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Abstract

Generative Adversarial Networks (GANs) are able to gen-

erate high-quality images, but it remains difficult to explicitly

specify the semantics of synthesized images. In this work,

we aim to better understand the semantic representation of

GANs, and thereby enable semantic control in GAN’s gener-

ation process. Interestingly, we find that a well-trained GAN

encodes image semantics in its internal feature maps in a

surprisingly simple way: a linear transformation of feature

maps suffices to extract the generated image semantics. To

verify this simplicity, we conduct extensive experiments on

various GANs and datasets; and thanks to this simplicity,

we are able to learn a semantic segmentation model for a

trained GAN from a small number (e.g., 8) of labeled im-

ages. Last but not least, leveraging our finding, we propose

two few-shot image editing approaches, namely Semantic-

Conditional Sampling and Semantic Image Editing. Given

a trained GAN and as few as eight semantic annotations,

the user is able to generate diverse images subject to a user-

provided semantic layout, and control the synthesized image

semantics. We have made the code publicly available1.

1. Introduction

Recent years have witnessed the striking success of Gen-

erative Adversarial Networks (GANs) [15] in various image

synthesis tasks: to generate human faces, animals, cars, and

interior scenes [28, 12, 17, 21]. Apart from improving the

generated image quality, recent research has been directed

toward the control of GAN’s image generation process—for

example, to enforce the generated images having user speci-

fied attributes, colors, and layouts.

Toward this goal, a fundamental question remains unan-

swered: how does a well-trained GAN encodes image se-

mantics—such as the layout of such semantic classes as hair,

nose, and hats—in its image generation process? Motivated

by this question, we aim to extract image semantics from

a GAN’s internal data, namely its feature maps. If we can

*Jianjin Xu is currently a research assistant at Panzhihua University.
1https://github.com/AtlantixJJ/LinearGAN

well extract image semantics and understand the extraction

process, we can develop insight on how the image semantics

are encoded.

Our finding is surprisingly simple: a linear transforma-

tion on the GAN’s internal feature maps suffices to extract

the generated image semantics. In stark contrast to GAN’s

highly nonlinear image generation process, this simple linear

transformation is easy to understand and has a clear geomet-

ric interpretation (see Sec. 3.1).

We refer to this linear transformation process as linear se-

mantic extraction (LSE). To verify its performance, we con-

duct extensive experiments on various GANs and datasets, in-

cluding PGGAN [20], StyleGAN [21] and StyleGAN2 [22]

trained on FFHQ [21], CelebAHQ [25], and LSUN [37]’s

bedroom and church dataset. We also compare the perfor-

mance of LSE with other semantic extraction approaches

which use learned nonlinear transformations. It turns out

that LSE is highly comparable to those more complex, non-

linear models, suggesting that image semantics are indeed

represented in a linear fashion in GANs.

Related to our study of the linear encoding of image

semantics in GANs is the work of GAN Dissection [5]. It

identifies feature maps that have causal manipulation ability

for image semantics. Yet, most feature maps in that approach

come from middle-level layers in the GAN, often having

much lower resolution than the output image. Instead, we

examine the GAN’s internal feature maps collectively. We

upsample all feature maps to the resolution of final output

image and stack them into a tensor. This approach allows

us to study per-pixel feature vectors, that is, feature values

corresponding to a particular pixel across all internal layers,

and we are able to classify every output pixel into a specific

semantic class.

The linear transformation in our proposed LSE is learned

under supervision. Its training requires image semantic an-

notations, which are automatically generated using a pre-

trained segmentation model (such as UNet [29]). Interest-

ingly, thanks to the linearity of LSE, even a small number of

annotations suffice to train LSE well. For example, the LSE

trained with 16 annotated images on StyleGAN2 (which it-

self is trained on FFHQ dataset) achieves 88.1% performance
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relative to a fully trained LSE model. Not only does this

result further support our finding about the linear representa-

tion of semantics in GANs, it also inspires new approaches

for controlling image generation through few-shot training.

In particular, we explore two controlled image generation

tasks: (1) Semantic Image Editing (SIE) and (2) Semantic-

Conditional Sampling (SCS). The former aims to update

images based on the user’s edit on the semantics of a GAN’s

output (e.g., generate images in which the hair region is

reshaped); the latter is meant to generate images subject to a

user specification of desired semantic layout (e.g., produce

images of an interior room where the furnitures are laid out

according to user specification). We demonstrate few-shot

SIE and SCS models both trained with small number of

annotated images.

Behind both SCS and SIE is the core idea of matching the

generated image semantics with a target semantic specifica-

tion. This is done by formulating an optimization problem,

one that finds a proper latent vector for the GAN’s image

generation while respecting the user specification. We also

consider baselines of both tasks, which are implemented by

using carefully trained, off-the-shelf semantic segmentation

models rather than our few-shot LSE. In comparison to the

baselines, our approach with 8-shot LSE is able to generate

comparable (and sometimes even better) image quality.

In summary, our technical contributions are twofold: (i)

Through extensive experiments, we show that GANs rep-

resent the image’s pixel-level semantics in a linear fashion.

(ii) We propose an LSE with few-shot learning, which fur-

ther enables two image synthesis applications with semantic

control, namely SCS and SIE under few-shot settings.

2. Related work

Generative Adversarial Networks. GANs [15] have

achieved tremendous success in image generation tasks, such

as synthesizing photo-realistic facial images [20, 21, 22],

cityscapes [35, 27] and ImageNet images [38, 6]. Among

various GAN models, Progressively Grown GAN (PGGAN)

[20], StyleGAN [21] and its improvement StyleGAN2 [22]

are three of the most widely used GAN structures. PGGAN

shares a similar architecture as the Deep Convolution GAN

(DCGAN) [28], trained progressively. StyleGAN adopts the

adaptive instance normalization [16] from neural stylization

literatures to improve generation quality. Further improving

on StyleGAN, StyleGAN2 is by far the state-of-the-art GAN

model on various datasets. We therefore conduct experi-

ments on the three types of GANs.

Interpreting GANs. Our study of image semantics in

GAN models is related to the works toward interpreting

and dissecting GANs. Along this research direction, ex-

isting methods can be grouped into two categories. First

are those aiming to interpret a GAN’s latent space. Prior

works [30, 36] find that there exist linear boundaries in latent

space that separate positive and negative attributes of image

samples. Others works [31, 19, 34] propose to find linear

trajectories of attributes in the latent space in an unsuper-

vised way. Second, interpreting the feature maps of GANs.

GAN Dissection [5] identifies convolution units that have

causality with semantics in the generated images. Collins et

al. [11] find that the clusters of semantics can be found by k-

means and matrix factorization in GAN’s feature maps. Our

differences are two-fold. First, we study the high-resolution

semantic masks extracted from the generator, which is rarely

touched in existing works. Second, the SIE and SCS appli-

cations derived from our discoveries are novel in terms of

their few-shot settings.

Controlling GANs. Methods to enable GAN’s control-

lability can be divided into two streams. First, training

new GANs with architectures specifically designed to en-

able controllability. Conditional GAN (cGAN) and its vari-

ant [26, 13, 9] are proposed to enable GAN’s controllabil-

ity for category. StackGAN [40] extends cGAN by using

the embedding of natural language to control the synthesis.

The image-to-image translation networks can map semantic

masks to images [45, 18, 27, 46]. They allow explicit control

of semantic structures but need expensive labeled data for

training. Second, interpreting or devising auxilary architec-

tures to exploit the controllability of pretrained GAN models.

The controllability for global attributes is studied by many

interpretation-based editing methods [30, 36, 31, 19, 34].

Besides interpretation, other methods propose auxilary net-

works for the controllability for attributes [3] or 3D char-

acteristics [14, 33, 41]. The controllability for local image

editing also receives much research attention. The latent

code optimization methods [44, 7] can make the image re-

semble the color strokes drawn by users, but the precision

of editing is limited. The feature map substitution methods

[1, 32, 10] can edit a localized region of an image precisely,

but the editing operation requires users to find a source im-

age for reference. GAN Dissection [5] succeed in editing

the semantics of images, but its resolution and diversity are

limited. Bau et al. [4] rewrite the weight of a generator to

change its generation pattern.

The semantic controllability studied in our work differs

from previous works in two aspects. First, previous SCS

models in the context of image-to-image translation require

extensively labeled images, whereas our approach requires

only a few annotations in its training. Second, previous SIE

models (such as [5]) are mainly concerned with the control of

semantic morphology, not the user’s ability to fully specify

semantic regions. As a result, our approach requires no

reference image, and thereby eases the user editing process.

3. GAN’s Linear Embedding of Semantics

We aim to decode a GAN’s internal representation of

image semantics in its image synthesis process. Our find-
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Figure 1. When synthesizing an image I from a latent vector z, the generator builds a series of internal feature maps. Provided a well-trained

GAN model, we decode its feature maps {xi}
N−1

i=1
to extract the output image’s semantic segmentation S. This is done by learning a simple

linear transformation applied on the feature maps. Learning the linear transformation is supervised by a pretrained segmentation model.

ing is surprisingly simple: a linear transformation on the

GAN’s feature maps suffices to reveal its synthesized image

semantics. In this section, we first construct such a linear

transformation (Sec. 3.1), and then conduct experiments

(Sec. 3.2) to examine its competence for revealing image

semantics (Sec. 3.3).

3.1. Linear Transformation on Feature Maps

A well-trained GAN model maps a randomly chosen

latent vector to a realistic image. Structurally, a GAN model

concatenates a series of network layers. Provided a latent

vector, each layer i outputs a feature map xi, which is in

turn fed into the next layer. We denote the width, height,

and depth of xi using wi, hi and ci, respectively (i.e., xi 2

R
ci⇥wi⇥hi ).

It is unsurprising at all that one can deduce from the fea-

ture maps the generated image semantics. After all, feature

maps represent the GAN’s internal data flow that results in

the final image. As images can be semantically segmented

using pretrained networks, the feature map can also be seg-

mented with appropriate networks. More interesting is the

question of how easily we can learn from feature maps about

the generated image semantics. A straightforward relation

between feature maps and image semantics could be easy to

understand, and inspire new theories and applications.

Objective. Consider a GAN model consisting of N layers

and producing images with m semantic classes (such as

hair, face, and cloth). We seek the simplest possible relation

between its feature maps and output image semantics—a

linear transformation matrix Ti applied to each feature map

xi to predict a semantic map of the layer i. By accumulating

all the maps, we wish to predict a semantic segmentation S

of the GAN’s output image (see Fig. 1). Formally, S is just

a linear transformation of all feature maps, defined as

S =
N�1
X

i=1

u
"
i (Ti · xi), (1)

where Ti 2 R
m⇥ci converts xi 2 R

ci⇥wi⇥hi into a seman-

tic map Ti · xi 2 R
m⇥wi⇥hi through a tensor contraction

along the depth axis. The result from each layer is then

upsampled (denoted by u
"
i ) to the output image resolution.

The summation extends over all internal layers, excluding

the last layer (layer N ), which outputs the final image. The

result S 2 R
m⇥w⇥h has the same spatial resolution w ⇥ h

as the output image. Each pixel Sij is a m ⇥ 1 vector, in-

dicating the pixel’s unnormalized logarithmic probabilities

representing each of the m semantic classes. We refer to this

method as Linear Semantic Extractor (LSE).

Optimizing Ti. The training process of LSE is supervised

by pixel-level annotation of semantics. Yet, it is impractical

to manually annotate a large set of images that are automat-

ically generated by a GAN model. Instead, we leverage

off-the-shelf pretrained segmentation models for semantic

annotation. In practice, we use UNet [29] to segment facial

images (into the nose, eye, ear, and other semantic regions),

and DeepLabV3 [8] with ResNeSt backbone [39] for bed-

room and church images.

Concretely, provided a well-trained GAN model, we ran-

domly sample its latent space to produce a set S of synthetic

images. When synthesizing every image in S, we also record

the model’s feature maps {xi}
N�1
i=1 . These feature maps are

linearly transformed using (1) to predict a semantic mask

of the image, which is then compared with the result from

the pretrained semantic segmentation network to form the

standard cross-entropy loss function:

L =
1

w · h

X

1iw
1jh

"

log

 

m
X

k=1

exp (Sij [k])

!

� Sij [Yij ]

#

,
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Figure 2. The visualization of the linear transformation, with up-

sample placed before convolution.

where Yij is the semantic class at pixel (i, j) indicated by the

supervisor network, and Sij [k] is the corresponding unnor-

malized logarithmic probability for the k-th semantic class

predicted by the LSE.

Lastly, the linear matrices Ti are optimized by minimiz-

ing the expected loss (estimated by taking the average loss

over image batches in S). Details of the training process are

provided in Appx. D.

Geometric picture. The linear relation (1) allows us to

draw an intuitive geometric picture of how image semantics

are encoded in the generator’s feature maps.

First, notice that Ti applied on xi can be viewed as a

1⇥1 convolutional filter with stride 1. The filter operation is

commutative with the upsample operation u
"
i (·) (see Appx. B

for a proof of this commutative property). As a result, we

can rewrite the semantic prediction S in (1) as

S =

N�1
X

i=1

Ti · u
"
i (xi) = T ·X, (2)

where T =
⇥

T1 . . . TN�1

⇤

is an m ⇥ n matrix with

n =
PN�1

i=1 ci being the total layer depth. X 2 R
n⇥w⇥h is

a tensor concatenating all upsampled xi (i.e., u
"
i (xi) with

resolution ci ⇥ w ⇥ h) along the depth axis (see Fig. 2a).

Now, consider a pixel (i, j) in the output image. To

predict its semantic class, Equation (2) shows that we can

take the corresponding n⇥1 vector Xij that stacks the pixel’s

features resulted from all GAN layers, and dot product it

with each row of T (see Fig. 2b): Sij = T ·Xij . In other

words, each row T
(k) of T defines a direction representing

the semantic class k in the n-dimensional feature space.

If the linear transformation can classify features with

high accuracy, then the feature vectors of different semantic

classes are linearly separable. Define the set of all vectors

that are classified into class k as

Rk = {x|T(k)
x > T

(j)
x, 8j 6= k}, (3)

where T
(k) is the k-th row of the tensor T. This definition

shows that the subspace of each semantic class forms a

hyper-cone originating from the origin.

An intuitive geometric picture is as follows. Consider a

unit n-sphere at the origin. The intersection of a semantic

class i’s hyper-cone and the sphere surface encloses a con-

vex area Ai. Then, take the feature values at a pixel and

normalize it into a unit vector. If that vector falls into the

convex area Ai, then the pixel is classified as the class i. In

other words, the surface of n-sphere is divided into k convex

areas, each representing a semantic class. From this geomet-

ric perspective, we can even infer a pixel’s semantic class

without training the linear model (1). Rather, we locate a

semantic center ci for each convex area Ai on the n-sphere

surface. For example, the semantic centers can be estimated

by a clustering algorithm (such as k-means clustering). A

pixel is classified as class i if its feature vector is closest to ci
(among all semantic centers) on the n-sphere. In Sec. 3.3, we

show that the class centers can segment images reasonably

well, supporting our hyper-cone interpretation.

Nonlinear semantic extraction. If LSE can extract the

semantics of generated images, a further question is to what

extent the semantics can be better extracted by nonlinear

models. The answer to this question provides further support

on whether or not feature maps in GANs indeed encode

image semantics linearly. If they do, then nonlinear models

would perform no significantly better than our linear model.

We propose two nonlinear extraction models for this study.

The first Nonlinear Semantic Extractor (which we referred

to as NSE-1) transforms each layer’s feature maps through

three convolutional layers interleaved with ReLU activations.

Each transformed feature map is upsampled using the same

interpolation u
"
i (·) as in (1). The second model (NSE-2)

transforms feature maps into hidden layers and refines them

as the resolution increases, resembling the approach in DC-

GAN [28]. See Appx. C for details of both models.

There are other nonlinear models—for example, one that

concatenates a generative model with a full-fledged semantic

segmentation model (such as UNet [29]). However, such

a model provides no clue about how feature maps encode

image semantics. We therefore choose not to consider them

in our studies.

3.2. Experiment Setup

We conduct experiments on various GANs and datasets

to examine our LSE model. We choose PGGAN [20], Style-

GAN [21], and StyleGAN2 [22] trained on three datasets.

Specifically, we use StyleGAN trained on the facial im-

age dataset CelebAHQ [25], and StyleGAN2 trained on

FFHQ [21] and separately on a bedroom and church dataset

from LSUN [37]. Instead of training those GAN models

from scratch, we use the existing pretrained GANs2.

Training LSE is supervised by pretrained semantic seg-

mentation models. For facial images, we use a UNet trained

on CelebAMask-HQ [24] with manually labeled semantic

masks, and it segments a facial image into 15 semantic re-

gions. For bedroom and church images, we use the publicly

2These pretained GANs are publicly available here.
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available DeepLabV3 [8] trained on ADE20K [42] dataset.

DeepLabV3 predicts 150 classes, most of which are not

present in the GAN’s output images. Thus, we consider a

subset of classes for generated bedroom and church images.

Our choice of the classes is described in Appx. E.

In each experiment, the training data of LSE consists of

51,200 images sampled by a GAN model (i.e., PGGAN,

StyleGAN, or StyleGAN2), and the images are semantically

labeled by a pretrained segmentation model. Meanwhile,

we record the GAN model’s feature maps in each image

generation. The semantic masks together with the feature

maps are then used to train the transformation matrix Ti for

every GAN layer (see Appx. D for more details).

After training, we evaluate our LSE on a separate set of

10,000 generated images. During the generation of each

image, we use LSE (and NSE-1 and NSE-2 for comparison)

on the generator’s feature maps to predict a semantic seg-

mentation, which is in turn compared with the segmentation

labels to compute an IoU score (defined in Appx. A).

3.3. Results

We now present empirical results to back our proposed

linear semantic extraction (1).

Evaluation of LSE. Figure 3 compares qualitatively se-

mantic segmentation of LSE to other methods. The quantita-

tive results in terms of mIoU scores are reported in Table 1,

from which it is evident that our simple LSE is compara-

ble to more complex, nonlinear semantic classifiers. The

relative performance gap between LSE and NSEs (NSE-1

and NSE-2) is within 3.5%. Results on StyleGAN-Bedroom

and StyleGAN-Church have a slightly larger gap (< 8%).

We present additional qualitative results and IoU for each

category in Appx. J.

Takeaway. Our experiments show that LSE is capable

of extracting image semantics from the feature maps of the

GANs. Further, the close performance of LSE to NSEs sug-

gests that a well-trained GAN encodes the image semantics

in its feature maps in a linear way.

Our approach differs from the prior GAN Dissection

work [5], which identifies feature maps correlating with

a specific semantic class. These feature maps are primar-

ily found in middle-level feature maps, resulting in a lower

resolution segmentation than the network output. Also, the

per-pixel semantic classification remains unexplored. In con-

trast, the semantics extracted by LSE are of high resolution

(the same as the output image) and have sharp boundaries.

Geometrical evidence. The geometric interpretation of (1)

indicates that features of a semantic class fall into a convex

surface area on an n-sphere. To verify this intuition, we test

a stronger hypothesis—the features of individual pixels can

be clustered around class centers. If the clusters are well

formed, we should be able to find a convex hull to identify

individual classes.

Figure 3. Qualitative comparison of LSE, NSE-1 and NSE-2. From

top to bottom, every 3 rows are from GAN models trained on the

same dataset (face, bedroom, church images, respectively). Images

are sampled randomly rather than cherry-picked.

To estimate the class centers, we randomly generate 3000

images using StyleGAN-CelebAHQ, and obtain their seman-

tic masks using UNet. All per-pixel feature vectors from the

same semantic class are collected and normalized onto the

unit n-sphere. The vectors are then averaged and renormal-

ized on the n-sphere. The resulting vector is then treated as a

class center to determine each pixel’s semantic class. Some

segmentation results are shown in Fig. 4, suggesting that this

approach indeed segments images reasonably. The segmenta-

tion error (e.g., in Fig. 4) may be attributed to the inaccurate
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PGGAN StyleGAN StyleGAN2

Dataset CelebAHQ Bedroom Church CelebAHQ Bedroom Church FFHQ Bedroom Church

LSE 65.5 (-1.6) 33.2 (-3.2) 51.3 (-3.2) 69.1 (-1.9) 39.9 (-7.8) 35.4 (-6.3) 79.7 (-1.7) 53.9 (-3.4) 37.7 (-2.6)

NSE-1 66.5 34.3 53.0 70.5 43.3 37.8 81.0 55.8 38.7

NSE-2 65.9 (-0.9) 30.7 (-10.5) 49.5 (-6.6) 70.1 (-0.5) 38.9 (-10.2) 34.0 (-10.1) 80.2 (-1.1) 52.1 (-6.8) 35.3 (-8.8)

Table 1. The mIoU (%) of LSE, NSE-1, and NSE-2 trained with off-the-shelf semantic segmentation models (UNet for

CelebAHQ and FFHQ, DeepLabV3 for bedroom and church dataset). “Bedroom” and “Church” images are subsets of the

LSUN [37] dataset. The numbers in brakets are the performance difference relative to the best model highlighted in bold.

UNet class centerimage UNet class centerimage

Figure 4. Forging LSE’s parameter T using the statistical centers

of features. Experiment is done on StyleGAN-CelebAHQ.

boundaries between classes, as they are not explicitly trained

to separate different semantic classes. Nevertheless, this ex-

periment confirms our geometric intuition about the feature

maps’ linear embedding of semantics.

We further compute the statistics of cosine similarities of

feature vectors that are within the same semantic class and

that are in different classes. We show that feature vector’s

cosine similarities between pixels within the same class are

indeed higher. Details are reported in Appx. F.

Takeaway. Statistical centers of feature vectors can seg-

ment images reasonably well, suggesting that feature vectors

from different classes are well separated on the n-sphere.

The relatively large cosine similarities between different

classes also backs our intuition. These are further evidence

indicating linear encoding of image semantics in the feature

maps of GANs.

Few-shot LSEs. Thanks to the linearity of LSE, we can

also train it using a small number of examples. We refer

to this approach as the few-shot LSE. Here, we experiment

the training of LSE with only 1, 4, 8, and 16 annotated

images, respectively. For each few-shot LSE setup, the

training is repeated for five times, and we report the average

performance of the five trained models.

Table 2 reports the quantitative evaluation results. First,

the extreme case, one-shot LSE, already shows plausible per-

formance, achiving 69.8%, 39.8%, and 52.5% mIoU scores

N FFHQ Bedroom Church

1 55.6 (69.8) ± 5.2 21.5 (39.8) ± 3.7 19.7 (52.2) ± 3.4

4 64.8 (81.4) ± 1.0 36.5 (67.8) ± 2.7 24.2 (64.3) ± 1.4

8 68.4 (85.8) ± 2.6 38.6 (71.6) ± 2.4 26.3 (69.7) ± 0.8

16 70.2 (88.1) ± 3.0 42.2 (78.3) ± 1.1 27.7 (73.5) ± 0.8

full 79.7% 53.9% 37.7%

Table 2. The evaluation of few-shot LSEs for StyleGAN2. Each

model is trained 5 times. Both the mean and maximum deviation

of the 5 repeats are shown. The numbers in parentheses indicate

the ratio of the mean performance over the fully trained model’s

performance listed in the last row.

relative to the fully trained model. The 16-shot LSE fur-

ther improves the mIoU scores to 88.1%, 78.3%, and 73.5%

relative to the fully trained model.

Takeaway. The few-shot LSEs has already the perfor-

mance comparable to fully supervised LSEs. Not only do

they enable a low-cost way of extracting semantics from

GANs, the results further support our hypothesis that image

semantics are linearly embedded in feature maps.

4. Applications

In this section, we leverage the simplicity of LSE to con-

trol image semantics of GAN’s generation process.

4.1. Few-shot Semantic Editing

In many cases, the user may want to control a GAN’s

image generation process. For example, they might want to

adjust the hair color of a generated facial image from blond

to red; and the user may draw a red stroke on the hair to

easily specify their intent. Existing approaches, such as color

space editing [44, 7, 2, 43], aim to find a latent vector that

generates an image better matching the user specification.

The latent vector is often found by minimizing a distance

measure between the generated image and the user’s strokes

in color space.

However, without explicit notion of semantics, the mini-

mization process may not respect image semantics, leading

to undesired changes of shapes and textures. For example,

in the 2nd row and 2nd and 3rd columns of Fig. 5, the user

wishes to remove the hair in generated images, but the color

space editing methods tend to just lighten the hair color

rather than removing it.

Leveraging LSE, we propose an approached called Se-

mantic Image Editing (SIE) to enable semantic-aware im-

age generation. We define a semantic edit loss Ls =
L(P (G(z)), Y ), where L(·) is the cross-entropy loss, Y

is the target semantic mask, and G is the generator that

takes the latent vector z as input. P is a pretrained seg-

mentation model such as our LSE. Starting from an image’s

latent vector z, we find an output image’s latent vector z0 by

minimizing the loss. The details are presented in Appx. G.

Here, we compare the results of the method using differ-

ent segmentation models, including UNet, our 8-shot LSE,

and fully trained LSE. The qualitative results are shown in

Fig. 5. For each instance, we include both the results of
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original color stroke edit SIE(UNet) SIE(8-shot LSE) SIE(LSE)semantic stroke

Figure 5. Results of Semantic Image Editing (SIE) on StyleGAN2-FFHQ. Images edited with color strokes are shown in col 2 and 3. Col 4

and 5 show LSE’s original segmentation mask and the user-editied semantic masks. The rest of columns show the results of SIE(UNet),

SIE(8-shot LSE), and SIE(LSE), respectively.

color-space editing and semantic editing, and more results

are presented in Appx. J.

First, SIE(UNet) controls image generation and better

preserves semantics than color-space editing. In comparison

to the results of color-space editing, the undesired changes in

output images are greatly reduced, although SIE(UNet) may

still fail to transform the image’s semantics: for instance,

in the 1st and 2nd row of Fig. 5, SIE(UNet) barely changes

the original image. We speculate that this is because the

gradient from Ls is carried through the entire UNet, making

the optimization process more difficult.

SIE(8-shot LSE) edits the semantics better than

SIE(UNet): it preserves the semantic regions not intended

by the user. However, in 5th and 6th row, SIE(8-shot LSE)

produces lower image quality. We conjecture that this is due

to highly unbalanced data distribution: the semantic classes

“hat” and “eyeglasses” occur sparsely in the training dataset.

As a result, those classes can not be well represented in

the GAN model—leading to the well-known mode collapse

problem. Lastly, SIE(8-shot LSE) has a similar performance

to SIE(LSE), although its LSE is trained with much fewer

annotations.

4.2. Few-shot Conditional Generation

Semantic-Conditional Sampling (SCS) aims to synthe-

size an image subject to a semantic mask. It offers the user

more control over the image generation process. SCS has

been explored [27, 46], but most previous works rely on

large annotated datasets to train their models. Thanks to its

simplicity, our LSE can be trained with a small set of anno-

tated images (recall our few-shot LSE). Here we leverage

it to build a few-shot SCS model. It is the need of only a

few labeled images that differs our method from existing

image-to-image translation methods [18, 45, 46, 27, 35].

Our few-shot SCS finds output latent vector by formu-

lating a minimization problem similar to SIE discussed in

Sec. 4.1. But unlike SIE, which takes the input image’s latent

vector, it needs to choose a proper initial latent vector. The

details of the minimization process are presented in Appx. H.

Qualitative results. Figure 6 shows conditionally sampled

images using 8-shot LSEs. The eight image labels are pro-

duced by a pretained semantic segmentation model: for

facial images, we use UNet; and for bedroom and church

images, we use DeepLabV3.

While the generated images are diverse, they all respect

well the provided semantic targets (first column of Fig. 6).

For facial image generation (1st to 4th row), faces are well

matched to the provided semantic masks. For bedroom

images (5th to 8th row), the location and orientation of beds,

windows, and walls all match well to the target semantic

layout. For church images (9th to 12th row), the church

geometries are mostly matched. For instance, in the first

group of church images, three of the five samples have two

tall towers and one short tower in between. In the second
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Figure 6. SCS results on StyleGAN2. Every pair of rows are to

compare SCS(8-shot LSE) results (shown in the first row of each

pair) with SCS using a pretrained segmentation model (shown in

the second row of each pair).

group, all the samples have a tall tower on the left side,

matching the provided semantic mask.

The SCS(8-shot LSE) and the baseline SCS(UNet) have

comparable semantic quality in generated images. We no-

tice that in 3rd and 4th rows, SCS(8-shot LSE) appears less

successful than SCS(UNet) to respect the provided semantic

targets. We believe that this is again due to the data imbal-

ance: “hat” and “eyeglasses” occur must less frequently in

the training dataset than other semantic classes.

N Church Bedroom FFHQ

1 16.0 ± 1.4 17.5 ± 2.0 37.2 ± 0.8

4 18.0 ± 1.3 21.6 ± 0.9 39.1 ± 0.5

8 19.6 ± 0.5 21.7 ± 0.8 39.4 ± 0.9

16 20.4 ± 0.6 22.3 ± 0.4 40.0 ± 0.2

baseline 23.1 17.3 34.3

Table 3. The semantic accuracy measures the semantic agreement

between generated images and targets. For SCS with few-shot

LSEs, each model is trained for 5 times with different training

data to account for the training data variance. The numbers before

± sign are the average results of the 5 repeats, and the numbers

following ± indicate the maximum deviations from the average.

Experiments are done on StyleGAN2.

Quantitative results. We compute the semantic accuracy

of SCS, which measures the discrepancy between the seman-

tic target and the segmentation of a generated image. We

present the formal definition of the accuracy in (7) of the

appendix, and report the results in Table 3. On the church

dataset, the SCS(few-shot LSE) performs slightly worse than

SCS(UNet), while on the bedroom and face datasets, our

method with 8-shot (and 16-shot) LSE is even better than

SCS(UNet).

5. Conclusions

In this work, we study how the image semantics are em-

bedded in GAN’s feature maps. We propose a Linear Se-

mantic Extractor (LSE) to extract image semantics modeled

by GANs. Experiments on various GANs show that LSE

can indeed reveal the semantics from feature maps. We also

study the class centers and cosine similarities between differ-

ent classes to provide geometric interpretation of our LSE.

Therefore, it is well-backed that GANs use a linear notion

to encode semantics. Then, we successfully train LSEs in

few-shot settings. Using only 16 training annotations, we ob-

tain 73.5%, 78.3%, and 88.1% performance relative to fully

supervised LSEs on the church, bedroom, and face images.

Finally, we build two novel applications based on few-shot

LSEs: the few-shot Semantic-Conditional Sampling and the

few-shot Semantic Image Editing. Our methods can match

or surpass the baselines using fully supervised segmenta-

tion networks. Using the proposed methods, users can exert

precise and diverse spatial semantic controllability over pre-

trained GAN models with only a few annotations.
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