
Inferring CAD Modeling Sequences Using Zone Graphs

Xianghao Xu

Brown University

Wenzhe Peng

MIT

Chin-Yi Cheng

Autodesk Research

Karl D.D. Willis

Autodesk Research

Daniel Ritchie

Brown University

Abstract

In computer-aided design (CAD), the ability to “reverse

engineer” the modeling steps used to create 3D shapes is

a long-sought-after goal. This process can be decomposed

into two sub-problems: converting an input mesh or point

cloud into a boundary representation (or B-rep), and then

inferring modeling operations which construct this B-rep.

In this paper, we present a new system for solving the sec-

ond sub-problem. Central to our approach is a new geo-

metric representation: the zone graph. Zones are the set

of solid regions formed by extending all B-Rep faces and

partitioning space with them; a zone graph has these zones

as its nodes, with edges denoting geometric adjacencies be-

tween them. Zone graphs allow us to tractably work with

industry-standard CAD operations, unlike prior work using

CSG with parametric primitives. We focus on CAD pro-

grams consisting of sketch + extrude + Boolean operations,

which are common in CAD practice. We phrase our prob-

lem as search in the space of such extrusions permitted by

the zone graph, and we train a graph neural network to

score potential extrusions in order to accelerate the search.

We show that our approach outperforms an existing CSG

inference baseline in terms of geometric reconstruction ac-

curacy and reconstruction time, while also creating more

plausible modeling sequences.

1. Introduction

Many real-world 3D objects begin their existence as

parametric CAD programs. If one could recover such pro-

grams for everyday objects, it would enable powerful edit-

ing and re-purposing abilities, with many applications in

mechanical and industrial design. As such, it’s unsurpris-

ing that this problem has become a popular research topic

in the graphics, vision, and machine learning communities,

with multiple recent papers examining how to infer CAD-

like programs for an input shape [22, 7, 30, 8, 16].

This work was done partially during Xianghao Xu and Wenzhe Peng’s

internship at Autodesk Research

Input B-rep

Step 1 Step 2 Step 3 Step 4

Zone Graph

Figure 1: A solid shape (top-left) can be decomposed into a

graph of zones which make up its interior volume and sur-

rounding space (top-right). This representation permits ef-

ficient search for modeling sequences that reconstruct the

shape, using industry standard modeling operations (bot-

tom). Light red lines in the zone graph indicate connections

between zone nodes. In the bottom modeling sequence,

green denotes sketch + extrude + union and red denotes

sketch + extrude + difference.

One property shared by these works is their use of con-

structive solid geometry (CSG) as a modeling language. In

CSG, shapes are formed by combining primitive solids (e.g.

spheres, cylinders, boxes) with Boolean union, intersection,

and difference. Its small library of parametric primitive

shapes makes it appealing for CAD program inference, as

this reduces the search space of possible programs.

Unfortunately, parametric primitive CSG is not the mod-

eling language used by CAD practitioners today. Instead,

modern CAD workflows use feature-based modeling, in

which a solid object is created by iteratively adding fea-

tures such as holes, slots, or bosses [13]. Feature creation is

typically performed via operations on surfaces, as these are

intuitive for users to reason about: for instance, creating a

slot in the surface of an object by sketching the profile of the

6062

slot and then specifying how deep it goes. Throughout this

process, the object’s geometry is stored as a boundary rep-

resentation, or B-rep, which is a watertight assembly of sur-

face patches which enclose the object’s solid volume [27].

Feature-based modeling with B-reps supports Boolean op-

erations between solids, making it strictly more expressive

than parametric primitive CSG. This expressiveness comes

at a cost for program inference, though, as the space of

feature-based modeling programs is much larger.

How can we enable tractable inference of feature-based

CAD programs? We first note another common property

of prior work: solving CAD program inference “in one

shot,” going directly from input unstructured geometry to

a CAD program. However, this problem actually decom-

poses into two sub-problems: (1) convert the input geom-

etry into a B-rep, (2) infer a CAD program which gener-

ates that B-rep. The first sub-problem is of huge impor-

tance to the CAD industry, where it is known as reverse

engineering. Many semi-automatic commercial tools ex-

ist [15, 14] and recent work has begun to leverage learn-

ing based approaches [23, 26]. The second problem is sup-

ported by all major CAD software using a rule-based ap-

proach, e.g. [1, 24]. However, such systems often require

active input from a human designer, can fail to automati-

cally infer earlier steps of longer modeling sequences, and

struggle to generalize beyond pre-defined rules.

In this paper, we show that assuming a B-rep as input

allows us to tractably attack the problem of automatically

inferring industry-standard, feature-based CAD programs.

Specifically, it allows us to use a new geometry represen-

tation that enables tractable program search. Extending all

surface faces of the input B-rep into infinite surfaces and

then partitioning space with those surfaces results in an ar-

rangement of solid zones. The spatial connectivity of these

zones forms a data structure which we call the zone graph

(Figure 1, top-right). Searching for a CAD program that

reconstructs the input shape then becomes a search for a

sequence of modeling operations that fill in all the zones

which are inside the input B-rep (Figure 1, bottom). This

perspective reduces the search space of possible programs

from an infinite set (a space of programs with many con-

tinuous parameters) to a finite set (the set of operation se-

quences that fill particular zones).

In this paper, we focus on modeling via sketch + ex-

trude + Boolean operations, which are commonly-used in

CAD workflows to create new solid masses and cut holes

and slots out of existing ones. In addition, we learn how

to guide the search using a large dataset of CAD model-

ing sequences. We train a graph neural network that takes

the zone graph as input and predicts scores for different

candidate modeling operations, allowing search to focus on

higher-scoring options first. This allows our approach to in-

fer modeling sequences which use meaningful design pat-

terns without active guidance from a human designer.

In experiments on real-world CAD shapes, our zone

graph method outperforms a recent state-of-the-art CSG

inference method: it achieves better reconstruction accu-

racy by inferring more plausible programs that use industry-

standard CAD operations.

In summary, the contributions of this paper are:

• The zone graph representation of B-rep solids, which

reduces CAD program search space to a finite size.

• A search algorithm for inferring CAD modeling se-

quences from zone graphs.

• A graph neural network for learning to score candidate

CAD operations during program search.

2. Related Work

Space Partitioning The zone graph is a partition of space

formally known as an arrangement of surfaces [12]. Use of

spatial partitioning data structures is common in computer

graphics to accelerate spatial queries, particularly in ray

tracing [3]. A more recent body of work has explored space

partitioning for geometry reconstruction tasks. Polyfit [18]

performs surface reconstruction from point clouds by ex-

tracting and intersecting planar primitives; other recent re-

construction works use a similar method [10, 2]. Learning-

based methods have also begun to use space partitioning

representations [5, 6]. BSP-Net [5] uses binary space par-

titioning to build up a constructive solid geometry (CSG)

tree for compact mesh generation. The zone graph repre-

sentation differs from prior work as it builds up an incidence

graph of an arrangement of parametric surfaces and consid-

ers curved surfaces in addition to planar surfaces. We also

apply zone graphs to a different reconstruction task: finding

a sequence of modeling operations to reproduce a shape.

CAD Reconstruction CAD reconstruction involves re-

covering a sequence of CAD modeling operations from

meshes, point clouds, or B-rep models. Such sequences are

critical for preserving editability of CAD models, enabling

downstream edits, such as model simplification for simula-

tion, or adjusting tolerances for manufacturing. Although

CAD reconstruction has been the subject of significant re-

search [21], it remains a challenging problem due to the

diverse ways that CAD models are constructed. Commer-

cial CAD software uses rule-based feature recognition, of-

ten with user assistance, to detect and remove features such

as holes, pockets, and fillets before re-applying them para-

metrically [1]. This strategy can recover some modeling

operations but may fail to completely rebuild the paramet-

ric modeling history from the first step. We focus on a fully

automatic approach that can recover the entire construction

sequence in a manner consistent with human designs.

CAD reconstruction can also be framed as a program

synthesis problem. InverseCSG [7] is one example; it uses a

6063

constraint-based program synthesizer to find CSG programs

whose output is consistent with the input geometry. More

recently, learning-based approaches have been developed.

CSGNet [22] leverages a neural network to infer a sequence

of CSG operations on simple primitives such as spheres and

cuboids. Other works in this area [8, 25, 16] also utilize sim-

ple primitives with CSG operations. However, professional

mechanical design tools use a different paradigm, first cre-

ating 2D engineering sketches then lifting them to 3D using

operations such as extrude, revolve, and sweep.

CAD reconstruction is a visual program induction prob-

lem [4]. One common approach for such problems is

neurally-guided search, in which a neural network guides

a search algorithm by prioritizing search options [20, 8, 9].

We also leverage neurally-guided search, developing novel

search proposal and ranking algorithms for zone graphs.

3. Task & Approach

Given a 3D shape specified as a B-rep B,

our goal is to find a sequence of modeling op-

erations [o1,o2, . . . ,on] which reproduce B.

Sketch

Infer Reconstruct

Extrude Sketch Extrude Union

We focus on sketch +

extrude + Boolean op-

erations, in which the

user (a) sketches one

or more closed profile

curves on a plane (b)

extrudes this sketch to

form one or more solid

regions, and (c) ap-

plies the extrusion to

the current partial B-rep by union or difference (see inset).

To solve this problem, we first turn the input B-rep B
into a zone graph G (Section 4). We then search for a se-

quence of operations that reproduces this zone graph by

enumerating and evaluating sketch + extrude + Boolean op-

erations that are consistent with the zone graph (Section 5).

As there may be a large number of such operations, we use a

learned guidance network to prioritize ones that are similar

to those seen in a large dataset of example CAD programs

(Section 5.2). We leverage the recently-released Fusion 360

Gallery reconstruction dataset that provides ground-truth,

human-designed CAD programs created with sketch and

extrude modeling operations [29].

4. The Zone Graph Representation

CAD modeling operates via the addition and removal of

solid volumes to create 3D shapes, using intuitive feature-

based operations. To search for CAD programs that can re-

construct a given target shape, one could explore the space

of all parameterizations of all such modeling operations.

This is a huge search space. Instead, we note that the target

2D

3D

Figure 2: (Left) Input 2D and 3D shapes. (Middle) Shape

decomposition into solid zones. (Right) The zone graph.

shape contains strong “clues” as to the operations used to

create it. For example, suppose that a hole was created in a

shape by subtracting some solid volume. While that volume

is not present in the target, the interior faces of the hole it

created reveal its shape. Our key idea is to formalize this

notion of such “hidden volumes” and then restrict search to

consider only the modeling operations that produce them or

target shape interior volumes.

Our fist step is to construct from each input B-rep B a

spatial data structure G that we call a zone graph (Figure 2).

While we focus on 3D shapes in this paper, zone graphs are

also well-defined in 2D; Figure 2 includes a 2D example for

illustrative purposes. A zone graph in 3D (2D) is a graph

G = (Z, E) whose nodes Z = {Z1, Z2, . . . , Zn} represent

solid regions (areas) called zones and whose edges E rep-

resent surface patches (curves) connecting those regions. A

zone graph has the property that the union of all zones is the

axis-aligned bounding box (AABB) of the input B-rep. In

Figure 2, zones are colored black if they are interior zones

Z• that fill inside the volume enclosed by B, and gray if

they are exterior zones Z�.

Face Extension Zone graph construction begins by ex-

tending faces of B into infinite surfaces that partition space:

• Planar faces are extended into an infinite plane.

• Generalized cylindrical faces are extended along the

face’s direction of zero curvature.

• Spherical faces are extended into a complete sphere.

• Free form faces are not extended, as there is no known

parametric form by which to extend them.

After extension, all faces are clipped by AABB(B).

Simplification The number of zones increases superlin-

early with B’s face count, leading to a larger search space.

It helps to skip face extensions that are not likely to be use-

ful for extrusion-based modeling. We search B for “face

loops,” sets of faces where (a) the faces form a cycle, (b)

6064

Zone Count

F
a

c
e

 C
o

u
n

t

Zone Count

B
u

il
d

 T
im

e

Figure 3: Zone graph construction statistics. (Left) Zone

count vs. B-rep face count. (Right) Zone count vs. zone

graph construction time (in seconds).

the edges shared by each consecutive pair of faces are par-

allel (we call this direction the extrusion direction), and (c)

each face has exactly 4 edges in its outer wire. Faces in a

loop are only extended along their extrusion direction. See

the supplement for details.

Figure 3 visualizes some statistics for zone graphs extracted

from the Fusion 360 Gallery reconstruction dataset [29]. On

the left, we plot zone count against face count. On the right,

we plot zone count against the time required to construct the

zone graph (in seconds). Build time increases linearly with

zone count, with most zone graphs taking under a minute.

The build tests were run on an Intel Core i5-8259U proces-

sor using OpenCASCADE’s general fuse algorithm (GFA)

for solid partitioning via FreeCAD.

Our method can reconstruct 6900/8625 models in the

dataset. Failure cases are due to (1) erroneous output from

GFA caused by numerical robustness issues (such issues are

well known [28, 17] and the subject of ongoing research)

and (2) unsupported operations such as tapered extrude and

revolve. Of these 6900 models, the zone graph can repre-

sent the ground truth modeling sequence for 5175 of them.

Failure cases are due to (1) sequences not captured by our

extrusion proposals (Section 5.1) and (2) sequences not ex-

pressible by the zone graph because some operations do not

leave any trace in the target shape (see Section 7 for an ex-

ample). See the supplemental material for more details, in-

cluding ablation studies on zone graph simplification.

5. Searching for Modeling Sequences

Given a zone graph G for an input B-rep B, our goal

is to search for a sequence of CAD modeling operations

[o1,o2, . . . ,on] that satisfies two properties:

1. Executing this sequence produces the input shape B,

i.e. exec([o1,o2, . . . ,on]) =
S
Z•
i

2. Each step produces a shape which is a combination of

zones in G, i.e. ∀j, ∃Z 0 ⊂ Z s.t. exec([o1, . . . ,oj]) =

S
(Zi ∈ Z 0).

Our search algorithm satisfies property 2 by construction: it

only considers modeling operations whose output coincides

with available zones. If B is expressible as a sequence of

sketch + extrude + boolean operations, and search time is

unbounded, our algorithm also satisfies property 1. Other-

wise, property 1 is only approximately satisfied.

Figure 4 shows an overview of our search algorithm. The

input B-rep B is denoted as the target. The algorithm main-

tains a canvas, which contains the shape constructed by the

modeling operations chosen by search thus far and is ini-

tially empty. At each step, the algorithm enumerates all

combinations of zones which could be produced via a valid

sketch + extrude operation (Section 5.1); these are the valid

next steps for search to consider. The algorithm then scores

how likely each of these proposals is to lead to a correct re-

construction of the target (Section 5.2). It retains the top k

highest-scoring proposals and initially chooses the top 1 to

explore next (i.e. best-first search). We use k = 5 unless

otherwise specified. If the search reaches a terminal state

(i.e. no valid extrusion proposals), but the canvas does not

match the target, it backtracks to the previous step and con-

siders the next extrusion in the top k set. Search terminates

when the canvas matches the target, or when a computation

time budget has been exhausted (in the latter case, the can-

vas with the highest reconstruction IoU is returned).

5.1. Generating Candidate Modeling Operations

Figure 4 right illustrates our process for identifying can-

didate modeling operations. It begins by finding pairs of

parallel planes—the start and end planes for an extrusion

(Figure 4 top-right). We define the extrusion direction d

as the vector from the start plane to the end plane. Next,

we identify the starting sketch S , a set of faces on the start

plane. Considering all possible such sets is intractable. For-

tunately, the zone that a face is adjacent to along d suggests

the operations it might be used in:

1. Faces d-adjacent to zones in the canvas C but not in

the target T could start an extrude + subtract (Figure 4

bottom-right, 1).

2. Faces d-adjacent to zones in T but not in C could start

an extrude + union (Figure 4 bottom-right, 2).

3. Faces d-adjacent to zones in T or empty zones could

start an extrude + union (Figure 4 bottom-right, 3).

Candidate starting sketches S are the connected compo-

nents of each group above, plus the union of these from each

group (e.g. Figure 4 bottom-right, 1). The supplemental

material describes other candidate enumeration strategies.

Each candidate sketch is then extruded along d to cre-

ate a generalized cylinder; the zones which fall within this

cylinder form the proposed extrusion volume X . If X ⊂ C,

it is marked as a subtraction. If X ∪ C = ∅, it is marked

as a union. Otherwise, we create proposals of both types.

6065

...

Propose extrusions (Sec 5.1)

Score extrusions (Sec 5.2)

0.999 0.997 0.0020.750

....

...

0.999 0.998 0.0070.986

. ...

Target

..
.

..
.

..
.

..
.

..
.

... In canvas?

Face color key

In target?

yes yes

no

yes

no

yes

no

no

Canvas !

Canvas ! + 1

Canvas Target

Main Search Procedure Finding parallel plane pairs

Creating generalized cylinders

1

2

3

Figure 4: Searching for modeling sequences that reconstruct a Target shape. (Left) Search maintains a canvas (the partial

shape constructed thus far), proposes possible next modeling operations, scores those operations, and then selects one of

them to further explore based on its score. (Right) Candidate extrude operations are found by first finding all pairs of parallel

planes and identifying which face groups could be used as the starting sketch (top-right) and then extruding this sketch to

create generalized cylinders (bottom-right).

Computation of these proposals is memorized, as proposals

frequently re-occur at different search iterations. To prevent

search cycles, we discard a proposed extrusion if it is the

inverse of one performed earlier in search (e.g. re-adding a

volume that was previously subtracted).

While we have focused on extrude, a similar procedure

could be applied to construct proposals for other operations.

For example, fillet, chamfer, and taper all affect the zone

graph in well-defined ways; it is possible to identify combi-

nations of zones which can result from such operations.

5.2. Ranking Candidate Modeling Operations

Given a set of proposed modeling operations, our search

algorithm must decide which ones to prioritize in its best-

first exploration. We propose to learn what operations are

best from a dataset of CAD modeling sequences. We train

a neural network that takes as input the zone graph G, the

current canvas C ⊂ Z (i.e. which zones are “filled”), the

target shape T = {Z•
i } (i.e. the set of interior zones), and

a modeling operation o = (X ⊂ Z, t ∈ {∪,−}), where

X is a generalized cylinder extrusion and t denotes the type

of operation (union or difference). The network’s task is to

predict p(o|G, C, T), how likely o is to be the next modeling

operation, based on the patterns it has seen in its training set.

Network architecture Figure 5 shows our network ar-

chitecture, which is a message passing graph convolutional

network (GCN) [11]. The node features are derived from

the geometry of the zone it represents and the information

in the target shape T , canvas C, and proposed extrusion o.

Each zone is represented as a point cloud with per-point:

positions x, normals n̂; binary labels indicating whether the

zone is part of T , C, and/or X ; the type t of the proposed

extrusion. These point clouds are encoded using a Point-

Net [19] to produce the GCN initial node vectors. After 3

rounds of message passing, node vectors are aggregated via

global max pooling and fed into a 3-layer MLP to produce

the final output probability. The supplemental material con-

tains ablations on the number of message passing rounds

and the influence of point cloud features.

Training To create training data, we use the zone graphs

constructed from modeling sequences in Section 4. We use

3000 sequences for training and hold out 440 for testing.

Each step in each sequence is one training datum. One

could treat the “ground truth” (GT) extrusion used at this

step as a positive example, all others as negative exam-

ples, and minimize a binary cross entropy loss. This ap-

proach yields poor performance: there are often multiple

approaches to construct a shape, and an approach that is not

6066

Target !

Canvas "

Operation # = (&, ()

Zone Graph *

For each zone point cloud

PointNet

GCN

Graph

pool

MLP

+ # *, ", !)

Per-point features

, -.

∈
?

! ∈
?

" ∈
?

& −

(= −

Figure 5: Architecture of our search proposal scoring net-

work. Each zone is represented as a point cloud with posi-

tions x and normals n̂; labels for whether the zone is part

of the target shape T , current canvas C, or proposed extru-

sion X ; and the type t of the proposed extrusion. Zones are

encoded via a PointNet [19] to form the input node feature

vectors for a graph convolution network (GCN). The output

node vectors from the GCN are pooled and fed through an

MLP to produce the final network output.

taken for one shape in the dataset may be taken for another.

Treating all non-GT extrusions as negative examples thus

confuses the network. We instead use ternary labels: pos-

itive, negative, and neutral. Positive labels are assigned to

GT extrusions. Non-GT extrusions are labeled as neutral

or negative via Monte Carlo tree search. For each extru-

sion, we perform N random modeling sequence comple-

tions starting with that extrusion (N = the number of re-

maining steps in the ground truth sequence) and record the

percentage p of these completions which yield a match to

the target shape. If any extrusion has p = 0, that extrusion

is labeled as a negative example. Otherwise, if all extru-

sions have p > 0, the one with the smallest p is labeled as

negative. All other extrusions are labeled as neutral. We

then minimize a binary cross entropy loss using only posi-

tive and negative examples.

Heuristic Ranking We also considered whether heuris-

tics could work in our setting. The best heuristic we found

is one that executes a candidate extrusion and, like IoU, pe-

nalizes the filled zones that the resulting canvas and target

do not have in common:
|Z|�(|T [C|�|T \C|)

|Z| . Ties are bro-

ken using volumetric IoU between canvas and target. This

performs considerably better than random but not as well as

our network; the next section provides more detail.

Figure 6: Comparing how different methods rank the

ground truth extrusions used in modeling sequences from

the Fusion 360 dataset. The x axis is
predicted rank of ground truth

number of candidate extrusions

averaged over all steps in all test sequences. Lower is better.

90% confidence intervals are shown as error bars. Ours Net

performs about 2x better than Ours Heur.

6. Results & Evaluation

To evaluate our method’s performance, we are interested

in three questions:

1. How consistent are our method’s output sequences

with sequences it was trained on?

2. How well does our method reconstruct new input

shapes, given a particular compute budget?

3. How desirable are our method’s output sequences, as

judged by CAD designers?

For (1), we examine how our network scores the modeling

steps used in its training data (Section 6.1). For (2), we

quantify our method’s tradeoff between computation budget

and reconstruction accuracy (Section 6.2) and compare to

a recent CSG inference system (Section 6.3). For (3), we

conduct a perceptual study (Section 6.4).

6.1. Search Proposal Ranking

If our network has learned the design patterns within its

training data, then for each step in a dataset sequence, when

candidate extrusions are ordered by predicted score, the

“ground truth” extrusion should be ranked near the top. Fig-

ure 6 shows the average relative rank of the ground truth ex-

trusion computed by our network and other baselines. The

evaluation was conducted on the held-out test sequences

from the Fusion 360 Gallery reconstruction dataset [29].

We compare our network (Our Net) against the heuristic

(Our Heur), as well as a method which picks a random

extrusion (Random). Our network and the heuristic both

significantly outperform the random baseline, and the net-

work also dominates the heuristic by a factor of two. Search

guided by our network should thus mimic the design pat-

terns in the dataset. Ablation studies are shown in the sup-

plemental material.

Figure 7 shows modeling sequences inferred under dif-

ferent guidance (random, heuristic, network) for the same

input shape. While the heuristic produces the shortest se-

quence, the network produces a more intuitive one.

6067

Target Inferred Sequence

Random

Ours Heur

Ours Net

Figure 7: Modeling sequences inferred under different search guidance. Green: addition; Red: subtraction; Grey: current.

Figure 8: Reconstruction accuracy of the outputs of inferred

programs vs. the time used to infer them.

6.2. Reconstruction Performance Ablation Study

We next evaluate how well the modeling sequences in-

ferred by our method reconstruct the input shape (via volu-

metric IoU). As stated in Section 5, if a sketch + extrude

+ boolean sequence that reconstructs a shape exists, our

method is guaranteed to find it given unbounded time; here

we are interested in our method’s performance under finite

time constraints. Timings were collected on a machine with

a GeForce RTX 2080 Ti GPU and an Intel i9-9900K CPU.

Figure 8 compares the average IoU of inferred programs

on our held-out shapes (with a ground truth modeling se-

quence length of at least 3) using random, heuristic, and net-

work guidance. Zone graph construction time is excluded,

as this is a fixed cost incurred by all methods. Both network

and heuristic guidance converge to 100% reconstruction ac-

curacy after ∼ 20 seconds, whereas random guidance does

not converge. Heuristic guidance is faster than the network

because (a) it does not incur the cost of network evaluation,

and (b) by construction it tries to use the fewest possible

modeling operations. However, shorter sequences are not

always better (e.g. Figure 7). Ablation studies for different

search widths k are shown in the supplemental material.

6.3. Comparison to InverseCSG

We next compare to InverseCSG [7], a recent system for

inferring CSG programs from complex input shapes. We

Method All Models Sketch + Extrude Models

Error (%) Time (s) Error (%) Time (s)

Ours Net 0.72 242 0.23 242

Ours Heur 0.50 197 0.15 197

InverseCSG 0.88 900 0.79 900

Table 1: Reconstruction results comparing InverseCSG and

our method using heuristic (Ours Heur) or network guided

(Ours Net) search. We report the median reconstruction er-

ror computed using IoU and the median search time in sec-

onds for all models in the InverseCSG test set and the subset

of sketch + extrude models. Lower values are better.

evaluate on InverseCSG’s test set of 50 3D shapes. As B-rep

files are not provided, we hired freelance CAD designers to

reproduce them using Autodesk Fusion 360. Our method

successfully build zone graphs for 33 of these, which we

use as our test set. From the test set, 27 shapes are express-

ible using sketch + extrude + boolean operations, which

our method can reconstruct exactly. By contrast, Inver-

seCSG uses parametric primitives that may introduce er-

ror when the primitive set is insufficiently expressive. As

these shapes are more complex than those in prior experi-

ments, for our method we set the search width k = 15 and

decrease it by 0.5 for each search depth increment (giving

more search options to important early steps in the modeling

process). Finally, we note that InverseCSG takes a triangle

mesh as input to solve the CAD reconstruction problem in

one shot, whereas we focus on the second sub-problem of

inferring a modeling sequence from a B-rep.

Table 1 shows the results of this experiment. Our method

achieves a lower median reconstruction error (computed us-

ing IoU) and a shorter median search time in all cases. Our

method reconstructs 13 of the 33 models exactly, with a re-

construction error of less than 0.01%, in comparison to 1

exact reconstruction by InverseCSG. This result indicates

that our representation can more accurately represent typ-

ical CAD models when compared to parametric primitive

6068

Target InverseCSG Ours Net

Figure 9: Qualitative comparison of the output of our

model’s inferred programs vs. those of InverseCSG.

CSG. We provide per model reconstruction results and ad-

ditional details in the supplemental material.

Figure 9 shows reconstructions by our method and Inver-

seCSG. The first row shows a case where our method per-

fectly reconstructs the shape but InverseCSG incurs some

approximation error due to its use of primitives. The sec-

ond row shows a case where both methods perform well.

The third row shows a failure case for our method (a re-

volve operation is needed to express this shape).

6.4. Expert Perceptual Evaluation

Finally, we evaluate inferred programs via a perceptual

study. We recruited 16 experienced CAD users from the

fields of design (5) and engineering (11). Each participant

is asked to describe the type of modeling practice they en-

gaged in more often: reconstructing existing shapes, or ex-

ploratory design. Each participant then performs 45 com-

parisons of two modeling sequences shown in random or-

der. In each comparison, the participant is shown a target

shape along with two modeling sequences for it and asked

to (a) select the one most similar to how they would have

constructed that shape, or (b) indicate that they cannot de-

cide. Comparisons were between (1) Ours Net vs. Inver-

seCSG on the InverseCSG test set, (2) Ours Net vs. Ground

Truth from the Fusion 360 Gallery test set, (3) Our Net vs.

Ours Heur on the Fusion 360 Gallery test set.

Table 2 shows the results of this experiment. Partici-

pants strongly preferred Our Net sequences to those of In-

verseCSG. Our Net sequences were also judged as better

than the ground truth about a third of the time. Partici-

pants who focus on exploratory design preferred Our Net

sequences vs. Our Heur ones at a significantly higher rate

than participants focused on reconstruction. This indicates

that the sequences found by the learned guidance better

% Chosen

Ours Net vs. Overall By “explorers” By “reconstructers”

Ground Truth 34.1 33.3 34.0

InverseCSG 84.7 76.7 86.4

Ours Heur 41.0 52.5 37.9

Table 2: Results of a perceptual study in which CAD users

compared modeling sequences inferred by our method to

those produced by InverseCSG.

support exploratory modification, whereas the heuristic se-

quences may be better suited to direct reconstruction.

7. Conclusion

In this paper, we presented a new representation for CAD

reconstruction, the zone graph. We showed how it reduces

the search space of CAD modeling sequences that recon-

struct a shape to finite size, and we presented an algorithm

for searching the space of sketch + extrude + Boolean mod-

eling sequences. We also introduced a graph neural network

that learns which search paths to explore first based on de-

sign patterns in a dataset of CAD modeling sequences. Our

experiments showed that our approach reconstructs a large

percentage of input shapes and does so with more desirable

modeling sequences than InverseCSG.

Some modeling sequences are not recover-

able from the zone graph of the output shape,

Overshadhowed Edges

as they may include one or

more steps which leaves no

trace of itself in the output

B-rep (see inset). We can

still infer alternative (and po-

tentially equally-good) recon-

struction sequences for such

shapes, however.

Finally, we used a large CAD dataset to train our pro-

posal scoring network. Aside from the Fusion 360 Gallery

reconstruction dataset, such data is not widely available.

It is important to investigate weakly-supervised approaches

that require only a small amount of human input about what

constitutes a meaningful design pattern.

Acknowledgments

We would like to thank Justin Solomon for pointing us

toward the literature on arrangements of surfaces within

computational geometry. Thanks also to the Autodesk de-

signers who participated in the study. Daniel Ritchie is

an advisor to Geopipe and owns equity in the company.

Geopipe is a start-up that is developing 3D technology to

build immersive virtual copies of the real world with appli-

cations in various fields, including games and architecture.

6069

References

[1] Autodesk. Inventor Feature Recognition, 2012.

[2] Jean-Philippe Bauchet and Florent Lafarge. Kinetic shape

reconstruction. ACM Transactions on Graphics (TOG),

39(5):1–14, 2020.

[3] A.Y. Chang. A survey of geometric data structures for Ray

Tracing. Polytechnic University,Department of Computer

and Information Science, 2001.

[4] Siddhartha Chaudhuri, Daniel Ritchie, Jiajun Wu, Kai Xu,

and Hao Zhang. Learning Generative Models of 3D Struc-

tures. Computer Graphics Forum, 2020.

[5] Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. Bsp-net:

Generating compact meshes via binary space partitioning. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 45–54, 2020.

[6] Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien

Bouaziz, Geoffrey Hinton, and Andrea Tagliasacchi. Cvxnet:

Learnable convex decomposition. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages

31–44, 2020.

[7] Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg,

Adriana Schulz, Daniela Rus, Armando Solar-Lezama, and

Wojciech Matusik. Inversecsg: Automatic conversion of 3d

models to csg trees. ACM Transactions on Graphics (TOG),

37(6):1–16, 2018.

[8] Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Josh

Tenenbaum, and Armando Solar-Lezama. Write, execute,

assess: Program synthesis with a repl. In Advances in Neural

Information Processing Systems, pages 9169–9178, 2019.

[9] Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sable-

Meyer, Luc Cary, Lucas Morales, Luke Hewitt, Armando

Solar-Lezama, and Joshua B. Tenenbaum. Dreamcoder:

Growing generalizable, interpretable knowledge with wake-

sleep bayesian program learning, 2020.

[10] Hao Fang and Florent Lafarge. Connect-and-slice: an hybrid

approach for reconstructing 3d objects. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 13490–13498, 2020.

[11] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol

Vinyals, and George E. Dahl. Neural message passing for

quantum chemistry. CoRR, arXiv:1704.01212, 2017.

[12] Dan Halperin and Micha Sharir. Arrangements. In Jacob E.

Goodman and Joseph O’Rourke, editors, Handbook of Dis-

crete and Computational Geometry. CRC Press, Inc., USA,

1997.

[13] Christoph Martin Hoffmann. Geometric and solid modeling.

CUMINCAD, 1989.

[14] ANSYS Inc. Reverse Engineering Software — Ansys Space-

Claim. https://www.ansys.com/products/3d-

design / ansys - spaceclaim / reverse -

engineering, 2020. Accessed: 2020-11-12.

[15] 3D Systems Inc. Geomagic X 3D Reverse Engineering Soft-

ware. https://www.3dsystems.com/software/

geomagic-design-x, 2020. Accessed: 2020-11-12.

[16] Kacper Kania, Maciej Zieba, and Tomasz Kajdanowicz.

Ucsg-net–unsupervised discovering of constructive solid ge-

ometry tree. arXiv preprint arXiv:2006.09102, 2020.

[17] Lutz Kettner, Kurt Mehlhorn, Sylvain Pion, Stefan Schirra,

and Chee Yap. Classroom examples of robustness prob-

lems in geometric computations. Computational Geometry,

40(1):61–78, 2008.

[18] Liangliang Nan and Peter Wonka. Polyfit: Polygonal surface

reconstruction from point clouds. In Proceedings of the IEEE

International Conference on Computer Vision, pages 2353–

2361, 2017.

[19] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

PointNet: deep learning on point sets for 3D classification

and segmentation. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2017.

[20] Daniel Ritchie, Anna Thomas, Pat Hanrahan, and Noah

Goodman. Neurally-Guided Procedural Models: Amortized

Inference for Procedural Graphics Programs Using Neural

Networks. In Advances in Neural Information Processing

Systems (NeurIPS), 2016.

[21] Jami J Shah, David Anderson, Yong Se Kim, and Sanjay

Joshi. A discourse on geometric feature recognition from

cad models. J. Comput. Inf. Sci. Eng., 1(1):41–51, 2001.

[22] Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos

Kalogerakis, and Subhransu Maji. Csgnet: Neural shape

parser for constructive solid geometry. corr abs/1712.08290

(2017). arXiv preprint arXiv:1712.08290, 2017.

[23] Gopal Sharma, Difan Liu, Subhransu Maji, Evangelos

Kalogerakis, Siddhartha Chaudhuri, and Radomı́r Měch.

Parsenet: A parametric surface fitting network for 3d point

clouds. In European Conference on Computer Vision

(ECCV), pages 261–276. Springer, 2020.

[24] Dassault Systems. Solidworks FeatureWorks, 2019.

[25] Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis,

William T. Freeman, Joshua B. Tenenbaum, and Jiajun Wu.

Learning to infer and execute 3d shape programs. In Inter-

national Conference on Learning Representations, 2019.

[26] Xiaogang Wang, Yuelang Xu, Kai Xu, Andrea Tagliasac-

chi, Bin Zhou, Ali Mahdavi-Amiri, and Hao Zhang. Pie-net:

Parametric inference of point cloud edges. 2020.

[27] K.J. Weiler. Topological structures for geometric model-

ing. Technical report RPI, Center for Interactive Computer

Graphics. University Microfilms, 1986.

[28] Kevin Weiler, Tom Duff, Steve Fortune, Chris Hoffman,

and Tom Peters. Is robust geometry possible?(panel). In

ACM SIGGRAPH 98 Conference abstracts and applications,

pages 217–219, 1998.

[29] Karl D. D. Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao

Du, Joseph G. Lambourne, Armando Solar-Lezama, and

Wojciech Matusik. Fusion 360 gallery: A dataset and envi-

ronment for programmatic cad reconstruction. arXiv preprint

arXiv:2010.02392, 2020.

[30] Chenghui Zhou, Chun-Liang Li, and Barnabas Poczos.

Unsupervised program synthesis for images using tree-

structured lstm, 2020.

6070

