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Abstract

In this paper, we propose a novel graph convolutional

network architecture, Graph Stacked Hourglass Networks,

for 2D-to-3D human pose estimation tasks. The proposed

architecture consists of repeated encoder-decoder, in which

graph-structured features are processed across three differ-

ent scales of human skeletal representations. This multi-

scale architecture enables the model to learn both local

and global feature representations, which are critical for

3D human pose estimation. We also introduce a multi-level

feature learning approach using different-depth intermedi-

ate features and show the performance improvements that

result from exploiting multi-scale, multi-level feature repre-

sentations. Extensive experiments are conducted to validate

our approach, and the results show that our model outper-

forms the state-of-the-art.

1. Introduction

In recent years, with the application of deep learning

methods, the performance of 2D human pose estimation

has been greatly improved. Recent works show that using

such detected 2D joints positions, the 3D human pose can

also be efficiently and accurately regressed [27]. Due to the

graph structure formed by the topology of the human skele-

ton, many attempts have been made to use the generalized

form of CNN: Graph Convolutional Networks (GCN), to

perform the regression task of 2D-to-3D human pose esti-

mation [48, 7, 23]. Since the graph convolution has a good

feature extraction capability for the graph-structured data,

the GCN-based approaches work well and some of them

achieve the state-of-the-art results in the 2D-to-3D human

pose estimation task.

However, the existing GCN-based approaches have the

following limitations: First, the graph convolutions exploit

all node information, which can be seen as that all features

are processed at only “one scale”. Thus it is difficult to

extract features that can represent spatial local and global

information and limits the representation capabilities. Sec-

ond, most existing approaches use a straightforward archi-

tecture of sequentially connecting the graph convolution

layers (Fig. 4 (Top)). Such a model architecture does not

take advantage of the benefits of model depth, such as in-

termediate features at each depth, and therefore limits its

performance.

The core issue mentioned above is that the features ex-

tracted by existing architecture are oversimple, which lim-

its the expressiveness of the model. Features with greater

representation capabilities, such as multi-scale and multi-

level features, are commonly used in image-related tasks.

For multi-scale features, they denote the information from

small to large resolutions of the image features, thus bring-

ing rich image understanding from local to global [5, 22],

while multi-level features denote the latent representations

in different depths of the latent space, bringing important

semantic information at all levels from shallow to deep. The

introduction of the above multi-scale and multi-level fea-

tures can enrich the performance of the model. However,

because the upsampling and downsampling operations re-

quired for multi-scale features are defined on the image, and

the graph has an irregular structure, such methods cannot be

directly applied to the graph-structured data.

To address these issues, we propose a novel architec-

ture for 2D-to-3D human pose estimation: Graph Stacked

Hourglass Networks. Specifically, we do not focus on spe-

cific graph convolution operations, but rather consider how

to integrate them in the architecture which gives the best

performance improvement. Given the advantages of the

2D human pose estimation approaches, proposed architec-

ture adopts the repeated encoder-decoder applicable to the

graph-structured data for multi-scale feature extraction, as

well as the intermediate features at each depth of the model

for multi-level feature extraction. Such multi-scale and

multi-level feature information makes the model more ex-

pressive and enables the model to achieve high-precision

3D human pose estimation.

Our work makes the following contributions. First, we

propose Graph Hourglass modules suitable for extracting

multi-scale human skeletal features, which includes novel

pooling and unpooling operations considering human skele-

tal structure, called Skeletal Pool and Skeletal Unpool.
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Figure 1. Description of the skeletal structure of the human body. (a) The human skeletal graph structure consisting of 16 joints used

in this paper. (b) Illustration of Skeletal Pool. A pair of joints composed of the same color, mapped by the max pooling operation to

corresponding joints in lower scale skeletal structure. Here we define three different scales of skeletal structures, containing 16, 8, and 4

joints, respectively. (c) Illustration of Skeletal Unpool. When reverting to a higher scale skeletal structure, we duplicate the features of the

lower scale joints and assign them to the two corresponding joints in the higher scale skeletal structure.

Second, we introduce Graph Stacked Hourglass Networks

(GraphSH) consisting of the proposed Graph Hourglass

module , which incorporates multi-level feature represen-

tations at various depths of the architecture. Our architec-

ture incorporates multi-scale, multi-level features and a pri-

ori knowledge of the human skeleton, achieving impressive

performance improvement for 2D-to-3D human pose esti-

mation tasks.

2. Related Work

3D Human Pose Estimation. Predicting the 3D hu-

man pose from images or videos has been an essential

topic in computer vision for a long time. In the early

days, handcrafted features, perspective relationships, and

geometric constraints were used to predict 3D human pose

[42, 32, 1, 14]. In recent years, with the development of

deep learning, there has been an increase in using deep

neural networks for image-to-3D human pose estimation

[43, 44, 34, 41, 47, 8].

Some methods regress 3D human pose directly from im-

ages. Tekin et al. [43] propose a method that first train an

autoencoder to learn the latent representation of the 3D hu-

man pose, then use CNN to regress the image with the latent

representation, and finally connect the trained CNN with the

decoder to achieve the prediction from image to 3D human

pose. Pavlakos et al. [34] exploit voxel to discretize repre-

sentations of the space around the human body and use 3D

heatmaps to estimate 3D human pose.

There are also methods that break the problem down into

two steps: first predicting 2D human joints from the image,

and then using the 2D joints information to predict 3D hu-

man pose. Our approach falls into this category. Martinez et

al. [27] propose a simple yet effective baseline for 3D hu-

man pose estimation that uses only 2D joints information

but get highly accurate results, showing the importance of

2D joints information for 3D human pose estimation. Since

the human skeleton’s topology can be viewed as a graph

structure, there has been increasing use of Graph Convolu-

tional Networks (GCN) for 2D-to-3D human pose estima-

tion tasks [48, 7, 23].

Graph Convolutional Networks. Graph Convolutional

Networks (GCN) are used to perform convolution opera-

tions on graph-structured data, such as human skeleton, thus

enabling effective feature extraction. The early simple GCN

is the ‘vanilla’ GCN proposed by Kipf and Welling [17],

which consists of a simple graph convolution operation

that performs the transformation and aggregation of graph-

structured data, and it becomes the basic model for vari-

ous graph convolution later on. The following GCNs are

based on this model with some improvements and are ap-

plied to 2D-to-3D human pose estimation. Zhao et al. [48]

propose Semantic Graph Convolution (SemGConv), which

has learnable adjacency matrix parameters, enabling the

model to learn the semantic relationships between the hu-

man joints. In the two graph convolutions just introduced,

each node information is transformed using the same weight

matrix and then aggregated. Liu et al. [23] point out that

sharing the same weight by all nodes limits the representa-

tion capabilities of graph convolution, and propose a new

method that, first transforming each node information using

different weights and then aggregating them together, called

Pre-Aggregation Graph Convolution (PreAggr). They also

introduce an approach that decouples the self-connections

in the graph and use separate weight to compute the self-

information transformation.

The GCN using the above graph convolution for 3D hu-
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Figure 2. Illustration of the Graph Hourglass Module. The skeletal scale is reduced by graph convolution and skeletal pooling, up-

sampled by skeletal unpooling after reaching the lowest scale, and finally restored to the original skeletal scale. As the skeletal scale

decrease, we increase the number of channels (64 → 96 → 128 in our experiments). Each graph convolution layer is followed by Batch

Normalization [13] and ReLU activation [29]. Residual connections are used between features at each scale. Note that the inputs and

outputs of the hourglass module maintain the same shape.

man pose estimation, however, only use a straightforward

overall architecture, as in Fig. 4 (Top). Such a simple ar-

chitecture prevents the model from using the multi-scale,

multi-level features common in image-based tasks, limiting

the performance of the model.

Multi-scale and Multi-level Learning. Multi-scale and

multi-level features learning drives advances in a wide va-

riety of image-based tasks [37, 24]. Multi-scale feature

learning refers to integrating features in different resolu-

tions to provide a better understanding within the spatial

domain. Feature Pyramid Network (FPN) [22] is a pow-

erful multi-scale feature extractor and achieves encourag-

ing results in object detection tasks. In the task of 2D hu-

man pose estimation from image, Hourglass structure for

extracting multi-scale features allows the model to learn

both local and global features, which are essential for hu-

man pose understanding. (e.g., spatial configuration rela-

tionships between human joints) [31, 30, 40]. Multi-level

feature learning, on the other hand, represents the use of

features at various depths of the network. Some methods

use a skip layer to incorporate features from the interme-

diate layer of the network and then combine them into the

output layer [3, 25]. Zhao et al. [49] incorporate multi-scale

and multi-level features, combining image pyramids of dif-

ferent depths to extract higher feature representations.

These image-based methods take advantage of the fact

that images can be easily scaled up and down and the rich-

ness of intermediate features, thus enabling multi-scale and

multi-level feature extraction. However, due to the graph

structure’s irregularity, it is not trivial to scale it up or down

like an image, so such approaches have not been applied

much to tasks with graph-structured data.

In the next section, we present our proposed novel graph

convolutional network architecture that integrates multi-

scale and multi-level features of the graph-structured data.

3. Graph Stacked Hourglass Networks

3.1. Hourglass Module

Our approach is inspired by Stacked Hourglass Networks

proposed by Newell et al. [31] for estimating 2D human

pose from images, which exploits repeated hourglass-like

encoder-decoder architecture. We aim to extend such an

hourglass structure to the graph for extracting multi-scale

features of the graph-structured data.

Using deep neural networks for computer vision tasks,

multi-scale features of the image are essential for image

understanding. Since images have large amounts of infor-

mation at high resolution, the model can extract much de-

tailed information from them. Alternatively, while the im-

age is at low resolution, the model can better extract glob-

alized information. The hourglass structure, accompanied

by downsampling and upsampling operations, enables the

image features to go through all resolutions so that cru-

cial information can be extracted at all scales. Previous

works have shown that this hourglass structure has strong

feature extraction capabilities, especially for tasks requir-

ing both local and global information, such as human pose

estimation [31, 30]. Moreover, stacking such a structure en-

ables repeated feature extraction and enhances model per-

formance.

Our motivation is to extend such a structure with pow-

erful multi-scale feature extraction capabilities to graph-

structured data to achieve highly accurate 2D-to-3D hu-

man pose estimation. In the hourglass structure, down-

sampling and upsampling of the data are implemented by

pooling and unpooling operations, respectively. Such oper-

ations are easy to define on the images because of their reg-

ularized structure, but there is no consistent way to define

them on the graph. On this point, there are some previous

works regarding pooling and unpooling operations on the

graph [9, 18]. However, these pooling and unpooling oper-

ations are defined on the more generalized arbitrary-shaped
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Figure 3. The overall architecture of our network. The input 2D joints are fed into the hourglass module after the pre-processed graph

convolution layer, and the outputs of the hourglass module are both processed as intermediate features, and also fed into the subsequent

hourglass modules, except the last one. All the intermediate features are concatenated and entered into the SE block [12], then the final

feature is passed through a 1x1 convolutional layer to output the final 3D pose prediction. The number of the convolution module indicates

the number of channels of the output. Our network takes a 4-stacking approach. The input and output of the hourglass module keep the

dimension of 64 channels. Note that the graph structure is maintained throughout the whole network.

graph structure, while the human skeletal graph used in this

study has a fixed structure as shown in Fig. 1(a). Here,

we exploit this property to propose pooling and unpool-

ing methods applicable to the human skeletal graph, called

Skeletal Pooling and Skeletal Unpooling.

Skeletal pooling. According to the property of the

human body structure, we group the human body nodes

in pairs, where the corresponding two nodes’ features are

fused into one node in the lower-scale skeleton structure,

using max pooling operation. With repeated pooling oper-

ation, we can obtain three different scales of skeletal struc-

tures containing 16, 8, and 4 nodes, respectively, and each

of them corresponds to a different graph structure. For rela-

tively lower-scale graph representations, we use more chan-

nels to encode information to prevent information degrada-

tion. The illustration of skeletal pooling and the three-scales

skeleton graph structures are shown in Fig. 1(b).

Skeletal unpooling. We use unpooling operation to re-

store lower-scale skeletal structures to their original size,

enabling them to fuse higher-scale skeletal information and

pass it to subsequent processing. We adopt a very simple

approach: since lower-scale nodes are generated by two

grouped higher-scale nodes, in unpooling operation, we du-

plicate the feature representations of the lower-scale node

and assign them to corresponding two nodes to recover

the higher-scale skeletal representations. The illustration of

skeletal unpooling is shown in Fig. 1(c).

Graph hourglass design. Using the above skeletal pool-

ing and unpooling operations, we propose a novel graph

hourglass module applicable to human skeleton represen-

tation.The detailed hourglass structure is shown in Fig. 2.

For the same scale of the skeletal structure, we applied the

residual connections [11] to pass information and prevent

the vanishing gradient problem. Note that our hourglass

structure does not depend on the specific graph convolu-

tion layer, so arbitrary graph convolution operation can be

implemented on our model, such as the three introduced in

Sect. 2.

Graph U-Nets proposed by Gao et al. [9] is the closest

work to our architecture, but differs in two ways. First, [9]

uses an input-related dynamic pooling operation so that dif-

ferent pooled skeletal structures are obtained depending on

the input. Our method utilizes a priori knowledge of human

skeletal structure, and this approach is more suitable for fea-

ture extraction of specific skeletal structures while ensuring

the stability of pooling. Second, we use more channels at

relatively low scales of skeleton representation to reduce

information loss due to scale changes and make our archi-

tecture more expressive, while Graph U-Nets uses the same

number of channels at all scales.

3.2. Multiscale and Multilevel Features

Features are extracted at multi-scales as the hourglass

module processes the information across three skeletal

structures. As multi-scale features that can represent infor-

mation on the spatial aspect of the graph, we believe that

multi-level features in terms of the depth of latent space

can also bring valuable information to the final prediction.

Specifically, we integrate the intermediate features at each

depth level of the network for the final 3D human pose es-

timation. As shown in Fig. 3, we use the spatial 1x1 con-

volution to reduce the channels of intermediate features and

concatenate them into an overall feature representation fcat.

For the architecture that stacks n hourglass modules, the

overall feature can be represented as:

fcat = Concat(f1, f2, · · · , fn) ∈ R
K×C , fi ∈ R

K×
C

n .

(1)

Here K is the number of joints, and C represents the num-

ber of input and output channels of the hourglass module
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(C = 64 in our experiments). Then, we follow the Squeeze-

and-Excitation block (SE block) [12] to enhance important

semantic information in multi-level features. SE block com-

putes the channel-wise weights of the overall feature, and

since the overall feature is concatenated by multi-level fea-

tures along the channel axis, this block enables the model to

extract the more semantically meaningful feature represen-

tations among each intermediate feature. Specifically, first

we use global average pooling to transform the overall fea-

ture fcat ∈ R
K×C into a channel-wise statistics z ∈ R

C ;

then we use z to calculate the channel-wise dependency s

as follows:

s = Sigmoid(W2 ReLU(W1z)). (2)

Here W1 ∈ R
C

r
×C , W2 ∈ R

C×
C

r , and r indicates reduc-

tion ratio (r = 8 in our experiments). Finally, the features

of each channel are weighted by s as follows.

f̃cat = fcat ⊙ s, (3)

The output feature of SE block f̃cat is then fed to the

output layer for final prediction.

3.3. Network Architecture

As in previous works [31, 30], our backbone network

consists of the proposed graph hourglass module stacked.

The input 2D joint information is first mapped to the la-

tent feature space via a pre-processing graph convolution

layer. The features that through the hourglass module are

fed into the 1x1 convolution layer to be transformed into

intermediate features, and also passed to the next hourglass

module, except the last one. All the intermediate features

are concatenated into the final feature, and the SE block ad-

justs its channel-wise weights, and which is then fed into the

output convolution layer and mapped to the output space.

Our overall network structure is shown in Fig. 3.

In the following experiments, our model uses

PreAggr [23] as the graph convolution layer, with 4-

stacking hourglass approaches and latent space of 64

channels.

4. Experiments

In this section, we first describe the experimental setup

for 2D-to-3D human pose estimation tasks. Next, we intro-

duce the dataset used and its evaluation protocols. Then sev-

eral ablation studies are conducted regarding the proposed

architecture. Finally, we show our experimental results and

comparisons with state-of-the-art methods.

4.1. 2Dto3D human pose estimation

Our goal is to predict 3D joint positions in the camera

coordinate system with given 2D joint positions in the pixel

Multi-level	Features

Multi-scale	Features

Figure 4. Comparison of the model architecture. Top: Most used

Sequential Residual blocks architecture (SeqRes) for GCN-based

2D-to-3D human pose estimation [23, 48, 7]. The rectangles rep-

resent the graph convolution layers. Bottom: Proposed Graph

Stacked Hourglass Networks architecture. Multi-scale, multi-level

features are indicated in the figure. Refer to Fig. 3 for detailed ar-

chitecture.

coordinate system. Specifically, 2D joints consisting of K

nodes are described by x ∈ R
K×2, the corresponding 3D

joints are y ∈ R
K×3. The model aims to learn a map-

ping f∗ : RK×2 → R
K×3 that minimizes the errors over a

dataset containing N poses.

f∗ = argmin
f

1

N

N∑

i=1

L (f(xi),yi) . (4)

In this study, Mean Squared Error (MSE) is used as a

loss function L for training.

4.2. Datasets and Evaluation Protocols

Datasets. The Human3.6M dataset [15] is the most

widely used dataset in the 3D human pose estimation tasks.

It uses motion captures to obtain the 3D pose information

of the subjects and 4 cameras with different orientations

to record the corresponding video image information. The

provided camera parameters allow us to obtain the ground

truth of the corresponding 2D joint coordinates in each im-

age frame. The dataset provides 3.6 million images by

recording 11 professional actors performing 15 different ac-

tions, such as eating, walking, etc. In the following experi-

ments, we mainly use the Human3.6M for training and test-

ing. The MPI-INF-3DHP test set [28] provides images in

three different scenarios: studio with a green screen (GS),

studio without green screen (noGS) and outdoor scene (Out-

door). We use this dataset to test the generalization capabil-

ities of our proposed architecture.

Evaluation protocols. For the Human3.6M, There are

two evaluation protocols used in previous works [27, 48,

23, 7]. Protocol #1 uses the Mean Per Joint Position Er-

ror (MPJPE) in millimeter as evaluation metric, which cal-

culates the Euclidean distance error between the predic-
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Method params MPJPE (mm)

gPool/gUnpool [9] 3.70M 40.6

SAGPool [18]/gUnpool [9] 3.70M 41.5

w/o Pool/Unpool 6.86M 38.2

Skeletal Pool/Unpool 3.70M 35.8

Table 1. Ablation study of pool/unpool operation. Various meth-

ods of graph pool/unpool are used, and the method that remove the

pool/unpool layer is also added for comparison.

Method params MPJPE (mm)

No ML-F 3.70M 38.0

ML-F w/o SE block 3.70M 37.1

ML-F w/ SE block (Ours) 3.70M 35.8

Table 2. Ablation study of multi-level features (ML-F). With al-

most the same number of parameters, our proposed approach using

multi-level features with SE block achieves the best results.

tion and the ground truth after the origin (pelvis) align-

ment. Protocol #2 aligns the prediction with the ground

truth by rigid transformation and then calculates the error.

In this study, we use Protocol #1 to evaluate our approach

since performance under both protocols is usually consis-

tent and Protocol #1 is more appropriate for our experimen-

tal setup. For the MPI-INF-3DHP test set, we follow previ-

ous works [26, 7] and use 3D-PCK and AUC as evaluation

metrics.

4.3. Implementation Details

Our implementation follows the settings of previous

works [27, 48, 23]. As introduced in [35], we normalize

the coordinates of the 2d and 3d joints and align the root

joint (pelvis) to the origin.

In our experiments, we use a 4-stacked hourglass archi-

tecture. Previous works typically use 128 as the number

of channels [48, 7, 23], but due to the relative complexity

of our model architecture, we use 64 channels to keep the

number of parameters at the same scale as previous works.

We use Adam [16] as the optimizer with an initial learn-

ing rate set to 0.0001 and decay by 0.92 per 20,000 itera-

tions. We use a mini-batch size of 256. Since the learn-

ing of graph-structured data is very prone to overfitting, we

apply Dropout [39] with a dropout probability of 0.25 to

all graph convolutional layers within the hourglass module.

The entire training follows an end-to-end fashion.

4.4. Ablation Study

Pooling and Unpooling. Pooling and unpooling layers

play an important role in the hourglass module.

Due to the graph structure’s irregularity, there is no con-

sistent way to pool graph-structured data, so we compare

the impact of different pooling methods on model perfor-

Method params MPJPE (mm)

Vanilla [17] SeqRes 0.14M 94.4

GraphSH 0.22M 59.1

SemGConv [48] SeqRes 0.27M 52.5

GraphSH 0.44M 39.2

PreAggr [23] SeqRes 4.22M 37.8

GraphSH 3.70M 35.8

Table 3. Comparison of Sequential Residual blocks (SeqRes)

(Fig. 4 (Top)) and Graph Stacked Hourglass (GraphSH) architec-

tures on 2d-to-3d human pose estimation errors. Three different

graph convolution operations are used.

mance. Here we compare the performance of three graph

pooling operations: gPool [9], SAGPool [18], and our pro-

posed Skeletal Pool.

The first two pooling methods take the same idea: cal-

culate the scores of each node by some operation, and keep

the part of the node with the higher score. Such pooling

methods are initially designed for more general graph pool-

ing situations, with the benefit that pooling operations can

be defined for different graph-structured inputs. However,

since the human skeleton used in this study has a fixed graph

structure, it does not take advantage of the benefits of these

pooling approaches. Moreover, since these pooling meth-

ods are input-dependent, different subgraphs are generated

based on different inputs, which not only introduces compu-

tational complexity but also makes it difficult for the model

to learn valuable features stably.

Compared to the above pooling methods that require

computation, our pooling approach is more like methods

that focus on geometric information of graph structure

(e.g., edges, nodes), such as mesh sampling [36] or edge

contraction [10] in mesh convolution. Specifically, We fol-

low the node grouping method in [48] to perform pooling

operations on paired nodes. In their work, the features lose

their graph structure after pooling. We extend their group-

ing concept by designing three subgraph structures of the

human body consisting of 16, 8, and 4 nodes, respectively.

Such a pooling approach not only exploits the topology of

the human skeleton, which is more interpretable relative to

other pooling approaches, but also, due to its simplicity,

greatly reduces the computational complexity of the pool-

ing layer and improves the speed of training and inference.

Moreover, the two pooling methods mentioned above com-

pletely discard some nodes’ information, resulting in some

degree of information loss. Instead, our proposed Skeletal

Pool refers to the concept of image pooling, which performs

a maximum pooling operation between two nodes, thus can

summarize the information of both nodes.

Regarding unpooling, in Graph U-Net [9], the gUnpool

operation assigns zero vectors to nodes that are not selected

at the time of pooling, which loses much valuable infor-
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Protocol #1 Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SittingD. Smoke Wait WalkD. Walk WalkT. Avg.

Lee et al. [19] ECCV’18 (†) 40.2 49.2 47.8 52.6 50.1 75.0 50.2 43.0 55.8 73.9 54.1 55.6 58.2 43.3 43.3 52.8

Pavllo et al. [35] CVPR’19 (†) 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8

Cai et al. [4] ICCV’19 (†) 44.6 47.4 45.6 48.8 50.8 59.0 47.2 43.9 57.9 61.9 49.7 46.6 51.3 37.1 39.4 48.8

Xu et al. [45] CVPR’20 (†) 37.4 43.5 42.7 42.7 46.6 59.7 41.3 45.1 52.7 60.2 45.8 43.1 47.7 33.7 37.1 45.6

Martinez et al. [27] ICCV’17 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

Tekin et al. [44] ICCV’17 54.2 61.4 60.2 61.2 79.4 78.3 63.1 81.6 70.1 107.3 69.3 70.3 74.3 51.8 63.2 69.7

Sun et al. [41] ICCV’17 (+) 52.8 54.8 54.2 54.3 61.8 67.2 53.1 53.6 71.7 86.7 61.5 53.4 61.6 47.1 53.4 59.1

Yang et al. [47] CVPR’18 (+) 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6

Fang et al. [8] AAAI’18 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4

Pavlakos et al. [33] CVPR’18 (+) 48.5 54.4 54.5 52.0 59.4 65.3 49.9 52.9 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2

Zhao et al. [48] CVPR’19 48.2 60.8 51.8 64.0 64.6 53.6 51.1 67.4 88.7 57.7 73.2 65.6 48.9 64.8 51.9 60.8

Sharma et al. [38] ICCV’19 48.6 54.5 54.2 55.7 62.2 72.0 50.5 54.3 70.0 78.3 58.1 55.4 61.4 45.2 49.7 58.0

Ci et al. [7] ICCV’19 (+)(∗) 46.8 52.3 44.7 50.4 52.9 68.9 49.6 46.4 60.2 78.9 51.2 50.0 54.8 40.4 43.3 52.7

Liu et al. [23] ECCV’20 46.3 52.2 47.3 50.7 55.5 67.1 49.2 46.0 60.4 71.1 51.5 50.1 54.5 40.3 43.7 52.4

Ours 45.2 49.9 47.5 50.9 54.9 66.1 48.5 46.3 59.7 71.5 51.4 48.6 53.9 39.9 44.1 51.9

Table 4. Quantitative evaluation results using MPJPE in millimeter on Human3.6M [15] under Protocol #1, no rigid alignment or transform

applied in post-processing. CPN [6] detections 2D keypoints are used as input. (+) uses extra data from MPII [2]. (†) uses temporal

information. Best in bold.

Protocol #1 Direct. Discuss Eating Greet Phone Photo Pose Purch. Sitting SittingD. Smoke Wait WalkD. Walk WalkT. Avg.

Zhou et al. [50] ICCV’19 (+) 34.4 42.4 36.6 42.1 38.2 39.8 34.7 40.2 45.6 60.8 39.0 42.6 42.0 29.8 31.7 39.9

Ci et al. [7] ICCV’19 (+)(∗) 36.3 38.8 29.7 37.8 34.6 42.5 39.8 32.5 36.2 39.5 34.4 38.4 38.2 31.3 34.2 36.3

Martinez et al. [27] ICCV’17 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8

Zhao et al. [48] CVPR’19 37.8 49.4 37.6 40.9 45.1 41.4 40.1 48.3 50.1 42.2 53.5 44.3 40.5 47.3 39.0 43.8

Liu et al. [23] ECCV’20 36.8 40.3 33.0 36.3 37.5 45.0 39.7 34.9 40.3 47.7 37.4 38.5 38.6 29.6 32.0 37.8

Ours 35.8 38.1 31.0 35.3 35.8 43.2 37.3 31.7 38.4 45.5 35.4 36.7 36.8 27.9 30.7 35.8

Table 5. Quantitative evaluation results using MPJPE in millimeter on Human3.6M [15] under Protocol #1, no rigid alignment or transform

applied in post-processing. Ground truth 2D keypoints are used as input. (+) uses extra data from MPII [2]. (∗) uses pose scales in both

training and testing. Best in bold.

mation and results in more sparse features. Experimental

results show that such an unpooling operation is not suit-

able for understanding structures with few nodes like the

human skeleton. On the contrary, our proposed Skeletal

Unpool operation copies and assigns the node features in

the lower-scale graph representation to the corresponding

two nodes in the higher-scale graph, passes them into the

following graph convolutional layer, makes our model have

better representation capability.

We conduct experiments based on three pool/unpool set-

tings, and the results are shown in Table 1. We also add a

comparison that removes all the pool/unpool layers to val-

idate the importance of the proposed skeletal pool/unpool

approaches. Note that we use ground truth 2D joints as in-

put in this and the following ablation experiments to elimi-

nate the influence of the 2D human pose detector.

Multi-scale and Multi-level Features. Multi-scale fea-

ture extraction is achieved by pooling and unpooling in the

hourglass module that transforms features across three dif-

ferent scales. For comparison, we remove all pooling and

unpooling layers in our architecture, which means that the

features are always processed at the highest scale. The re-

sults in Table 1 show that multi-scale features derived from

skeletal pooling and unpooling can improve model perfor-

mance. For multi-level features, our architecture concate-

nates each level’s intermediate features and feeds them into

the SE block to obtain the final overall feature. We com-

pare three different settings: (1) No multi-level features are

used. At this point the model simply connect all the hour-

glass modules sequentially, and the last hourglass modules

is connected to the final output layer of 1x1 convolution.

(2) Remove the SE block that calculates the weights of each

intermediate feature. (3) Our proposed GraphSH architec-

ture. Results are shown in Table 2.

Stacked Hourglass Architecture. To verify that our ar-

chitecture has better performance than the simple Sequen-

tial Residual blocks (denoted as SeqRes) in previous works

[48, 23, 7], we use Vanilla Graph Convolution, Seman-

tic Graph Convolution (SemGConv), and Pre-aggregation

Graph Convolution (PreAggr) introduced in Sect. 2 as con-

volution layers in our GraphSH architecture, respectively,

and compare them to the corresponding SeqRes models. To

make the comparison fair, we reduce the number of chan-

nels in the convolution to 64, so that the overall number of

parameters is at the same scale as the SeqRes model. Re-

sults are shown in Table 3.

The results show that the model using our architecture

performs better even though we use fewer channels than

other GCN-based approaches. Our architecture does not

rely on specific graph convolution layers, which suggests
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Figure 5. Qualitative results of our method on Human3.6M [15].

that any graph convolution layers for 3D human pose esti-

mation can be applied to our architecture and improve its

performance compared to the SeqRes architecture.

Moreover, our hourglass module can be seen as a well-

integrated, high-performance graph convolution module,

indicating that our hourglass module is general and can be

easily extended to other tasks using graph convolution, such

as action recognition [46, 20], motion prediction [21], etc.

4.5. Comparison with the StateoftheArt

We use two types of 2D joint detection data for eval-

uation: Cascaded Pyramid Network (CPN) [6] detections

and ground truth 2D keypoints, the results are shown in Ta-

ble 4 and Table 5, respectively. Among the other methods,

some use temporal information [19, 35, 4, 45], some use ad-

ditional data for training [41, 47, 33], and some use 3D pose

scale in both training and testing [7]. These results suggest

that our approach outperforms the state-of-the-art.

Table 5 show that when given precise 2D joint informa-

tion, the performance improvement of our model is signifi-

cant, outperforming other GCN-based methods by a large

margin. Therefore, we believe that in combination with

methods that refine detected 2D joint information, such

as deep kinematic analysis [45], the performance of our

method on noisy 2D joints can be enhanced even more.

Compared to the second-place method [23] (4.38M), our

model uses fewer parameters (3.70M), showing that our ar-

chitecture can extract more important features, which pro-

vides a better understanding of the human pose.

To evaluate the generalization capabilities of our ap-

Training data GS noGS Outdoor
All

(PCK)
All

(AUC)

Martinez [27] H36M 49.8 42.5 31.2 42.5 17.0

Mehta [28] H36M 70.8 62.3 58.8 64.7 31.7

Yang [47] H36M+MPII - - - 69.0 32.0

Zhou [51] H36M+MPII 71.1 64.7 72.7 69.2 32.5

Luo [26] H36M 71.3 59.4 65.7 65.6 33.2

Ci [7] H36M 74.8 70.8 77.3 74.0 36.7

Zhou [50] H36M+MPII 75.6 71.3 80.3 75.3 38.0

Ours H36M 81.5 81.7 75.2 80.1 45.8

Table 6. Results on the MPI-INF-3DHP test set [28].

proach to domain shift, we apply the model trained on the

Human3.6M to the MPI-INF-3DHP test set. Results are

shown in Table 6. Although we train the model using only

the Human3.6M, our approach outperforms the others, in-

dicating that our architecture has strong generalization ca-

pabilities to unseen datasets.

The qualitative results of our method are shown in Fig. 5.

5. Conclusions

We present a novel architecture for 2D-to-3D human

pose estimation, the Graph Stacked Hourglass Networks

(GraphSH). With our unique skeletal pooling and skeletal

unpooling scheme, together with the proposed architecture

which has powerful multi-scale and multi-level feature ex-

traction capabilities on graph-structured data, our method

achieves accurate 2D-to-3D human pose estimation outper-

forming the state-of-the-art. As future work, we hope to

introduce temporal multi-frame features in our architecture

for further improvement.

16112



References

[1] A. Agarwal and B. Triggs. Recovering 3d human pose from

monocular images. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 28(1):44–58, 2006. 2

[2] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. 2d

human pose estimation: New benchmark and state of the art

analysis. 2014 IEEE Conference on Computer Vision and

Pattern Recognition, pages 3686–3693, 2014. 7

[3] G. Bertasius, J. Shi, and L. Torresani. Deepedge: A multi-

scale bifurcated deep network for top-down contour detec-

tion. In 2015 IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), pages 4380–4389, 2015. 3

[4] Yujun Cai, Liuhao Ge, Jun Liu, Jianfei Cai, Tat-Jen Cham,

Junsong Yuan, and Nadia Magnenat Thalmann. Exploit-

ing spatial-temporal relationships for 3d pose estimation via

graph convolutional networks. In Proceedings of the IEEE

International Conference on Computer Vision, pages 2272–

2281, 2019. 7, 8

[5] Zhaowei Cai, Quanfu Fan, Rogerio S. Feris, and Nuno Vas-

concelos. A unified multi-scale deep convolutional neural

network for fast object detection. In Bastian Leibe, Jiri

Matas, Nicu Sebe, and Max Welling, editors, Computer Vi-

sion – ECCV 2016, pages 354–370, Cham, 2016. Springer

International Publishing. 1

[6] Y. Chen, Z. Wang, Y. Peng, Z. Zhang, G. Yu, and J. Sun. Cas-

caded pyramid network for multi-person pose estimation. In

2018 IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, pages 7103–7112, 2018. 7, 8

[7] Hai Ci, Chunyu Wang, Xiaoxuan Ma, and Yizhou Wang. Op-

timizing network structure for 3d human pose estimation. In

International Conference on Computer Vision, pages 915–

922, 2019. 1, 2, 5, 6, 7, 8

[8] Hao-Shu Fang*, Yuanlu Xu*, Wenguan Wang, Xiaobai Liu,

and Song-Chun Zhu. Learning pose grammar to encode hu-

man body configuration for 3d pose estimation. In AAAI

Conference on Artificial Intelligence (AAAI), 2018. 2, 7

[9] Hongyang Gao and Shuiwang Ji. Graph u-nets. In Interna-

tional Conference on Machine Learning, pages 2083–2092,

2019. 3, 4, 6

[10] Michael Garland and Paul S. Heckbert. Surface simplifi-

cation using quadric error metrics. In Proceedings of the

24th Annual Conference on Computer Graphics and Inter-

active Techniques. ACM Press/Addison-Wesley Publishing

Co., 1997. 6

[11] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep

residual learning for image recognition. 2016 IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

pages 770–778, 2016. 4

[12] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation net-

works. In 2018 IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 7132–7141, 2018. 4, 5

[13] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In Francis R. Bach and David M. Blei, editors,

ICML, volume 37 of JMLR Workshop and Conference Pro-

ceedings, pages 448–456. JMLR.org, 2015. 3

[14] C. Ionescu, F. Li, and C. Sminchisescu. Latent structured

models for human pose estimation. In 2011 International

Conference on Computer Vision, pages 2220–2227, 2011. 2

[15] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian

Sminchisescu. Human3. 6m: Large scale datasets and pre-

dictive methods for 3d human sensing in natural environ-

ments. IEEE transactions on pattern analysis and machine

intelligence, 36(7):1325–1339, 2013. 5, 7, 8

[16] Diederick P Kingma and Jimmy Ba. Adam: A method

for stochastic optimization. In International Conference on

Learning Representations (ICLR), 2015. 6

[17] Thomas N. Kipf and Max Welling. Semi-Supervised Classi-

fication with Graph Convolutional Networks. In Proceedings

of the 5th International Conference on Learning Representa-

tions, ICLR ’17, 2017. 2, 6

[18] J. Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph

pooling. In ICML, 2019. 3, 6

[19] K. Lee, I. Lee, and S. Lee. Propagating lstm: 3d pose esti-

mation based on joint interdependency. In ECCV, 2018. 7,

8

[20] Maosen Li, Siheng Chen, Xu Chen, Ya Zhang, Yanfeng

Wang, and Qi Tian. Actional-structural graph convolutional

networks for skeleton-based action recognition. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2019. 8

[21] Yan-Ran Li, Lingteng Qiu, L. Wang, Fangde Liu, Z. Wang,

Sebastian Iulian Poiana, Xiaosong Yang, and J. Zhang.

Densely connected gcn model for motion prediction. Com-

puter Animation and Virtual Worlds, 31, 2020. 8

[22] T. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S.

Belongie. Feature pyramid networks for object detection.

In 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 936–944, 2017. 1, 3

[23] Kenkun Liu, Rongqi Ding, Zhiming Zou, Le Wang, and Wei

Tang. A Comprehensive Study of Weight Sharing in Graph

Networks for 3D Human Pose Estimation. European Con-

ference on Computer Vision (ECCV), pages 1–17, 2020. 1,

2, 5, 6, 7, 8

[24] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott E. Reed, Cheng-Yang Fu, and Alexander C.

Berg. SSD: single shot multibox detector. In Bastian Leibe,

Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer

Vision - ECCV 2016 - 14th European Conference, Amster-

dam, The Netherlands, October 11-14, 2016, Proceedings,

Part I, volume 9905 of Lecture Notes in Computer Science,

pages 21–37. Springer, 2016. 3

[25] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In 2015 IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

pages 3431–3440, 2015. 3

[26] Chenxu Luo, Xiao Chu, and Alan Yuille. Orinet: A fully

convolutional network for 3d human pose estimation. In

BMVC, 2018. 6, 8

[27] J. Martinez, Rayat Hossain, J. Romero, and J. Little. A sim-

ple yet effective baseline for 3d human pose estimation. 2017

IEEE International Conference on Computer Vision (ICCV),

pages 2659–2668, 2017. 1, 2, 5, 6, 7, 8

16113



[28] Dushyant Mehta, Helge Rhodin, Dan Casas, Pascal

Fua, Oleksandr Sotnychenko, Weipeng Xu, and Christian

Theobalt. Monocular 3d human pose estimation in the wild

using improved cnn supervision. In 3D Vision (3DV), 2017

Fifth International Conference on. IEEE, 2017. 5, 8

[29] V. Nair and Geoffrey E. Hinton. Rectified linear units im-

prove restricted boltzmann machines. In ICML, 2010. 3

[30] Alejandro Newell, Zhiao Huang, and Jia Deng. Associa-

tive embedding: End-to-end learning for joint detection and

grouping. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-

lach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,

Advances in Neural Information Processing Systems, vol-

ume 30, pages 2277–2287. Curran Associates, Inc., 2017.

3, 5

[31] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour-

glass networks for human pose estimation. In Bastian Leibe,

Jiri Matas, Nicu Sebe, and Max Welling, editors, Computer

Vision - ECCV 2016 - 14th European Conference, Amster-

dam, The Netherlands, October 11-14, 2016, Proceedings,

Part VIII, volume 9912 of Lecture Notes in Computer Sci-

ence, pages 483–499. Springer, 2016. 3, 5

[32] Takuya Ohashi, Yosuke Ikegami, Kazuki Yamamoto, Wataru

Takano, and Yoshihiko Nakamura. Video Motion Capture

from the Part Confidence Maps of Multi-Camera Images by

Spatiotemporal Filtering Using the Human Skeletal Model.

In IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2018. 2

[33] G. Pavlakos, X. Zhou, and K. Daniilidis. Ordinal depth su-

pervision for 3d human pose estimation. In 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 7307–7316, 2018. 7, 8

[34] Georgios Pavlakos, Xiaowei Zhou, Konstantinos G Derpa-

nis, and Kostas Daniilidis. Coarse-to-fine volumetric predic-

tion for single-image 3D human pose. In Computer Vision

and Pattern Recognition (CVPR), 2017. 2

[35] Dario Pavllo, Christoph Feichtenhofer, David Grangier, and

Michael Auli. 3d human pose estimation in video with tem-

poral convolutions and semi-supervised training. In Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2019. 6, 7, 8

[36] Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and

Michael J. Black. Generating 3D faces using convolutional

mesh autoencoders. In European Conference on Computer

Vision (ECCV), volume Lecture Notes in Computer Science,

vol 11207, pages 725–741. Springer, Cham, Sept. 2018. 6

[37] O. Ronneberger, P.Fischer, and T. Brox. U-net: Convolu-

tional networks for biomedical image segmentation. In Med-

ical Image Computing and Computer-Assisted Intervention

(MICCAI), volume 9351 of LNCS, pages 234–241. Springer,

2015. 3

[38] S. Sharma, P. T. Varigonda, P. Bindal, A. Sharma, and A.

Jain. Monocular 3d human pose estimation by genera-

tion and ordinal ranking. In 2019 IEEE/CVF International

Conference on Computer Vision (ICCV), pages 2325–2334,

2019. 7

[39] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya

Sutskever, and Ruslan Salakhutdinov. Dropout: A simple

way to prevent neural networks from overfitting. Journal of

Machine Learning Research, 15(56):1929–1958, 2014. 6

[40] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep

high-resolution representation learning for human pose esti-

mation. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 5693–5703, 2019. 3

[41] X. Sun, J. Shang, S. Liang, and Y. Wei. Compositional hu-

man pose regression. In 2017 IEEE International Conference

on Computer Vision (ICCV), pages 2621–2630, 2017. 2, 7, 8

[42] Wataru Takano and Yoshihiko Nakamura. Action database

for categorizing and inferring human poses from video se-

quences. Robotics and Autonomous Systems, 70:116 – 125,

2015. 2

[43] Bugra Tekin, Isinsu Katircioglu, Mathieu Salzmann, Vincent

Lepetit, and Pascal Fua. Structured prediction of 3d human

pose with deep neural networks. In Richard C. Wilson, Ed-

win R. Hancock, and William A. P. Smith, editors, Proceed-

ings of the British Machine Vision Conference 2016, BMVC

2016, York, UK, September 19-22, 2016. BMVA Press, 2016.

2

[44] Bugra Tekin, Pablo Marquez-Neila, Mathieu Salzmann, and

Pascal Fua. Learning to fuse 2d and 3d image cues for

monocular body pose estimation. ICCV, pages 3961–3970,

2017. 2, 7

[45] Jingwei Xu, Zhenbo Yu, Bingbing Ni, Jiancheng Yang, Xi-

aokang Yang, and Wenjun Zhang. Deep kinematics analysis

for monocular 3d human pose estimation. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), June 2020. 7, 8

[46] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial tempo-

ral graph convolutional networks for skeleton-based action

recognition. In AAAI, 2018. 8

[47] W. Yang, W. Ouyang, X. Wang, J. Ren, H. Li, and X. Wang.

3d human pose estimation in the wild by adversarial learn-

ing. In 2018 IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 5255–5264, 2018. 2, 7, 8

[48] Long Zhao, Xi Peng, Yu Tian, Mubbasir Kapadia, and Dim-

itris N. Metaxas. Semantic graph convolutional networks for

3d human pose regression. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 3425–3435,

2019. 1, 2, 5, 6, 7

[49] Qijie Zhao, Tao Sheng, Yongtao Wang, Zhi Tang, Ying Chen,

Ling Cai, and Haibing Ling. M2det: A single-shot ob-

ject detector based on multi-level feature pyramid network.

In The Thirty-Third AAAI Conference on Artificial Intelli-

gence,AAAI, 2019. 3

[50] K. Zhou, Xiaoguang Han, N. Jiang, Kui Jia, and Jiangbo Lu.

Hemlets pose: Learning part-centric heatmap triplets for ac-

curate 3d human pose estimation. 2019 IEEE/CVF Interna-

tional Conference on Computer Vision (ICCV), pages 2344–

2353, 2019. 7, 8

[51] Xingyi Zhou, Qixing Huang, Xiao Sun, Xiangyang Xue, and

Yichen Wei. Towards 3d human pose estimation in the wild:

A weakly-supervised approach. In The IEEE International

Conference on Computer Vision (ICCV), Oct 2017. 8

16114


