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Abstract

1-bit detectors show great promise for resource-

constrained embedded devices but often suffer from a sig-

nificant performance gap compared with their real-valued

counterparts. The primary reason lies in the error during

binarization. This paper presents a layer-wise searching

(LWS) strategy to generate 1-bit detectors that maintain a

performance very close to the original real-valued model.

The approach introduces angular and amplitude loss func-

tions to increase detector capacity. At 1-bit layers, it ex-

ploits a differentiable binarization search (DBS) to mini-

mize the angular error in a student-teacher framework. We

also learn the scale factor by minimizing the amplitude loss

in the same student-teacher framework. Extensive experi-

ments show that LWS-Det outperforms state-of-the-art 1-bit

detectors by a considerable margin on the PASCAL VOC

and COCO datasets. For example, the LWS-Det achieves

1-bit Faster-RCNN with ResNet-34 backbone within 2.0%
mAP of its real-valued counterpart on the PASCAL VOC

dataset.

1. Introduction

Object detection is a fundamental task in computer vi-

sion [8,22], and deep convolutional neural networks (CNN)

[31–33] dominate recent performance advancements. But

CNN models typically have millions of parameters and re-

quire billions of floating-point operations (FLOPs) to com-

pute, limiting their deployment on resource-limited plat-

forms.

Substantial efforts have been made to compress and

accelerate CNNs for efficient online inference. Methods

*Baochang Zhang is the corresponding author.

(a) (c)(b)

Figure 1. Example layer-wise feature map distribution and detec-

tion results of (a) a real-valued detector, (b) LWS-Det, and (c)

BiDet. We extract the feature maps of the first, second, and fi-

nal binarized layers and illustrate their distributions based on the

frequency-value histogram in rows 1-3. The last row shows the

detection result.

include compact network design [15, 27], network prun-

ing [14, 19, 44], low-rank decomposition [7], quantization

[30, 41], and knowledge distillation [34]. Quantization is

particularly suitable for deployment on AI chips because

it reduces the bit-width of network parameters and activa-

tions for efficient inference. Binarization, an extreme form

of quantization, compresses the weights and activations of

CNNs into a single bit, which can decrease the storage re-
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Figure 2. Our LWS-Det. From left to right are the input, the search process, and the learning process. For a given 1-bit convolution

layer, LWS-Det first searches for the binary weight (+1 or -1) by minimizing the angular loss supervised by a real-valued teacher detector.

LWS-Det learns the real-valued scale factor α to enhance the feature representation ability.

quirements by 32× and computation cost by up to 58× [30].

Binarized detectors have been an important contribution to

object detection by speeding up the CNN feature extraction

process to allow bounding box detection and object clas-

sification in real-time [36, 38, 40]. For example, the 1-bit

detectors can theoretically achieve 15× acceleration in an

SSD300 framework [24] with its purely logical computa-

tion using XNOR operations on binary weights and binary

activations. These are highly energy-efficient for embed-

ded devices and possess the potential for being deployed

directly on next-generation memristor-based hardware.

Despite these attractive characteristics, the performance

of 1-bit detectors typically degrades to the point where

they are not broadly deployed on real-world embedded

devices. For example, BiDet [38] only achieves 13.2%
mAP@[.5, .95] on the COCO minival dataset [22], re-

sulting in an accuracy gap of 10.0% below its real-valued

counterpart (on SSD300 framework). The reason, we be-

lieve, lies in the fact that the layer-wise binarization error

significantly affects 1-bit detector learning.

Fig. 1 shows the layer-wise feature map distribution and

detection results of a real-valued detector, our LWS-Det,

and BiDet [38] from left to right. The first three rows show

the distributions of feature maps. The feature map distribu-

tion of BiDet has a variance less similar to the one of the

real-valued detector, leading to a result with false positives

and missed detection in the 4-th row. In comparison, our

LWS-Det can reduce the binarization error and provide bet-

ter detection results.

In this paper, we present layer-wise search method to

produce an optimized 1-bit detector (LWS-Det) using the

student-teacher framework to narrow the performance gap.

As shown in Fig. 2, we minimize the binarization error

by decoupling it into an angular error and an amplitude er-

ror. We search for the binarized weight supervised by well-

designed losses between real-valued convolution and 1-bit

convolution under differentiable binarization search (DBS)

framework, following the method DARTS [23,45]. We for-

mulate the binarization problem as the combination of −1
and 1, while a differentiable search can explore the binary

space to significantly improve the capacity of 1-bit detec-

tors. To improve representation ability of LWS-Det, we de-

sign two losses to supervise the 1-bit convolution layer from

angular and amplitude perspective. In this way, we obtain a

powerful 1-bit detector (LWS-Det) that can minimize both

angular and amplitude errors in the same framework. Our

contributions are summarized as:

• We introduce the differentiable search method for 1-bit

detectors, which minimize the angular error under the

supervision of the real-valued network.

• We learn the scale factor to minimize the amplitude

loss based on the student-teacher framework. As a re-

sult, the representation ability of our detector is signif-

icantly improved.

• We evaluate our LWS-Det on the PASCAL VOC and

the large-scale COCO datasets for a comprehensive

comparison with state-of-the-art 1-bit detectors. The

results show that our methods outperform other state-

of-the-art BNN-based detectors by a sizable margin.

For example, on COCO, the 1-bit Faster-RCNN with

ResNet-50 backbone obtained by LWS-Det achieves

31.7% mAP, which outperforms all current 1-bit de-

tectors.

2. Related Work

1-bit Detectors. BiDet [38] fully utilizes the 1-bit neural

network’s representational capacity for object detection by

5683



redundancy removal and generalizes the information bot-

tleneck principle to object detection. The amount of infor-

mation in the high-level feature maps is constrained, and the

mutual information between the feature maps and object de-

tection is maximized. ASDA-FRCNN [40] suppresses the

shared amplitude between the full-precision and the binary

kernels, which significantly improves the performance of

the Faster R-CNN detector.

1-bit CNNs. BinaryNet, based on BinaryConnect, was

proposed to train CNNs with binary weights [6]. The acti-

vations are triggered at run-time while the parameters are

computed during training. In [30], XNOR-Net is intro-

duced to improve convolutional operations by binarizing

the weight values with an estimation of a binary weight fil-

ter. XNOR++ [2] designs an efficient estimator for a layer-

wise feature map of 1-bit CNN. Bi-Real-Net [25] designs

a magnitude-aware gradient with respect to the weight for

updating the binarized weight parameters. [28] rescales the

feature maps on the channels according to the input before

binarized operations and adds a gating module as the SE-

Net [16]. ReActNet [26] replaces the conventional PReLU

[12] and the sign function of the BNNs with RPReLU and

RSign with a learnable threshold, thus improving the per-

formance of BNNs.

Neural Architecture Search (NAS). Recently, neural

architecture search (NAS) [45] has been attracting boom-

ing attention, due mainly to its satisfying capacity to model

a network. The early efforts of NAS [3, 45] need enormous

computation and resources. Later, such method is general-

ized into a much lighter framework, i.e. one-shot architec-

ture search [4, 23, 39, 42]. [23] introduces DARTS, a differ-

entiable framework and thus combines the search and eval-

uation stages into one. Based on DARTS, researchers have

found some of its drawbacks and proposed a few improved

approaches over DARTS [3, 39].

Knowledge Distillation. Knowledge distillation is a

main branch of model compression methods, aiming to

transfer knowledge from a trained teacher network to a

smaller and faster student model. Soft-labels generated by

the teacher is used to teach the student, which is first pro-

posed by [1]. [9] redefined knowledge distillation as train-

ing a shallower network to approach the teacher’s output

after the softmax layer.

Unlike prior work, our work introduces a differentiable

search method to design a new 1-bit detector based on the

student-teacher framework. We achieve a powerful 1-bit

detector that can bridge the performance gap compared with

the real-valued counterparts.

3. LWS-Det

This section describes our LWS-Det in detail. We first

illustrate the binarization error of 1-bit CNNs from the an-

gular and amplitude perspective. Secondly, we describe the

𝜃

"𝜃

"𝜃

(a) (b)

(d)

𝑥

𝑦

𝒛

𝑥

𝑦

𝒛

𝑥

𝑦

𝒛

𝐰

𝐚

%𝐰 &𝐚

"𝜃

(c)

𝑥

𝑦

𝒛

&𝐚

𝛼 %𝐰

𝛼 %𝐰
&𝐚

Figure 3. An illustration of binarization error in the 3-dimension

space. (a) The intersection angle θ of real-valued weight w and

activation a is significant. (b) After binarization (ŵ, â) based on

sign function, the intersection angle θ̂ = 0 . (c) θ̂ = 0 based on

XNOR-Net binarization. (d) Ideal binarization via angular and

amplitude error minimization.

formulation of LWS-Det and the differentiable binarization

search (DBS) method based on the angular loss minimiza-

tion. We then describe our approach to learn the scale pa-

rameters by minimizing the amplitude loss. Finally, we out-

line the whole training process of LWS-Det.

3.1. Preliminaries

Given a conventional CNN model, we denote wi ∈ Rni

and ai ∈ Rmi
as its weights and feature maps in the i-th

layer, where ni = Ci·Ci−1·Ki·Ki and mi = Ci·Wi·Hi. Ci

represents the number of output channels of the i-th layer.

(Wi, Hi) are the width and height of the feature maps and

Ki is the kernel size. We then have

ai = ai−1 ⊗wi, (1)

where ⊗ is the convolution operation. We omit the batch

normalization (BN) and activation layers for simplicity. The

1-bit model aims to quantize wi and ai into ŵi ∈ {−1,+1}
and âi ∈ {−1,+1} using the efficient xnor and bit-count

operations to replace full-precision operations. Following

[5, 6], the forward process of the 1-bit CNN is:

âi = sign(âi−1 ⊙ ŵi), (2)

where ⊙ represents the xnor and bit-count operations and

sign(·) denotes the sign function, which returns 1 if the in-

put is greater than zero, and -1 otherwise. Such binarization
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process will bring the binarization error, which can be vis-

ible in Fig. 3 (a) and (b). The product of 1-bit convolution

(b) cannot simulate the real-valued one (a) in both angular

and amplitude.

Substantial efforts have been made to optimize this error.

[25, 30, 36] formulate the object as

Lw

i = ‖wi −αi ◦ ŵi‖
2
2, (3)

where ◦ denotes the channel-wise multiplication and αi is

the vector consisting of channel-wise scale factors. Fig. 3

(c) [25, 30, 36] learns αi by directing optimizing Lw

i to 0,

and thus the explicit solution is

α
j
i =

‖wj
i ‖1

Ci−1 ·K
j
i ·Kj

i

, (4)

where j denotes the j-th channel of i-th layer. Other works

[10] dynamically evaluate Equ. 3 rather than explicitly

solve or modify αi to other shapes [2].

Prior works mostly focus on the kernel reconstruction

but neglect the angular information, as shown in Fig. 3 (d).

One drawback of existing methods lies in its ineffectiveness

when binarizing a very small float value as shown in Fig.

3. Differently, we leverage the strong capacity of a differ-

entiable search to fully explore a binary space for an ideal

combination of −1 and +1 without a ambiguous binariza-

tion process involved.

3.2. Formulation of LWSDet

We regard the 1-bit object detector as a student network,

which can be searched and learned based on a teacher net-

work (real-valued detector) layer-wise. Our overall frame-

work is illustrated in Fig. 2. As depicted above, the main

learning objective (layer-wise binarization error) is defined

as

E =

N∑

i=1

‖ai−1 ⊗wi − âi−1 ⊙ ŵi ◦αi‖
2
2, (5)

where N is the number of binarized layers. We then opti-

mize E layer-wise as

argmin
ŵi,αi

Ei(ŵi,αi;wi,ai−1, âi−1), ∀i ∈ [1, N ]. (6)

In LWS-Det, we learning Equ. 6 by decoupling it into angu-

lar loss and amplitude loss, where we optimize the angular

loss by differentiable binarization search (DBS) and the am-

plitude loss by learning the scale factor.

3.3. Differentiable binarization search for the 1bit
weight

We formulate the binarization task as a differentiable

search problem. Considering the 1-bit weight is closely re-

lated to angular as shown in Fig. 3, we define an angular

loss to supervise our search process as

L
Ang
i = ‖cosθi − cosθ̂i‖

2
2

= ‖
ai−1 ⊗wi

‖ai−1‖2‖wi‖2
−

âi−1 ⊙ ŵi

‖̂̂ai−1‖2‖ŵi‖2
‖22.

(7)

For the learning process of the i-th layer, the objective is

formulated as

argmin
ŵi

L
Ang
i (ŵi; âi,wi,ai). (8)

We introduce the DARTS framework to solve Equ. 8,

named differential binarization search (DBS). We follow

[23] to efficiently search for ŵi. Specifically, we approx-

imate ŵi by the weighed probability of two matrices whose

weights are all set as -1 and +1, respectively. We relax the

choice of a particular weight by the probability function de-

fined as

poki =
∑

ok∈O

exp(βok
i )

∑
o′
k
∈O

exp(β
o′
k

i )
, s.t. O = {ŵ−

i , ŵ
+

i },

(9)

where poki is the probability matrix belongs to the operation

ok ∈ O. The search space O is defined as the two possible

weights: {ŵ−

i , ŵ
+

i }. For the inference stage, we select the

weight owning the max probability as

w̃i,l = argmax
ok

poki,l , (10)

where poki,l denotes the probability that the l-th weight of the

i-th layer belongs to operation ok. Hence, the l-th weight

of w̃, i.e. w̃i,l, is defined by the operation having the maxi-

mum probability. In this way, we modify Equ. 7 by substi-

tuting ŵi to w̃i as

L
Ang
i = ‖

ai−1 ⊗wi

‖ai−1‖2‖wi‖2
−

âi−1 ⊙ w̃i

‖âi−1‖2‖w̃i‖2
‖22. (11)

By this, we retain the top-1 strongest operations (from

distinct weights) for each weight of ŵi in the discrete set

{+1, -1}.

3.4. Learning the scale factor

After searching for ŵi, we learn the real-valued layers

between the i-th and (i+1)-th 1-bit convolution. We omit

the batch normalization (BN) and activation layers for sim-

plicity. We can directly simplify Equ. 5 as

L
Amp
i = Ei(αi;wi, w̃i,ai−1, âi−1). (12)

Following conventional BNNs [10, 11], we employ Equ.

3 to further supervise scale factor αi. According to [37], we
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Algorithm 1 Training 1-bit detectors via LWS-Det.

Input: The training dataset, pre-trained teacher model.

Output: 1-bit detector.

1: Initialize αi and βoi
i ∼ N (0, 1) and other real-valued

parameters layer-wise;

2: for i = 1 to N do

3: while Differentiable search do

4: Compute L
Ang
i , L

Amp
i , LW

i

5: end while

6: end for

7: Compute LGT , LLim

8: for i = N to 1 do

9: Update parameters vis back propagation

10: end for

11: repeat

12: until The algorithm converges.

employ fine-grained feature limitation to auxiliarily learn-

ing the detection prior. Hence, the supervision of LWS-Det

is formulated as

L = LGT + λLLim + µ

N∑

i=1

(LAng
i + L

Amp
i ) + γ

N∑

i=1

Lw

i ,

(13)

where LGT is the detection loss derived from ground truth

label and LLim is the fine-grained feature limitation defined

in [37]. The process of LWS-Det is outlined in Algorithm

1.

4. Experiments

Comprehensive experiments are conducted to evaluate

our proposed method on two datasets for object detection:

PASCAL VOC [8] and COCO [22]. First, we introduce

the implementation details of LWS-Det. Then we validate

the effectiveness of differential binarization search (DBS)

and convergence of our method through ablation studies.

Finally, we compare our method with state-of-the-art 1-bit

CNNs on object detection to demonstrate the superiority of

LWS-Det.

4.1. Datasets and Implementation Details

PASCAL VOC. The PASCAL VOC dataset contains nat-

ural images from 20 different classes. We train our model

on the VOC trainval2007 and VOC trainval2012

sets, which consist of approximately 16k images, and we

evaluate our method on the VOC test2007 set, which

includes 4952 images. Following [8], we use the mean av-

erage precision (mAP) as the evaluation criterion.

COCO. The COCO dataset consists of images from 80 cat-

egories. We conduct experiments on the COCO 2014 [22]

object detection track. Models are trained with the com-

bination of 80k images from the COCO train2014 and

35k images sampled from COCO val2014, i.e., COCO

trainval35k. On the remaining 5k images from the

COCO minival, we test our method. Following the stan-

dard evaluation metric of COCO, we report the average

precision (AP) for IoU∈ [0.5 : 0.05 : 0.95] denoted as

mAP@[.5, .95]. We also report AP50, AP75, APs, APm, and

APl to further analyze our method.

Implementation Details. We train our LWS-Det with

the Faster-RCNN1 [33] and SSD [24] detection framework

based on ResNet-18, ResNet-34, ResNet-50 [13] and VGG-

16 [35]. We use PyTorch [29] to implement LWS-Det. And

we conduct the experiments on 4 NVIDIA Tesla P40 GPUs

with 24 GB and 128G RAM. We pre-train the backbone of

the teacher model on ImageNet ILSVRC12 [18] for the task

of image classification and fine-tune the teacher detector on

the dataset of object detection task. Also, we employ DBS

method to per-train the backbone on ImageNet ILSVRC12.

The batch size is assigned to be 32 and 16 for SSD and

Faster-RCNN, respectively. The SGD optimizer is applied.

Following the implementation of 1-bit CNNs in [25], we

retain the first layer, shortcut, and last layer (1 × 1 convo-

lution layer of RPN and a fully-connected layer of the bbox

head) in the detection networks as real-valued on Faster-

RCNN framework. For the SSD framework, the extra layer

is also set as real-valued following BiDet [38]. We mod-

ify the architecture of ResNet-18/34 with extra shortcut and

PReLU [12] following [38] and [10] respectively. The ar-

chitecture of VGG-16 is modified with extra shortcut fol-

lowing [38]. Also, we modify the architecture of ResNet-50

following [25]. To enhance the performance, we replace the

lateral connection of FPN [21] neck with 3 × 3 1-bit con-

volution. All the experiments on Faster-RCNN framework

follow this modification.

During LWS-Det, we train the model for 12 epochs with

a learning rate set as 0.004 which decay by multiplying 0.1
at the 9-th epoch. We repeat with the VOC for 10 times and

the COCO dataset for 5 times for each epoch when training

the SSD detector. As for hyper-parameter, we set λ as 1 ×
10−2 following [37]. γ is set as 1 × 10−4. For different

frameworks, we conduct experiments to fine-tune µ towards

better performance.

4.2. Ablation Study

Effectiveness of DBS. We first compare our DBS method

with three other methods to produce binarized weights:

Random Search [17], Sign [6], and RSign [26]. As shown

in Tab. 1, we evaluate the effectiveness of DBS on two

detectors: one-stage SSD and two-stage Faster-RCNN. On

the Faster-RCNN detector, the usage of DBS improves the

1In this paper, Faster-RCNN denotes the two-stage Faster-RCNN im-

plemented with FPN neck. Different from the one in [38].
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Figure 4. Qualitative results on PASCAL VOC test2007 (best viewed in color).

Table 1. Ablation study: Comparison of the performance of differ-

ent binarization method with DBS.

Framework Backbone
Binarization

Method
mAP

Faster-RCNN ResNet-18

Sign 65.1

RSign 68.9

Random Search 64.1

DBS 73.2

Real-valued 76.4

SSD VGG-16

Sign 65.9

RSign 68.1

Random Search 60.1

DBS 71.4

Real-valued 74.3
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Figure 5. Convergence Faster-RCNN with ResNet-18 back-

bone (left) and SSD with VGG-16 backbone (right) based on

different binarizations training on VOC trainval2007 and

trainval2012.

mAP by 8.1%, 4.3% and 9.1% compared to Sign, RSign

and Random Search, respectively, under the same student-

teacher framework. On the SSD detector, DBS also en-

hances the mAP by 5.5%, 3.3% and 11.3% compared to

other binarization methods, respectively, which is very sig-

nificant for the object detection task.

Convergence analysis. We evaluate the convergence of

detection loss during the training process in comparison

with other situations on two detectors: Faster-RCNN with

ResNet-18 backbone and SSD with VGG-16 backbone. As

plotted in Fig. 5, the training curve of the LWS-Det based

on random search oscillates vigorously, which is suspected

to be triggered by less optimized angular error resulting

from the randomly searched binary weights. Also, our

DBS achieves a minimum loss during training in compar-

ison with Sign and RSign. This also confirms our DBS

method can binarize the weights with minimum angular er-

ror, which explains the best performance in Tab. 1.

4.3. Results on PASCAL VOC

In this section, we compare the proposed LWS-Det with

other state-of-the-art 1-bit neural networks, including Bi-

Real-Net [25], BiDet [38], and ReActNet [26], on the same

framework for the task of object detection on the PASCAL

VOC datasets. We also report the detection performance of

the multi-bit quantized networks DoReFa-Net [43].

Tab. 2 illustrates the comparison of computational com-

plexity, storage cost, and the mAP across different quanti-

zation methods and detection frameworks. Our LWS-Det

significantly accelerates the computation and saves the stor-

age on various detectors. We compute the memory usage

by comparing our approach with XNOR-Net [30] and the

corresponding full-precision network. The memory usage

is computed as the summation of 32-bit times the number

of full-precision kernels and 1-bit time the number of bi-

nary kernels in the networks. The number of float opera-

tions (FLOPs) is computed as with Bi-Real-Net [25]. The

bit-wise Xnor operation and bit-count operation can be per-

formed in parallel by the current generation of CPUs. The

FLOPs are calculated as the number of real-valued floating-

point multiplication plus 1

64
of the number of 1-bit multipli-

cations.
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Table 2. Comparison of memory usage, FLOPs, and mAP (%) with state-of-the-art 1-bit CNNs in both one-stage and two-stage detection

frameworks on VOC test2007. The detector with the real-valued and multi-bit backbone is given for reference. The bold denotes the

best result.

Framework Input Backbone Quantization Method
W/A

(bit)
Memory Usage GFLOPs mAP(%)

Faster-RCNN 1000×600

ResNet-18

Real-valued 32/32 112.88MB 96.40 76.4

DoReFa-Net 4/4 21.59MB 27.15 73.3

Bi-Real-Net

1/1

16.61MB 18.49 60.9

BiDet 16.61MB 18.49 62.7

ReActNet 16.61MB 18.49 69.6

LWS-Det 16.61MB 18.49 73.2

ResNet-34

Real-valued 32/32 145.12MB 118.80 77.8

DoReFa-Net 4/4 29.65MB 32.31 75.6

Bi-Real-Net

1/1

24.68MB 21.49 63.1

BiDet 24.68MB 21.49 65.8

ReActNet 24.68MB 21.49 72.3

LWS-Det 24.68MB 21.49 75.8

ResNet-50

Real-valued 32/32 164.88MB 127.76 79.5

Bi-Real-Net

1/1

29.61MB 21.95 65.7

ReActNet 29.61MB 21.95 73.1

LWS-Det 29.61MB 21.95 76.9

SSD 300×300 VGG-16

Real-valued 32/32 105.16MB 31.44 74.3

DoReFa-Net 4/4 29.58MB 6.67 69.2

Bi-Real-Net

1/1

21.88MB 2.13 63.8

BiDet 21.88MB 2.13 66.0

ReActNet 21.88MB 2.13 68.4

LWS-Det 21.88MB 2.13 71.4

Faster-RCNN. The results for 1-bit Faster-RCNN on VOC

test2007 are summarized from lines 2 to 16 in Tab. 2.

Our LWS-Det achieves the comparable performance with

real-valued Faster-RCNN with ResNet-18/34/50 backbone

({73.2%, 75.8%, 76.9%}vs.{76.4%, 77, 8%, 79.5%}),

which with significantly accelerate the computa-

tion and save the storage by 5.21×/5.52×/5.82× and

6.79×/5.88×/5.57× when compared with the real-valued

counterparts.

Compared with 1-bit methods, we observe significant

performance improvements with our LWS-Det over other

state-of-the-arts. With the ResNet-18 backbone, our LWS-

Det outperforms Bi-Real-Net, BiDet, and ReActNet by

12.3%, 10.5%, and 3.6% mAP with the same memory us-

age and FLOPs. Likewise, with the ResNet-34 backbone,

our LWS-Det outperforms the Bi-Real-Net, BiDet, and Re-

ActNet by 12.7%, 10.0% and 3.5% mAP. Furthermore,

LWS-Det surpasses Bi-Real-Net and ReActNet by 11.2%
and 3.8% with ResNet-50 backbone. All improvements are

very significant for the object detection task.

Moreover, our LWS-Det even outperforms the 4-bit

DoReFa-Net method by 0.2% mAP with lower FLOPs and

memory usage with ResNet-34 backbone.

SSD. The bottom lines in Tab. 2 illustrate that our LWS-

Det can accelerate the computation and save storage by

14.76× and 4.81× on the SSD300 framework with a

VGG-16 backbone compared with real-valued counterparts.

Relatively speaking, the performance gap is rather small

(71.4% vs.74.3%).
Compared to 1-bit Bi-Real-Net, BiDet, and ReActNet,

our LWS-Det can achieve 7.6%, 5.4%, and 3.0% higher

mAP with the same FLOPs and memory usage. Likewise,

our LWS-Det outperforms 4-bit DoReFa-Net by 2.2% with

obviously lower FLOPs and memory usage.

In short, we achieved a new state-of-the-art performance

compared to other 1-bit CNNs on various detection frame-

works with various backbones on PASCAL VOC. We also

achieve a much closer performance to full-precision mod-

els, as demonstrated in extensive experiments, clearly vali-

dating the superiority of our LWS-Det.

4.4. Results on COCO

The COCO dataset is much more challenging for object

detection than PASCAL VOC due to its diversity and scale.

We compare the proposed LWS-Det with state-of-the-art 1-

bit neural networks, including Bi-Real-Net [25], BiDet [38],

and ReActNet [26] on COCO. For reference, we report the

detection performance of the 4-bit quantized FQN [20].

Tab. 3 shows the mAP, AP with different IoU thresholds,

and AP of objects with different scales. Limited by the page

width, we do not show the memory usage and FLOPs in

Tab. 3. We conduct experiments on Faster-RCNN and SSD

detectors and convey the results in two parts.

Faster-RCNN. Compared with the state-of-the-art 1-bit
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Table 3. Comparison of mAP@[.5, .95](%), AP with different IoU threshold and AP for objects in various sizes with state-of-the-art

binarized object detectors in Faster-RCNN and SSD detection framework on COCO minival, where the performance of real-valued and

4-bit detectors is reported for reference. The bold denotes the optimal result.

Framework Input Backbone Quantization Method
W/A

(bit)
mAP@[.5, .95] AP50 AP75 APs APm AP1

Faster-RCNN 1333×800

ResNet-18

Real-valued 32/32 32.2 53.8 34.0 18.0 34.7 41.9

FQN 4/4 28.1 48.4 29.3 14.5 30.4 38.1

Bi-Real-Net

1/1

17.4 33.1 17.1 7.1 18.7 27.9

BiDet 19.4 34.6 18.2 7.8 20.4 29.4

ReActNet 21.1 38.5 20.5 9.7 23.5 32.1

LWS-Det 26.9 44.9 27.7 12.9 28.7 38.3

ResNet-34

Real-valued 32/32 35.8 57.6 38.4 21.1 39.0 46.1

FQN 4/4 31.8 52.9 33.9 17.6 34.4 42.2

Bi-Real-Net

1/1

20.1 37.1 19.3 7.7 21.4 29.2

BiDet 21.7 41.8 23.1 10.1 24.9 34.5

ReActNet 23.4 43.3 24.4 10.7 25.9 35.5

LWS-Det 29.9 49.2 30.1 15.1 32.1 40.9

ResNet-50

Real-valued 32/32 37.7 59.3 40.9 22.0 41.5 48.9

FQN 4/4 33.1 54.0 35.5 18.2 36.2 43.6

Bi-Real-Net

1/1

22.9 40.0 21.5 10.5 25.6 36.9

ReActNet 26.1 47.7 35.6 14.1 28.9 38.9

LWS-Det 31.7 52.1 37.5 17.7 34.9 43.1

SSD 300×300 VGG-16

Real-valued 32/32 23.2 41.2 23.4 5.3 23.2 39.6

DoReFa-Net 4/4 19.5 35.0 19.6 5.1 20.5 32.8

Bi-Real-Net

1/1

11.2 26.0 8.3 3.1 12.0 18.3

BiDet 13.2 28.3 10.5 5.1 14.3 20.5

ReActNet 15.3 30.0 13.2 5.4 16.3 25.0

LWS-Det 17.1 32.9 16.1 5.5 17.4 26.7

methods, our LWS-Det outperforms other methods by sig-

nificant margins. With the ResNet-18 backbone, our LWS-

Det improves the mAP@[.5, .95] by 9.5%, 7.5%, and 5.8%
compared with state-of-the-art Bi-Real-Net, BiDet, and Re-

ActNet, respectively. Also, our LWS-Det improves the

mAP@[.5, .95] by 9.8%, 8.2%, and 6.5% compared with Bi-

Real-Net, BiDet, and ReActNet with the ResNet-34 back-

bone. Furthermore, our LWS-Det outperforms Bi-Real-Net

and ReActNet by 9.8% and 5.6% with ResNet-50 back-

bone. Similarly, on other APs with different IoU thresholds,

our LWS-Det outperforms others obviously.

Compared to 4-bit FQN, our 1-bit LWS-Det achieves

1.2%, 1.9% and 1.4% mAP lower with three different back-

bones. However, the FLOPs and memory usage of LWS-

Det are obviously much lower. Also LWS-Det can achieve

31.7% mAP@[.5, .95] on 1-bit Faster-RCNN with ResNet-

50 backbone, which is the new state-of-the-art results.

SSD. Our LWS-Det achieves 17.1% mAP@[.5, .95] on the

SSD300 framework with the VGG-16 backbone, which out-

perform Bi-Real-Net, BiDet, and ReActNet by 5.9%, 3.9%
and 1.8% mAP, respectively.

To conclude, compared with the baseline methods of

network quantization, our method achieves the best perfor-

mance in terms of the AP with different IoU thresholds, and

the AP for objects in different sizes on COCO, demonstrat-

ing LWS-Det’s superiority and universality in different ap-

plication settings.

5. Conclusion

This paper has proposed a novel 1-bit convolutional neu-

ral network training method to layer-wise minimize the an-

gular and amplitude error under a student-teacher frame-

work. The presented LWS-Det introduces differentiable bi-

narization search. Specifically, LWS-Det searches the best

binary weight with minimum angular loss. LWS-Det also

learns the scale factor to minimize the amplitude error. As

a result, the performance gap between 1-bit and real-valued

detectors can be significantly reduced. Extensive experi-

ments validate the superiority of LWS-Det in object detec-

tion compared with state-of-the-art 1-bit detectors. Future

work will focus on implementing our LWS-Det on ARM

CPUs for our future work.
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