, a triplet (xa, xp, xn) and their features fa, fp, fn are shown in

different colors. On top right, black vectors indicate class centers,

and the dotted circles indicate class distributions. On bottom right,

fa, fp and fn are mapped to a harder DAM feature space as Fa,

Fp and Fn. Inter-class samples (Fa and Fn) are pushed close and

intra-class samples (Fa and Fp) are pushed away, as well as the

distributions of intra-class are enlarged. Then the new features by

DAM are inputed to loss function. The pipeline runs iteratively

and leads to a better generalization performance.

intra-class similarity and high inter-class similarity make

fine-grained recognition very challenging. Recently, with

the popularity of retrieving examples of a specific subclass

from the superclass database, this topic has been attracting a

significant amount of attention from academia and industry.

Current representation learning methods mainly focus on

three directions: (1) Designing powerful loss function to

extract robust feature embeddings [18, 29, 52, 53, 44], such

as proxy-based loss and pair-based loss. (2) Constructing

attention module to resolve local regions [15, 3, 24, 62, 66].

(3) Randomly erasing parameters or feature values during

training for better generalization performance [67, 10, 43,

13, 9]. With the powerful deep networks and large-scale

labeled benchmarks, these methods can obtain a relevant
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feature representation for the image.

Despite the significant progress in fine-grained recogni-

tion, most existing methods focus on optimizing the over-

all discriminativeness of the whole feature elements to dis-

tinguish it from other classes. But in fine-grained recog-

nition scenario, the inter-class differences are quite diverse

and subtle. As shown in top-right subfigure of Figure 1,

in original feature space, traditional optimization mecha-

nism may stop early when some elements has been trained

to distinguish training samples well, while other elements

are insufficiently trained. This would result in a less gener-

alizable feature extractor that only captures major discrim-

inative cues and ignores subtle ones. But these subtle cues

may really discriminative for fine-grained recognition. e.g.,

shoes and glasses of person. Therefore, there is a need for

a training mechanism that enforces the discriminativeness

of all the elements in the feature to capture more the subtle

visual cues.

In this paper, we propose a Discrimination-Aware Mech-

anism (DAM) to iteratively learn elements of features more

disciminative. As shown in Figure 1, we encourage the

model to keep learning by mapping low-discriminative fea-

ture to a harder space, and then further optimize the new fea-

tures. Specifically, by exploiting difference between various

specific inter-classes, we retain elements of features with

less diferences to other classes and erase rest elements for

the harder features. For example, fa, fp and fn are mapped

to DAM feature space as Fa, Fp and Fn respectively. In

DAM feature space, inter-class samples are pushed close

(e.g., distance between Fa and Fn) and intra-class samples

are pushed away (e.g., distance between Fa and Fp), as well

as the distributions of intra-class are enlarged. In our DAM,

whether the feature element needs to be retained depends on

the difference of the feature value between different classes.

For a certain element of the features, the smaller difference

it is from other classes, the more it should be retained to

improve its discriminativeness. By using DAM to the exist-

ing proxy-based and pair-based loss, only the selected ele-

ments are used for gradient update, and remaining elements

of feature are erased during training. Finally, by iteratively

mining discriminative cues, all elements of a feature are dis-

criminative after convergence. In this way, more diverse and

subtle cues are extracted, thus improving the discriminative-

ness of the overall feature representation.

In summary, the main contributions of our work are

listed as follows:

• We propose a discrimination-aware mechanism to ex-

tract more discriminative visual cues. Compared with

previous attention-based methods, our method does

not need to modify network architecture. And we use

differences between classes to guide feature mapping

in constrast to previous erasing-based methods,

• We design two feature mapping mechanism to proxy-

based loss and pair-based loss. For proxy-based loss,

we selelet low-discriminativeness elements for each

feature. For pair-based loss, we also select low-

discriminativeness elements for paired-negative fea-

tures, but high-discriminativeness elements for paired-

postive features to enhance the effectiveness of triplets.

• We achievie better performance on fine-grained recog-

nition tasks compared with the related state-of-the-art

methods. i.e, CUB-200-2011, Cars196, Market-1501,

and MSMT17.

2. Related Work

The core idea of fine-grained representation learning is

to obtain discriminative features where semantic informa-

tion between classes are fully learned. There are currently

some solutions to this problem, we will introduce these

methods related to our work.

Fine-grained Representation Learning. Fine-grained

representation learning [15, 24, 23, 56, 49, 28, 64, 5, 11, 33,

59, 34] aims to extract discriminative features, where the

intra-class distances are closer than inter-class ones. How-

ever, there are large visual differences in the same class,

and much apparent similarity between classes. The existing

methods to solve this computer vision task can be divided

into three categories, e.g. loss-designed methods, attention-

based methods and random erasing methods.

Loss Function Designed Methods. With the popularity

of deep learning, a mass of powerful backbones [41, 32, 47,

26, 48, 46, 17, 25, 22, 7, 55, 60, 20, 61, 6, 21] emerged.

By utilizing the feature extraction capabilities of the back-

bone, most of the previous methods focus on designing

loss function to derive robust representation. Typical losses

mainly include the following two categories: proxy-based

loss (e.g., softmax cross-entropy loss [32, 41, 17]) and pair-

based loss (e.g., triplet loss [18, 40, 58, 57]). The first ones

use class-level labels to separate different classes by using

proxies. The second ones use pair-wise labels to directly

pull the same class close and push the different classes far

away. The two losses are complementary, so we use soft-

max cross-entropy loss and triplet loss as our baseline.

Attention-based Methods. Loss designed methods

mainly focus on global features, while attention-based

methods expect to mining some local features. Some meth-

ods use extra information to guide attention maps. Song et

al. [42] used person mask to extract person front. Han et

al. [15, 24] used attribute to get attention maps. Hou et al.

[19] learned spatial and channel attention maps to multiply

the features. RGA [62] aims to capture the global structural

information for better attention learning. Our DAM also se-

lects some locations of feature that need to pay attention.

But our work is fundamentally different from the existing
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attention-based methods in two folds. Firstly, the atten-

tion manner is different. We adopt differences between

inter-classes to guide attention, but existing methods do not

have direct supervision signal when there is no external la-

bel, e.g. mask, key points. Secondly, attention direction is

different. We are committed to discovering locations with

low-discriminativeness, but existing methods amis to find

discriminative ones for further enhancement.

Random Erasing Methods. Recently, some random

erasing methods achieved significant improvements in com-

puter vision tasks. The works [67, 10] randomly erase

a rectangle region of the input images during training.

Dropout [43] drops the feature units randomly, which is a

widely used regularization technique to prevent overfitting.

DropBlock [13] randomly drops a contiguous region of the

convolutional features for CNNs. In the work [9], all feature

maps in the same batch are dropped in a consistent way for

better metric learning. Our method also erases some feature

elements for further learning the remaining elements. But

different from the existing methods by random erasing,

we use differences between inter-classes to guide erasing

locations for features.

3. Proposed Approach

In this section, we firstly illustrate the details of the pro-

posed discrimination-aware mechanism. Then, we intro-

duce the application of DAM to proxy-based loss and pair-

based loss. Thirdly, we describe the overall framework

of our representation learning method. Finally, we further

prove the effectiveness of our DAM from the perspective of

gradient optimization.

3.1. DiscriminationAware Mechanism

In fine-grained recognition task, there is a high degree of

visual similarity between different classes. For example, the

students on campus wear similar school uniforms with the

same hairstyles. From a visual point of view, there are much

diverse and subtle differences between the two person, e.g,

shoes, glasses. However, for the same class, there are high

visual differences, e.g, postures, backgrounds, illuminations

and viewpoints. Therefore, it is particularly necessary to

extract really effective cues to distinguish samples.

Intuitively, for a feature, when each element of the fea-

ture is discriminative, this feature can be more robust. In

other words, the feature whose each element discriminative

will contain as many effective cues as possible. For fine-

grained recognition task, since some cues that can distin-

guish classes are so subtle, extracting more cues for feature

representation can help improve recognition performance.

To be specific, when enough cues are extracted, some cues

that can really distinguish the classes will make the feature

similarity between intra-class larger, and the similarity be-

tween the inter-classes smaller.

Most existing methods for representation learning opti-

mized the overall discriminativeness of the whole feature

elements. While some methods use random erasure mech-

anism to erase certain image/features areas to increase gen-

eralization ability. However, both of these methods have

drawbacks. For the first type of methods, since deep con-

volutional neural networks (DCNNs) first learn some easy

(visually significant) areas, then some hard (visually subtle)

cues [14]. Therefore, the loss function will converge when

some significant discriminative cues are learned. This will

cause the learned model fits training data well but has poor

generalization ability. Although the optimization target is

satisfied on the training set, it is difficult to be effective for

other datasets due to insufficient learning. For the second

type of methods, since the erased areas are uncontrollable,

the results may be trapped in local optimal. Therefore, eras-

ing locations deserve a guided mechanism.

In this paper, we propose a discrimination-aware mecha-

nism to extract more cues for better discriminative represen-

tation. Inspired by random erasing, we design a guided era-

sure mechanism to encourage the model to iteratively learn

the new discriminative cues. To be specific, we obtain in-

structive input signals by exploiting the difference between

classes. Intuitively, when two features are different in each

element, that two features have a larger difference. There-

fore, we can achieve high-discriminative inter-class features

by constraining as many feature elements to be different as

possible, thereby prompting the model to mine more plenti-

ful cues for distinguish examples.

In order to make the feature elements between inter-

classes as different as possible, we split elements of each

feature into two sets every iteration during the training pro-

cess. One set with low-discriminativeness elements are iter-

atively optimized, and the other set elements alreadly with

high-discriminativeness are erased. With the help of this

erasing mechanism, we have obtained new gated features to

further optimize the model parameters. In feature space per-

spective, DAM projects the training samples from original

feature space into a more difficult (to distinguish each sam-

ple) space. The entire generation process of new features is

shown in Figure 2.

To determine which elements should be erased, we uti-

lize the differences between classes, which can be obtained

by calculating the difference between the class centers.

Specifically, when using softmax cross-entropy (SCE) loss

to supervise the classification task, the weights w (w ∈
RC×D, where C is class number, and D is element number

of a feature) of the last fully connected (FC) layer are used

as proxies to pull intra-class close and push inter-classes

away. Mathematically, a feature fi is projected onto all

weight vectors [w1, ..., wC ] to determine its class, where wi

is a D-dim vector as shown in Figure 2 (a). During train-

ing, SCE loss function optimizes the classification object

815



Figure 2. Illustration of our DAM to generate new gated features.

wi and wj are D-dim weight vectors in the last FC layer.

by lengthening the projection of fi on the true class weight

wyi
. In other words, the more similar the value of each

dimension of the feature and class weight, the longer the

projection. Therefore, class weights can represent the aver-

age feature of intra-class samples (class center), and the dif-

ference between class weights can represent the difference

between inter-classes. The class differences Wi,j between

class ci and cj can be defined as:

Wi,j = |wi − wj | (1)

where |.| takes the absolute value of each vector dimension.

Wi,j is a D-dim vector, which indicates the signification of

each element in features for distinguishing class ci and cj .

The higher the value, the more discriminative of that feature

element between the two classes.

With a representation of the differences between two

classes, we can decide which elements of fearures for the

two classes need to be further optimizing. When the value

of the difference is smaller, it means that this element of fea-

tures has lower-discriminativeness between the two classes.

To select effective feature elements, we design a gate mech-

anism to cut off unnecessary parts. Specifically, we use the

mean value of the difference to measure effectiveness. To

increase flexibility, we set an adjustable parameter λ. As

shown in Figure 2 (b-c), the new gated difference weight

Ti,j for class ci and cj can be defined as:

T k
i,j =

{

1, W k
i,j < λWi,j

0, W k
i,j >= λWi,j

(2)

Wi,j =
1

D

l=D
∑

l=1

W l
i,j (3)

where W k
i,j expresses the signification of the k-th element

for distinguishing class ci and cj . After getting Ti,j , we

can get a new gated feature embedding Fi,j from the orig-

inal feature fi as shown in Figure 2 (d-e), which has low-

discriminativeness to samples of class cj . The new gated

Fi,j can be defined as:

Fi,j = fi × Ti,j (4)

where × represents element-wise multiplication.

Besides, for feature fi, its element set which cannot be

distinguished from all other classes needs further optimiza-

tion as well. To represent the discriminativeness of feature

dimensions, we measure the average difference between

feature fi and all other classes. The average difference of

fi can be defined as:

Wi,all =
1

C − 1

C
∑

j=1,j 6=i

Wi,j (5)

By using the same gate mechanism as a specific class

(Equ 2) , we can obtain the gated difference Ti,all of the

feature fi between all other classes. Then we can get the

low discriminative Fi,all for fi:

Fi,all = fi × Ti,all (6)

3.2. DiscriminationAware Mechanism Application

When our discrimination-aware mechanism generate

new gated features, we can input them to proxy-loss and

pair-based loss for further model optimization.

Discrimination-Aware Mechanism for Proxy-based

Loss. For proxy-based loss function, multiple proxies (the

weights wi of the last FC layer) are adopted to optimize

the model parameters. By iteratively optimizing new low-

discriminativeness feature parts, we can improve the robust-

ness of global features. The softmax cross-entropy based

discrimination-aware mechanism (SCEDAM) can be rewr-

ited as:

LSCEDAM = −
1

N × C

N
∑

i=1

C
∑

k=1

yli ∗ log
eFi,k·wk

∑C
j=1

eFi,k·wj

(7)

Fi,k =

{

Fi,all, k = argmax(yi)

Fi,k, k 6= argmax(yi)
(8)

where N is batch size, yi is the label of image xi, it is a

C-dim one-hot vector. yli represents the label of sample xi

is l, yli = 1.

The difference between LSCEDA and LSCE is that we

use new gated features for classification. In addition, when

the new gated feature is projected to the weight vector of

the gt class, we use features that are less discriminative than

all other class. When the new gated feature is projected to

the non-gt weight vector, we use the low-discriminanation
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Figure 3. The framework of representation learning with the proposed discrimination-aware mechanism. We use the weights of the last FC

layer to represent class center, and the difference of class center to determine discriminativeness of feature elements. Then the new gated

features are inputed to proxy-based and pair-based loss for further parameters optimation.

feature elements compared with the non-gt class. This dif-

ferentiated process further distinguish the learned features

from all other classes. Therefore, the robustness of the over-

all feature representation is improved.

Discrimination-Aware Mechanism for Pair-base

Loss. For pair-based loss, we choose triplet loss (e.g.,

TriHard [18]) as our baseline. A triplet (xa, xp, xn) has a

shared anchor xa, where xa and xp are positive pairs, while

xa and xp are negative pairs. For triplet loss, the feature is

directly used to calculate the distance, and the optimization

goal is achieved by pulling the distance of the same class

close and pushing the distance of the different classes far

away. When use our DAM to TriHard, we can get the new

gated features to continuously improve discriminativeness.

In triplet loss based discrimination-aware mechanism

(TriHardDAM), the triplets are harder than the previous

ones for distance optimization. The TriHardDAM loss

function can be rewrited as follows:

LTriHardDAM =
1

N

N
∑

a=1

[d(¬Fa,all,¬Fp,all)−d(Fa,n, Fn,a)+α]+

(9)

where [.]+ = max(., 0), α is a pre-defined value,

and d(.) is the Euclidean distance calculation function,

¬Fa,all,¬Fp,all express the high-discriminativeness ele-

ments of feature fa and fp. To be specific, the gated mech-

anism sets the feature elements between intra-class with

large differences to 1, and the other elements to 0.

The difference between LTriHard and LTriHardDAM is

that we use the new gated features for distance optimiza-

tion. For positive pair (fa, fp), we adopt features that are

discriminative to all other class, which makes the distance

relatively larger. For negative pair (fa, fn), we use the el-

ements that has low discriminativeness between class ca
class cn, which makes the distance relatively smaller. The

new triplet has larger postive distance and smaller negit-

ive distance, which makes learning goals more difficult. So

our LTriHardDAM can obtain better performance when the

model is converged.

Discrimination-Aware Mechanism based Loss. By us-

ing the informative features to proxy-based loss and pair-

based loss, we can get the overall loss by using DAM as:

LDAM = µLSCEDAM + νLTriHardDAM (10)

where µ and ν are two adjustable parameters, representing

the weights of LSCEDAM and LTriHardDAM respectively.

In general, our DAM appropriately increases the learn-

ing difficulty during the training, thus improving the gener-

alization ability of the model after convergence.

3.3. Representation Learning Framework

The architecture supervised by our DAM based loss is

illustrated in Figure 3. Following the current popularity, we

use CNN backbone to extract feature, and input the features

to proxy-based loss e.g. SCE [17] and pair-based loss e.g.

TriHard [18] to optimize model parameters. When loss con-

vergence, we can get a feature extractor for inference. The

inputs xa, xp, xn from one training batch include samples

from the same class and different calss, where xa and xp are

from the same class, xa and xn are different class. During

test phase, only feature embeddings are used for similarity

comparison between samples. For simplify, we describe the

training process of xa in the schematic diagram.

For the features from DCNNs, we use weights of the last

FC layer to get differences. Then features are gated by the

DAM using these differences. For proxy-based loss, the el-

ements with low-discriminativeness is retrained for further

model optimization. For pair-based loss, we select high-

discriminativeness elements for positive pairs while low-

discriminativeness elements for negative pairs, which can

increase the triplet learning difficulty during the training,

thus improving the generalization ability once convergence.
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3.4. Optimization for DAM based Loss

For SCEDAM loss, we can get the partial derivative of

LSCEDAM for the k-th element of weight wk
i with respect

to the following:

∂LSCEDAM

∂wk
i

= (

C
∑

j=1

F k
i,jw

k
i

∑C
l=1

F k
i,jw

k
l

− 1)fk
i (11)

From the result of Equ 11, we can see that the elements

of a feature with high-discriminativeness have smaller gra-

dient to weight w, which shows that the optimization of

SCEDAM loss slightly change the values of these elements

in this iteration. On the contrary, the elements with low-

discriminativeness have larger gradient. This difference

makes the model parameters are further optimized to im-

prove the element with low-discriminativeness. Therefore,

our DAM can obtain more cues for better robust represen-

tation when loss convergence.

For TriHardDAM loss, when d(¬Fa,all,¬Fp,all) >

d(Fa,n, Fn,a) − α, we can get the partial derivative of

LTriHardDAM for fk
a with respect to:

∂LTriHardDAM

∂fk
a

=























fk
n − fk

a , T k
a,all = 1, T k

a,n = 1

fk
a − fk

p , T k
a,all = 0, T k

a,n = 0

fk
n − fk

p , T k
a,all = 0, T k

a,n = 1

0, T k
a,all = 1, T k

a,n = 0
(12)

According to Equ 12, the gradient of fk
a is deter-

mined by the value of T k
a,all and T k

a,n. When fk
a has

high-discriminativeness to all other classes and class cn,

it has smaller gradient (fk
a − fk

p ). While fk
a has low-

discriminativeness to all other classes and class cn, it has

larger gradient (fk
n−fk

a ). This difference in optimization di-

rection can make the elements with low-discriminativeness

become more discriminative.

4. Experiments

4.1. Datasets and Settings

Datasets. In this work, we use CUB-200-2011 [51],

Cars196 [31], Market-1501 [65] and MSMT17 [54] to val-

idate the effectiveness of our method. CUB-200-2011 is a

dataset consists of various birds species. Following the stan-

dard splits [37], we use 5,864 images of the first 100 species

for training and the rest 100 species for testing. Cars196 is

a dataset contains 16,185 car images of 196 classes. We use

the first 98 classes (8,054 images) for training and the rest

for testing. Market-1501 and MSMT17 are person dataset,

Market-1501 contains 32,668 images of 1,501 identities. It

is split into 751 identities for training and 750 identities for

Table 1. Comparison with baselines on CUB-200-2011 and

Cars196.

Method
CUB-200-2011 Cars196

r=1 r=2 r=1 r=2

SCE 69.8 79.4 86.9 91.8

SCEDAM 70.9 80.4 88.1 92.5

SCE+TriHard 71.2 80.7 88.5 92.8

SCE+TriHardDAM 71.9 81.0 88.6 93.1

SCEDAM+TriHard 71.8 80.8 88.4 93.0

DAM 72.3 81.2 88.9 93.4

Table 2. Comparison with baselines on Market-1501 and

MSMT17.

Method
Market-1501 MSMT17

mAP r=1 mAP r=1

SCE 85.8 93.8 48.6 70.9

SCEDAM 86.7 94.8 53.2 75.6

SCE+TriHard 87.8 94.9 56.1 79.3

SCE+TriHardDAM 88.1 95.1 60.2 83.9

SCEDAM+TriHard 88.4 95.4 59.8 82.1

DAM 88.9 96.1 61.6 84.2

testing. MSMT17 contains 126,441 images of 4,101 iden-

tities. Where 1,041 identities are in the training set and the

rest 3,060 identities are in the testing set.

Implementation Details. Our method is implemented

using PyTorch. For CUB-200-2011 and Cars196 dataset,

we use serveral different settings: 64/512 embedding di-

mensions with the default image size (224×224), and the

larger image size (256×256) for 512 embedding dimension

also used. For Market-1501 and MSMT17 dataset, we re-

size images to 384 × 128, and 2,048 dimensions’ features

are obtained for training and testing. When our DAM used

to proxy-based and pair-based loss, we set µ and ν in Equ 10

to 1 for simplification.

Evaluation Protocol. We adopt the same standard eval-

uation protocol as public works, e.g., Recall@K and mean

Average Precision (mAP), to evaluate the effect of the pro-

posed method. The training set and testing set of all datasets

do not overlap in classes. For CUB-200-2011 and Cars196,

K={1, 2, 4, 8}. For Market-1501 and MSMT17, we use

mAP and Rank-1 to evaluate the effect of our method.

4.2. Comparison with Baselines

Our DAM has improved feature extraction ability for

proxy-based loss and pair-based loss by using DAM to

obatin the new gated features. To show the effect of our
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Table 3. Comparison with state-of-the-arts on CUB-200-2011 and Cars196. Superscripts denote embedding sizes and ♯ indicates models

using 256× 256 input images. Different backbones are abbreviated as: G–GoogleNet [47], BN–Inception with batch normalization [26].

Method Backbone
CUB-200-2011 Cars196

r=1 r=2 r=4 r=8 r=1 r=2 r=4 r=8

Clustering64 [36] BN 48.2 61.4 71.8 81.9 58.1 70.6 80.3 87.8

Proxy-NCA64 [35] BN 49.2 61.9 67.9 72.4 73.2 82.4 86.4 87.8

Smart Mining64 [16] G 49.8 62.3 74.1 83.3 64.7 76.2 84.2 90.2

MS64 [52] BN 57.4 69.8 80.0 87.8 77.3 85.3 90.5 94.2

SoftTriple64 BN 60.1 71.9 81.2 88.5 78.6 86.6 91.8 95.4

Proxy-Anchor64 BN 61.7 73.0 81.8 88.8 78.8 87.0 92.2 95.5

DAM64 BN 62.2 73.8 82.6 89.2 79.5 87.6 92.6 95.8

A-BIER512 [38] G 57.5 68.7 78.3 86.2 82.0 89.0 93.2 96.1

ABE512 [30] G 60.6 71.5 79.8 87.4 85.2 90.5 94.0 96.1

HTL512 [12] BN 57.1 68.8 78.7 86.5 81.4 88.0 92.7 95.7

RLL-H512 [53] BN 57.4 69.7 79.2 86.9 74.0 83.6 90.1 94.1

MS512 [52] BN 65.7 77.0 86.3 91.2 84.1 90.4 94.0 96.5

SoftTriple512 [39] BN 65.4 76.4 84.5 90.4 84.5 90.7 94.5 96.9

Proxy-Anchor512 [29] BN 68.4 79.2 86.8 91.6 86.1 91.7 95.0 97.3

DAM512 BN 69.1 79.8 87.2 91.8 86.9 92.1 95.3 97.9
♯Contra+HORDE512 [27] BN 66.3 76.7 84.7 90.6 83.9 90.3 94.1 96.3
♯Proxy-Anchor512 [29] BN 71.1 80.4 87.4 92.5 88.3 93.1 95.7 97.5

♯DAM512 BN 72.3 81.2 87.8 92.7 88.9 93.4 96.0 97.7

method, we conduct experiments on different setting.

For CUB-200-2011 and Cars196, we adopt SCE and

SCE+TriHard as baselines. The experimental results are

shown in Table 1. From the table, we can see that whether

the DAM is adopted to proxy-based or pair-based loss,

the accuracy is improved. Specially, when DAM imposed

to proxy-based SCE on CUB-200-2011, SCEDAM gains

+1.1% in Rank-1. For Cars196, our SCEDAM gains +1.2%
in Rank-1. When our DAM imposed to pair-based TriHard

loss, compared with SCE+TriHard, our SCE+TriHardDAM

gains +0.7% in Rank-1 on CUB-200-2011, and +0.1% in

Rank-1 on Cars196. When DAM is applied to both SCE and

TriHard, we obtain a further improvement, which shows

that our DAM can help learn more robust representations.

For Market-1501 and MSMT17, we also use proxy-

based SCE and pair-based SCE+TriHard as baselines. The

experimental results shown in Table 2 demonstrate the ef-

fect of our DAM on person re-identification (ReID) task.

From the table, we can see that when our DAM used to

SCE, SCEDAM gains +0.9% in mAP and +1.0% in Rank-

1 on Market-1501. On MSMT17, compared with SCE,

our SCEDAM gains +4.6% in mAP and +4.7% in Rank-

1. When our DAM used to pair-based loss, compared

with SCE+TriHard, our SCE+TriHardDAM gains +0.3% in

mAP and +0.2% in Rank-1 on Market-1501, and +4.1% in

mAP and +4.6% in Rank-1 on MSMT17. When DAM is

applied to both SCE and TriHard, we obtain a further im-

provement (red color in Table 2). The results show that

our DAM has better performance on both proxy-based and

paired-based loss for person ReID.

4.3. Comparision with Stateoftheart Methods

In Table 3, we compare our method with state-of-the-arts

on CUB-200-2011 and Cars196 dataset. For fair compar-

ison, we use a variety of backbone networks, embedding

sizes and image sizes to conduct experiments. From the ta-

ble, we can see that our DAM surpasses existing methods in

all indicators. Specifically, when the embedding size is 64,

our DAM gains +0.5% in Rank-1 on CUB-200-2011, and

gains +0.7% in Rank-1 on Cars196 than Proxy-Anchor [29].

When the embedding size is 512, we get 69.1% in Rank-1

on CUB-200-2011 and 86.9% in Rank-1 on Cars196, which

are better than existing methods. For a larger image input

size 256×256, we also get stronger performance and sur-

pass the other methods. The improvements show that our

method is effective to extract discriminative representation

for fine-grained recognition.

For person ReID task, we compare our method to other

works on Market-1501 and MSMT17, the results are shown

in Table 4 and 5 respectively. From the Table 4, we can

see that our method can achieve improvements than exist-

ing methods on Market-1501. Specifically, our DAM get

88.9% in mAP and 96.1% in Rank-1, which is comparable

to other methods. When we compare our method with re-

lated methods on MSMT17, our method is also better than

other works. Specifically, our DAM get 61.6% in mAP

819



Table 4. Comparison with state-of-the-arts on Market-1501.

Method mAP r=1

M3+ ResNet50 [68] 82.6 95.4

RGA-SC [62] 88.4 96.1

SCSN(4 stages) [4] 88.3 92.4

ABDNet [3] 88.3 95.6

Pyramid [63] 88.2 95.7

DCDS [1] 85.8 94.8

MHN(PCB) [2] 85.0 95.1

BFE [8] 86.2 95.3

CASN(PCB) [66] 82.8 92.4

AANet [50] 83.4 93.9

IANet [19] 83.1 94.4

VPM [45] 88.8 93.0

DAM 88.9 96.1

Table 5. Comparison with state-of-the-arts on MSMT17.

Method mAP r=1

M3+ ResNet50 [68] 55.0 72.8

RGA-SC [62] 57.5 80.3

SCSN(4 stages) [4] 58.5 83.8

ABDNet [3] 60.8 82.3

IANet [19] 46.8 75.5

DAM 61.6 84.2

and 84.2% in Rank-1. The improvement shows that our

DAM also can extract discriminative representation for per-

son ReID scenario.

4.4. Ablation Study

The effect of parameter λ. In this work, parameters λ

(Equ 2) is used to determine which features are beneficial

for further model optimization. We conduct experiments on

various λ, the experimental results are shown in Figure 4.

From the figure, we can see that when λ=1.5, SCEDAM has

best result, e.g., 86.7% in mAP and 94.8%, which achieves

+0.9% in mAP and 1.0% in Rank-1 compared with SCE on

Market-1501. When λ is small, e.g, 0.5, the effect is lower

than SCE. This is because the smaller λ is, the fewer fea-

ture dimensions are selected. Feature with too few dimen-

sions can not adequately represent the semantic information

of the images, resulting disadvantaged results. On the con-

trary, when λ is too large, there are some redundant features

with limited benefit to distinguish examples.

Comparison with erasing methods. Our DAM erase

some elements of feature to enhence discriminativeness,

which is similar to some feature erasing method. To show

the effec of our DAM, we conduct experiments to compare

with the related methods on Market-1501. The comparison

results are shown in Table 6. From the table, we can see

Figure 4. The influence of various λ for our DAM on Market-1501.

Table 6. Comparison with feature erasing based methods on

Market-1501.

mAP r=1 r=5 r=10

SCE 85.8 93.8 97.9 98.8

SCE+Dropout [43] 86.3 94.4 98.1 98.8

SCE+DropBlock [13] 86.0 94.1 98.0 98.8

SCEDAM 86.7 94.8 98.4 98.9

that our DAM is better than both Dropout [43] and Drop-

Block [13]. And the three erasing methods are higher than

SCE. Specifically, compared with Dropout, our DAM gains

+0.4% in mAP and +0.4% in Rank-1. Compared with Drop-

Block [13], our DAM gains +0.7% in mAP and 0.7% in

Rank-1. The results show that erasing is an effective mech-

anism. The difference of our DAM to other two methods

is that we erase some elements guided by the discrimina-

tiveness of feature elements, but the other two methods ran-

domly erase some values. which shows that information to

guide erasing location is beneficial.

5. Conclusion

In this paper, we proposed a discrimination-aware mech-

anism for proxy-based and pair-based loss, which improves

the model generalization ability. To be specific, DAM can

guide the model to learn more cues to enhance the dis-

criminativeness of features. By using the proposed DAM,

we erase elements of features with high-discriminativeness,

and the low-discriminativeness elements are retained for

further optimization. Eventually, each element of a feature

becomes discriminative, resulting in a robust feature repre-

sentation for fine-grained recognition. In the future work,

we will move towards choosing more effective features to

improve discriminativeness, and generalize it to other fields.
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