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Abstract

SinGAN shows impressive capability in learning inter-

nal patch distribution despite its limited effective receptive

field. We are interested in knowing how such a translation-

invariant convolutional generator could capture the global

structure with just a spatially i.i.d. input. In this work, taking

SinGAN and StyleGAN2 as examples, we show that such

capability, to a large extent, is brought by the implicit posi-

tional encoding when using zero padding in the generators.

Such positional encoding is indispensable for generating im-

ages with high fidelity. The same phenomenon is observed in

other generative architectures such as DCGAN and PGGAN.

We further show that zero padding leads to an unbalanced

spatial bias with a vague relation between locations. To

offer a better spatial inductive bias, we investigate alterna-

tive positional encodings and analyze their effects. Based

on a more flexible positional encoding explicitly, we pro-

pose a new multi-scale training strategy and demonstrate

its effectiveness in the state-of-the-art unconditional genera-

tor StyleGAN2. Besides, the explicit spatial inductive bias

substantially improves SinGAN for more versatile image

manipulation.1

1. Introduction

SinGAN [42] and StyleGAN [21, 22] are among the few

representative Generative Adversarial Networks (GANs) that

show impressive image generative capability. Both of their

generators are based on a fully translation-invariant convolu-

tional network. One would expect that in an unconditional

setting with a spatially i.i.d. input, the translation invari-

ance property should result in position-agnostic outputs like

Fig. 1(b). Nonetheless, the results of SinGAN shows surpris-

ingly structured results like Fig. 1(a).

We carefully study this phenomenon and find that it is

the zero padding that causes a location-aware bias in the

distribution of feature maps. Such a spatial bias gradually

spreads from the border to the center of feature maps through

1Project page: https://nbei.github.io/gan-pos-encoding.html

Original Image (b) SinGAN w/o padding(a) SinGAN

Original Image (c) SinGAN w/ padding (d) SinGAN w/o padding

(e) SinGAN w/ Cartesian Grid (f) SinGAN w/ SPE

Figure 1: Images sampled from the internal patch distribu-

tion learned by SinGAN. Above the dotted line, we present

sampled balloons with standard SinGAN and padding-free

SinGAN. A more challenging case of generating a school of

fish is shown below the dotted line. (c)-(f) show the effects of

different positional encodings that we explore on SinGAN.

the stacked convolutional layers in the generator. One can

regard this spatial bias as an implicit positional encoding,

which contributes to the high fidelity of images generated by

SinGAN and StyleGAN. Interestingly, we also observe this

phenomenon in other unconditional generative architectures

such as DCGAN [36] and PGGAN [20].

Our observation reveals the importance of introducing

positional encoding in generative models. The original in-

tention of zero padding is to maintain the spatial size of fea-

ture maps. It is not specially designed to offer the required

spatial inductive bias. In particular, we find that the bias

caused by zero padding is unbalanced over the image space.

Since paddings are introduced at image borders and corners,

the positional encoding at those locations is structured. In

contrast, the spatial encoding in the center region is highly

unstructured due to the gradually diminishing effects of zero

padding from borders to the center. The shortcoming of such

bias can be observed from Fig. 1 where we use SinGAN
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to synthesize an image of a school of fish. In this example,

SinGAN generates relatively more structured output at the

borders but inferior results at the center of the image.

The aforementioned example suggests the shortcoming

of padding in serving the role of positional encoding. The

desired positional encoding should keep a consistent spatial

structure and be invariant to scale transformation. In this

study, we investigate two alternatives for explicit positional

encoding, i.e., the normalized Cartesian spatial grid [19]

and 2D sinusoidal positional encoding [9, 32, 34, 47], which

both guarantee a balanced spatial inductive bias over the

whole image space. We show that these explicit positional

encodings allow a convolutional generator to generate im-

ages that exhibit a more stable structure and more reasonable

patch reoccurrence given an arbitrary scale in the generation,

as shown in Fig. 1(e) and Fig. 1(f).

With the more flexible explicit positional encodings, we

can redesign convolutional generative models to synthesize

images at multiple scales even just using a single model.

Achieving this functionality is challenging with existing

models. One will typically need to train different generators

with different upsampling blocks. We show that multi-scale

generation with a single fully convolutional generator is pos-

sible using our newly proposed multi-scale training strategy

based on explicit positional encodings. We call it Multi-Scale

training with PositIon Encodings (MS-PIE). We demonstrate

its effectiveness in the state-of-the-art unconditional genera-

tor StyleGAN2. With MS-PIE, a single StyleGAN2 that is

designed for 256× 256 image generation yields compelling

generation quality at multiple scales up to 512× 512 or even

1024 × 1024 pixels, despite that it only contains limited

upsampling blocks in its architecture.

We summarize the contributions of this study as follows:

(1) we reveal the phenomenon where zero padding uninten-

tionally introduces implicit (but useful) positional encoding

in existing convolutional generators. We study this phe-

nomenon through detailed theoretical and empirical analy-

ses. While the influence of padding to translation-invariant

convolution has been discussed in recent works [2, 18, 23],

these studies focus on image classification and detection.

Our research is the first study that investigates the impacts

of such spatial bias on image generation. (2) We further

investigate and present two explicit positional encodings as

two new spatial inductive bias in generators, which can sub-

stantially improve the versatility and robustness of SinGAN.

(3) We propose a new multi-scale training strategy to achieve

high-quality multi-scale synthesis with a single StyleGAN2

that is originally designed for 256× 256 generation.

2. Related Work

Padding Effects. Some recent studies [2, 18, 23] dis-

cover an intriguing phenomenon in which the widely used

zero padding would offer spatial information (an unin-

tended design) in convolutional networks for image clas-

sification [8, 14] and detection [12, 39]. Islam et al. [18]

find padding implicitly injects positional information in

ResNet [14] and VGG [45], verified with an auxiliary po-

sitional encoding module. The experiments in [23] further

show that the effects of padding vary among different ar-

chitectures [4, 16]. Alsallakh et al. [2] observe the similar

phenomenon and find that such spatial bias would cause

blind spots for detectors [28]. In this work, we show both

theoretically and empirically how zero padding accidentally

encodes spatial information for convolutional generators.

We find that spatial bias, unlike high-level visual tasks, is

actually necessary for generators to work well. We further

discuss better choices of spatial inductive bias.

Sinusoidal Positional Encoding. Sinusoidal positional en-

coding (SPE) is widely used in natural language processing

(NLP) [6, 9, 47] and 3D vision [32, 34, 46]. In the trans-

former architecture [47], the sequence model relies on SPE to

indicate the time step. SPE provides a stable and reasonable

positional encoding for dealing with natural language be-

cause the transformation between different time steps in SPE

is irrelevant to the length of the input sentence. To avoid the

spectral bias [37] in the fully connected networks, Martin et

al. [32] transfers the input features from the low-frequency

domain to the high-frequency domain [46]. Different from

the aforementioned studies, we focus on adopting sinusoidal

positional encoding in 2D convolutional generators to obtain

more effective spatial inductive bias.

Cartesian Grid. Cartesian grid has been introduced in spa-

tial transformer networks [19] as a standard coordinate sys-

tem for 2D spatial feature space. It is widely adopted for dif-

ferentiable image warping [38, 44, 49, 51, 50, 48] and align-

ing pixels among different spaces [10, 17, 27, 40, 41, 53].

In this study, we develop a new role of explicit positional

encoding for the normalized Cartesian grid.

3. Methodology

As shown in Fig. 1, once we remove the padding in Sin-

GAN, we observe that the translation-invariant convolutional

generator collapses to position-agnostic distribution. This

suggests that SinGAN relies on zero padding to capture spa-

tial information. From the view of the stochastic process, we

clarify how zero padding works as implicit positional encod-

ing. After analyzing such implicit positional encoding, we

investigate the potential of two explicit positional encodings

as better spatial inductive bias in GAN’s generator. Finally,

we present applications on MS-PIE and SinGAN to prove

the significance of spatial inductive bias to GANs.

3.1. Translation Invariance in Generative Models

To better understand the effects of zero padding, we first

analyze the behavior of padding-free convolutional gener-

ators. The popular SinGAN adopts a fully convolutional
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generator with a spatially i.i.d. noise map as input. Thus,

the translation-invariant convolutional network can be re-

garded as a stochastic process on spatial random variables.

We mainly study two basic statistical properties of the expec-

tation (E) and autocorrelation function (R) for the convolu-

tional feature maps. E(y~i) defines the distributional property

of each location ~i in the convolutional feature map {y~i},

while R(y~i, y~j) depicts the relationship between two spatial

locations. Due to the space limitation, a detailed derivation

is shown in our supplementary material.

Taking xk ∈ X~i

i.i.d.
∼ N (0, 1) as input, the expectation of

the feature map after the first convolutional layer y
(1)
~i

is:

E(y
(1)
~i

) =
∑

k

w
(1)
k

∫ +∞

−∞

xkp(xk)dxk + b(1)

=
∑

k

w
(1)
k E(xk) + b(1) = b(1), (1)

where (w
(1)
k , b(1)) are parameters in the first convolutional

layer and the subscript k indicates the k-th item in the sum

of a convolutional weight (wk) multiplying an input fea-

ture (xk). Besides, p(·) represents the probability density

function. As we assume X~i

i.i.d.
∼ N (0, 1), the zero E(xk)

induces that the expectation of the first convolutional feature

is only related to the bias parameter. After applying a com-

monly used LeakyReLU function (g) with negative slope

(γ) [31] and the second convolutional layer, a more general

formulation for the expectation E(y
(2)
~i

) should be:

E(y
(2)
~i

) =
∑

k

w
(2)
k

∫ +∞

−∞

g(y
(1)
k )p(y

(1)
k )dy

(1)
k + b(2)

=
∑

k

w
(2)
k · (γC1 + C2) + b(2), (2)

where C1,C2 are constants from the finite piecewise-defined

integration. Eq. (2) shows that the convolutional features

keep a spatially identical expectation value, which is a linear

combination of the convolutional weights. Furthermore, the

analysis in the autocorrelation function2 further shows that

the relation of two positions in the first convolutional feature

map is decoupled with the absolute position:

R(y~i, y~j) = E(y~iy~j)

=
∑

xl∈X~i
∩X~j

wkl
wtlE(x

2
l ) (3)

= R(~i−~j).
Here, the condition xl ∈ X~i ∩ X~j determines whether xl

belongs to the intersection region of related input features. If

there is no intersection between two input features, the sum

in Eq. (3) will be zero. Importantly, the intersection region

X~i ∩X~j is determined by the offset vertor~i−~j. Thus, the

autocorrelation function of (y~i, y~j) is only related to~i −~j

2We discard the bias term since the identical addition term does not

influence the final conclusion. See complete derivations in the appendix.

but irrelevant to the absolute position vector {~i,~j}. This

proves that after convolution, the features can be regarded as

a spatial weak stationary stochastic process.

An essential property of weak stationarity is that the ab-

solute positional information is lost. As shown in Fig. 1(b),

without any spatial bias, convolutional generators fail to

capture faithful spatial structures, e.g., the position of the

ground and the spatial organization of related patches (bal-

loons). However, it can still output some reasonable patches

like balloon texture patterns. The reason is that the truncated

R(y~i, y~j) models the relationship between convolutional fea-

tures within the limited effective receptive field. In conclu-

sion, the translation invariance in convolution leads to weak

stationarity in features.

3.2. Padding as Spatial Inductive Bias

As discussed in Sec. 3.1, the translation-invariant convo-

lution causes positional information loss from the convolu-

tional features. Thus, SinGAN should have generated results

without reasonable spatial structures like Fig. 1(b). However,

as shown in Fig. 1(a), zero padding unintentionally enables

SinGAN to capture the spatial structure of the sky, ground,

and etc. Based on the analysis in Sec. 3.1, we will clarify

this phenomenon theoretically.

From the view of the effective receptive field [30], we

regard the whole convolutional network as a convolutional

layer with a large kernel and move all of paddings to the

input, which is illustrated in Fig. 2. Then, the linear com-

bination of the convolutional kernel weights in Eq. (2) and

Eq. (3) will be influenced by zero padding:

E(y~i) =
∑

k

wk(γC1 + C2)✶(xk /∈ Pad) + b, (4)

R(y~i, y~j) =
∑

xl∈X~i
∩X~j

wkl
wtlE(x

2
l )✶(xl /∈ Pad), (5)

where the indicator function ✶(xi /∈ Pad) determines if the

current input belongs to the padding regions. Intuitively,

when the convolution kernel meets input features containing

zero padding, some convolutional weights will be multiplied

by the zero value. The number of such inevitable zero terms

varies as the convolution kernel slides over the feature map.

Namely, the padding effects on Eq. (4) and Eq. (5) are de-

termined by the overlap of the convolution kernel and zero

padding. Therefore, zero padding implicitly injects posi-

tional information through the location-variant E(y~i) and

R(y~i, y~j). The E(y~i) in Eq. (4) yields the position-aware

distribution of the spatial random variables, which is a kind

of implicit positional encoding. In our supplementary mate-

rial, we will show that the location-variant R(y~i, y~j) can be

applied to explain the behavior of other padding modes.

3.3. Analysis on Implicit Positional Encoding

The implicit positional encoding introduced by zero

padding offers unbalanced spatial inductive bias over the
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zero padding feature map convolution kernel

(a) (b) (c)

Figure 2: Illustration for the convolutional procedure with

zero padding. We move the padding in each layer to the

input feature and regard the whole convolutional network as

a convolutional layer with a large kernel.

Figure 3: Images sampled from StyleGAN2 (above the dot-

ted line) and padding-free StyleGAN2 (under the dotted

line). The first column is sampled with the original learned

constant input. The other three columns are sampled with

different identical values (from left to right: 0, 0.5, 1) filling

in the learned constant input at the start of the generator.

whole image space. As shown in Eq. (4), the top-left corner

in Fig. 2 will receive a unique position encoding, because

such an overlap of zero padding and the convolutional ker-

nel must only exist at the top-left corner. However, as the

convolution kernel slides away from corners and borders,

the central locations (Fig. 2(c)) will be encoded with the

same positional information. An important property of this

implicit positional encoding is that distinct spatial anchors

provide fixed yet definite spatial bias at corners. Neverthe-

less, the distance between two positional encodings becomes

uncertain (or even zero) in the central regions. Following

the definition in transformer [47], we call such distance as

transformation between locations, because we mainly care

about how to transform from one location to another one in

the positional encoding.

Such unbalanced spatial inductive bias is not ideal for

image generation. Intuitively, without a clear transformation

between locations, the uniqueness of the positional encod-

ing cannot be guaranteed. Consequently, the convolutional

generator fails to precisely portray the desired objects at the

center of the generated image, as shown in Fig. 1(c). Further-

more, implicit spatial anchors also bring frozen structures

at borders. To show this padding effect on StyleGAN2, we

fill in the constant input ahead of its convolutional generator

with an identical value. The identical constant input should

have caused spatially consistent patterns because of the weak

stationarity in convolutional features. Nevertheless, Fig. 3

shows generated images with borders of similar structure.

Such frozen structures suggest the strong influence from zero

padding, which causes the generator to overfit several spatial

structures in the training distribution. Once the padding is

removed, spatially identical color or pattern will cover the

whole image, as shown in the second row of Fig 3. In addi-

tion, a shift from precision to recall [22, 26] is observed in

our experiments on the padding-free StyleGAN2, suggesting

that zero padding limits the diversity of a generative model.

Prior to SinGAN and StyleGAN, generators typically

use a fully connected layer [11] to take the noise vector

as input.3 Followed by a reshaping layer, this operation

explicitly injects spatial information to the feature map ahead

of convolutional blocks [3, 5]. Our experiments show that

DCGAN [36] and PGGAN [20] still rely on the implicit

positional encoding to a much greater extent than we expect.

3.4. Explicit Positional Encoding for GANs

The analysis in Sec. 3.3 clarifies that implicit positional

encoding cannot provide a balanced spatial inductive bias

and cannot keep spatially consistent transformation between

positions (Fig. 4(a)). In this section, we will discuss three ex-

plicit positional encodings and analyze the spatial inductive

bias introduced by them.

Learnable Constant Input. In StyleGAN [21, 22], they

adopt a 4 × 4 × 512 learnable constant as the input of the

convolutional generator. The learnable constant input is fixed

across samples but it offers a unique 512-dimension vector

as a learned positional encoding for the 4 × 4 input space.

However, the chaotic structures in Fig. 4(b) illustrate that the

spatial inductive bias defined by the learnable constant input

is unclear and lacks explicit priors on image space.

Cartesian Spatial Grid. The Cartesian spatial grid (CSG),

used in spatial transformer network [19], can play a role

of positional encoding. To avoid large value at huge input

space, the Cartesian spatial grid mentioned in this work is

normalized as:

~PCSG(i, j) = 2 · [
i

H
−

1

2
,
j

W
−

1

2
], (6)

where (i, j) represents the spatial location in the H × W
input space. Thus, the corners and central points are fixed

to a constant vector, e.g., [−1,−1] for the top-left corner

and [0, 0] for the central point. Such fixed and distinct refer-

ence points provide spatial anchors across the image space.

Besides, the transformation between locations is spatially

consistent at a single scale:

~PCSG(i, j) = 2 · [
i− i′

H
,
j − j′

W
] + ~PCSG(i

′, j′). (7)

3Although, in some implementations, they use transposed convolution

on 1× 1 noise vector, it equals to applying a linear layer mathematically.
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Table 1: Summary of spatial inductive bias defined by dif-

ferent positional encodings. ‘Identical Transform’ with ‘SS’

means the transformation between locations is spatially iden-

tical at a single scale. The ‘MS’ row shows whether the

transformation is scale-invariant. ‘Interp’ is the traditional

interpolation while ‘Expand’ denotes the expansion in SPE.

Spatial Inductive Bias Pad
Learnable

Constant

Cartesian

Grid
SPE

Spatial Anchors ✓ ✓

Identical

Transform

SS ✓ ✓

MS ✓

Resize

Mode

Interp ✓ ✓ ✓

Expand ✓

(d) SPE

(a) Zero padding (b) Learnable constant input

(c) Cartesian spatial grid

Spatial anchors Positional encoding Transformation between locations

Figure 4: Illustration for the 2D spatial space defined by dif-

ferent positional encodings. For each encoding, we present

two spatial spaces at 5×5 and 7×7 scale. (d) shows how SPE

naturally expands its space with consistent transformation.

However, the transformation in Eq. (7) is related to the input

scale (H,W ). As shown in Fig. 4(c), a larger input scale will

bring closer distances between adjacent positional encodings,

despite that spatial anchors are fixed. Thus, the Cartesian

grid is robust to align global structures across multiple scales

(Fig. 1(e)), but the detailed structure will be interpolated

similarly with the resizing mode of the Cartesian grid.

Sinusoidal Positional Encoding. Sinusoidal Positional En-

coding (SPE) has been widely adopted in NLP [9, 47] and

3D vision [32, 34]. To construct 2D positional encoding, we

concatenate the encodings in height and width dimensions:

[sin(ω0i), cos(ω0i), · · ·
︸ ︷︷ ︸

height dimension

, sin(ω0j), cos(ω0j), · · ·
︸ ︷︷ ︸

width dimension

],
(8)

where ωk = 1/100002k/d and d denotes half of the total

encoding dimension. The formulation in Eq. (8) guarantees

that the transformation between locations is decoupled with

input scales and only related to the offset positional vector:




sin(ωki)
cos(ωki)



=





cos(ωkφ) sin(ωkφ)
−sin(ωkφ) cos(ωkφ)



·





sin(ωki
′)

cos(ωki
′)



, (9)

where φ = i−i′ is the positional offset. Thus, without spatial

anchors, SPE can naturally expand its space by extending

more pixels while keeping the consistent transformation be-

tween adjacent positions, as illustrated in Fig. 4(d). With

such a scale-agnostic transformation, the detailed structure

will not be affected when we change the input scale. Thanks

to the stable spatial inductive bias, SPE shows impressive ca-

pability in constructing realistic patch recurrence (Fig. 1(f)).

Table 1 summarizes the spatial inductive bias that is con-

tained in different positional encodings. In the following

two sections, we will present two applications with various

positional encodings and further discuss the significance of

spatial inductive bias to convolutional generators.

3.5. Multiscale Training with Positional Encoding

As shown in Tab. 1, an explicit positional encoding can

be resized to different scales by either interpolation or ex-

pansion. Inspired by this property, we derive a new training

strategy for performing multi-scale synthesis with a single

fully convolutional generator. Typically, one usually fixes the

input scale, like 4× 4, and depends on the different number

of upsampling blocks to generate multi-scale images.

Contrary to the above practice, we show that by resiz-

ing the explicit positional encoding ahead of the convolu-

tional generator, one can generate images with compelling

quality at multiple scales. We call our method as Multi-

Scale training with Positional Encoding (MS-PIE). Based on

2562 StyleGAN2, we demonstrate the effectiveness of MS-

PIE and present the impacts of spatial inductive bias in the

padding-based and padding-free settings. Directly adopting

the original learnable constant input in StyleGAN2 causes in-

ferior generation quality due to the lack of any explicit priors

on the dynamic image space. With the standard StyleGAN2

containing zero padding, the explicit scale-invariant trans-

formation (Eq. (9)) in SPE provides a much precise spatial

inductive bias over the dynamic input space. Therefore, the

generator designed for the scale of 2562 succeeds in high-

quality image synthesis at multiple scales up to 512× 512
or even 1024× 1024 pixels. As for the padding-free setting,

we discover that the fixed spatial anchors in CSG are essen-

tial for the generator to align the global structures among

different scales. It is the explicit spatial anchors that mitigate

the effects of removing zero padding in each layer, which

leads to superior performance in the padding-free setting.

The ultimate goal of MS-PIE is to effectively leverage

different image scales for high-fidelity image generation.

Intuitively, the spatial structure can be efficiently captured in

low-resolution space. The spatial inductive bias guides the

generators to enlarge image space according to the resizing

mode of the input positional encoding. Meanwhile, thanks to

the priors on dynamic image space and the mixed training of

multi-scale images, the high-resolution texture space can be

transferred from the low-resolution domain efficiently. Thus,

in our MS-PIE, the generative model is trained on high-

resolution images with fewer iterations. In each iteration,

we sample the current training scale according to a given
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probability where the higher probability is set for the lower

scale. Then, the real image resolution and the size of the

explicit input positional encoding are modified accordingly.

Besides, to keep the input dimension of the last linear layer

in the discriminator unchanged, we insert a 2× 2 adaptive

average pooling layer [13] before the last linear layer.

3.6. SinGAN with Positional Encoding

As discussed in Sec. 3.2, spatial information leaked by

zero padding enables SinGAN to capture the global structure

and organize various texture patches. However, the implicit

positional encoding defined by zero padding introduces un-

balanced spatial inductive bias over the whole image space,

which always causes unstructured results in the central re-

gion of images (Fig. 1(a)). This makes it less ideal for

applications that require multi-scale internal sampling, e.g.,

stretching objects with the main structures retained or with

reasonable texture patch recurrence [25, 33].

The spatial anchors in the Cartesian grid can easily keep

the global structures fixed in multi-scale sampling, despite

that the contents will be interpolated similarly with the resiz-

ing mode of the CSG. On the other hand, the scale-invariant

transformation between locations in SPE guarantees the or-

ganization of patches, which leads to a realistic patch recur-

rence as in Fig. 1(f). To fulfill different requirements, we

adopt the positional encoding in SinGAN by sampling on

a positional aligned noise distribution. As the default noise

distribution is N (0, 1), this can be implemented by adding

the positional encoding with a sampled noise map.

4. Experiments

Remove Padding. For convolutional generators, the general

idea for discarding paddings is to adopt an upsampling layer

that interpolates a feature map to a larger size covering the

extra padding size for the consecutive convolutional layers.

As for the input convolutional block without any upsam-

pling layers, a larger input map will be adopted to avoid

additional paddings. As the implicit zero padding in the

transposed convolutional layer cannot be removed, follow-

ing PGGAN [20], we replace it with a bilinear upsampling

layer and a convolutional layer.

Architectures and Training Configurations. In addition

to internal generative model SinGAN [42], we also study

various unconditional generator architectures, including DC-

GAN [36], PGGAN [20], and StyleGAN2 [22]. All of these

methods are trained on 8 Tesla V100 GPUs in PyTorch [35].

We follow their training configurations as closely as possible.

In Sec. 4.2, we verify the effectiveness of our MS-PIE in

2562 StyleGAN2. Three different scales are adopted in MS-

PIE with a sampling probability of [0.5, 0.25, 0.25] and the

lower resolution is set with the higher probability. Other im-

plementation details are specified in the following sections

and the supplementary material.

Table 2: Results based on 2562 StyleGAN2 with a channel

multiplier of two [22] in FFHQ dataset [21, 24]. The Fréchet

inception distance (FID) are reported on two best snapshots

before the discriminator has been shown with 10M and 20M

images, respectively. The precision and recall are reported

on the training snapshot with best FID. ↑ indicates higher is

better, and ↓ indicates lower is better.

Training configuration
FID@256↓ Precision

(%)↑
Recall

(%)↑10M 20M

(a) StyleGAN2-C2-256 6.32 5.62 76.85 50.41

(b) Deconv → Up-Conv 5.79 5.68 76.78 50.46

(c) + Remove padding 6.45 6.13 73.71 51.73

(d) + Cartesian grid 6,31 6.07 73.01 52.90

(e) + SPE 6.40 5.86 72.94 52.87

Table 3: Multi-level Sliced Wasserstein Distance (SWD) [20]

between the synthesized and training images in the 128×128
cropped CelebA dataset. Each column in SWD represents

one level of Laplacian pyramid [7] and the last one shows

an average of the three distances. ↓ indicates lower is better.

Training configuration
SWD (×103) ↓

128 64 32 Avg.

(a) PGGAN 3.162 4.285 5.000 4.149

(b) + Remove padding 11.169 6.945 7.488 8.534

(c) + SPE, w/o padding 4.555 6.164 6.365 5.694

4.1. Effects of Padding in Existing GANs

StyleGAN2. In Tab. 2, by measuring Fréchet inception dis-

tantance (FID) [15] and the precision and recall [26], we

investigate how zero padding influences StyleGAN2 [22]

on FFHQ dataset [21]. We first switch to a new baseline

Tab. 2(b) where transposed convolutions are replaced with

a bilinear upsampling layer and a convolutional layer. This

modification yields marginal effects on the final results.

Thus, based on it, we conduct the following experiments

on padding-free StyleGAN2. In Tab. 2(c), the learnable con-

stant input provides spatial information to the convolutional

generator. In Tab. 2(d) and (e), we substitute the constant

input with the Cartesian spatial grid and sinusoidal positional

encoding, respectively.

As shown in Tab. 2, discarding the implicit positional

encoding will directly lead to a higher FID, suggesting that

StyleGAN2 actually relies on zero padding to obtain spatial

information. On the other hand, the shift from precision to

recall indicates that removing padding allows the generator

to explore more reasonable spatial structures. Thanks to the

spatially consistent transformation between locations, the

Cartesian grid and SPE perform better in both FID and recall

than the learnable constant input (Tab. 2(c)).

PGGAN and DCGAN. We select two popular generator

architectures, i.e., PGGAN [20] and DCGAN [36], to verify

that convolutional generators instinctively obtain implicit po-

sitional information from zero padding. Table 3 presents the
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Table 4: Multi-level SWD [20] between the synthesized and

training images in the 128× 128 LSUN Bedroom dataset. ↓
indicates lower is better.

Training configuration
SWD (×103)↓

128 64 32 Avg.

(a) DCGAN w/ conv 11.82 17.30 28.10 19.07

(b) + No padding 22.21 27.26 44.24 31.24

(c) + SPE, w/o padding 14.75 16.52 22.53 17.93

(a) (b) (c)

Figure 5: Images sampled from various PGGANs trained

on cropped CelebA. (a), (b), and (c) indicate the different

training configurations in Tab. 3.

results of the more effective PGGAN on highly-structured

cropped CelebA [29] dataset. In Tab. 4, to remove zero

padding, we use the DCGAN architecture with upsampling

and convolutional layers as the baseline in the experiments

on LSUN-Bedroom dataset [52].

Unlike the SinGAN and StyleGAN, PGGAN and DC-

GAN adopt a linear layer on the input noise vector so that

the feature map ahead of the convolutional networks contains

spatial information. However, as shown in Tab. 3 and Tab. 4,

we still observe a significant increase in SWD at each level

after removing zero padding in generators. In addition, the

padding-free generator fails to synthesize highly structured

faces in Fig. 5, which provides convincing evidence that the

convolutional generators depend on the implicit positional

encoding to obtain spatial information.

To further verify that the lack of positional information

causes the higher SWD, we introduce sinusoidal positional

encoding (SPE) to the padding-free PGGAN and DCGAN.

The SPE is only added with the input feature map ahead

of the convolutional generators. As shown in Tab. 3(c) and

Tab. 4(c), the explicit positional encoding mitigates the ef-

fects of removing implicit spatial inductive bias in each con-

volutional layer. Thanks to the explicit positional encoding,

the synthesized images in Fig. 5(c) can recover the faithful

spatial structure. More results and implementation details

are presented in our supplementary material.

4.2. MSPIE in StyleGAN2

In Tab. 5, we examine our MS-PIE in 2562 StyleGAN2-

C2 with multiple image scales of 2562, 3842 and 5122. Re-

sults of 3842 scale point to similar conclusions as with the

5122 scale, which can be found in our appendix. For the

Figure 6: Multi-scale results from configuration (f) in Tab. 5.

The results are in 5122, 3842, and 2562 resolution. The

higher resolution is presented with a larger size. Please see

our appendix and supplementary video for more results.

5122 StyleGAN2 baseline in Tab. 5(b), we also downsample

the generated images to obtain the FID and P&R at 2562

scale as another strong baseline.

With zero padding holding spatial anchors, the SPE with

‘Expand’ resizing mode offers a stable explicit transforma-

tion between locations which is unchanged during the multi-

scale synthesis. As shown in Tab. 5(f), even if containing

fewer upsampling blocks and seeing fewer images at 5122

scale, the 2562 StyleGAN2 can still achieve impressive im-

provement in both FID and P&R. However, once the trans-

formation is changed with the multiple input scales like

Tab. 5(d) and Tab. 5(e), there will be a decline in the gen-

eration quality at each scale. This phenomenon indicates

that the scale-variant transformation between positional en-

codings prevents the model from easily sharing the learned

information among different scales.

Without Padding. Due to the dynamic training scales in

our MS-PIE, the spatial anchors are essential for providing

unique reference points to directly align the global structure

across different image spaces. As shown in Tab 5(h)-(k),

abandoning the implicit spatial anchors in each convolutional

layer causes an inferior generation quality. However, to some

extent, spatial anchors in the Cartesian spatial grid guide the

padding-free generator to retain a faithful global structure

at multiple scales. Therefore, containing explicit spatial

anchors, Tab. 5(i) achieves the least decline in performance

among the other positional encodings.

Lite Model. As shown in Tab. 5(g), we select the best con-

figuration (f) and reduce its channel multiplier to investigate

the influence of architecture design. Even if we reduce half

of the channels in some layers, our MS-PIE enables the lite

generator to yield comparable generation quality to the heavy

baseline model.

Qualitative Results. Figure 6 presents the multi-scale im-
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Table 5: Main results for our MS-PIE with 2562 StyleGAN2 in the FFHQ dataset. The precision and recall are calculated at

the same scale as the Fréchet inception distance (FID).‘C2’ indicates the channel multiplier in the generator is two.

Training configuration Resize
FID@512↓ Precision

(%)↑
Recall

(%)↑
FID@256↓ Precision

(%)↑
Recall

(%)↑20M 25M 20M 25M

(a) StyleGAN2-C2-256 — — — — —- 5.62 5.56 75.92 51.24

(b) StyleGAN2-C2-512 — 3.47 3.41 75.88 54.61 5.00 4.91 75.65 54.58

MS-PIE

w/

padding

(c) Leanable constant input Interp 3.46 3.35 73.84 55.77 4.82 4.50 72.75 55.42

(d) Cartesian spatial grid Interp 3.59 3.50 73.28 56.16 4.74 4.71 73.34 55.07

(e) SPE-interp Interp 3.41 3.15 74.13 56.88 4.99 4.73 73.28 56.93

(f) SPE-expand Expand 3.31 2.93 73.51 57.32 4.79 4.27 73.48 55.69

(g) SPE-expand-C1 Expand 3.65 3.40 73.05 56.45 5.54 4.83 73.59 54.29

MS-PIE

w/o

padding

(h) Learnable constant input Interp 4.99 4.01 72.81 54.35 5.67 5.11 72.37 55.52

(i) Cartesian spatial grid Interp 3.96 3.76 73.26 54.71 5.30 5.09 70.74 56.06

(j) SPE-interp Interp 4.80 4.23 73.11 54.63 5.89 5.38 71.21 56.21

(k) SPE-expand Expand 4.46 4.17 73.05 51.07 6.08 5.59 72.65 49.74

(a) SinGAN (b) SinGAN w/ Cartesian grid (c) SinGAN w/ SPEOriginal Image

Figure 7: Results of SinGAN with different positional embedding strategies. The original image (370× 500) is taken from the

movie ‘Bohemian Rhapsody’ and the sampled images are 1.5 wider than the original image.

ages generated from the best training configuration (f) in

Tab. 5. The diverse and realistic multi-scale synthesis fur-

ther demonstrates the effectiveness of our MS-PIE and the

impact of introducing appropriate positional encoding. Im-

portantly, with the help of MS-PIE, the StyleGAN2 that is

originally designed for 2562 generation can also synthesize

images in more challenging resolutions, like 8962 and 10242.

More training configurations and detailed results in higher

resolutions can be found in the supplementary material.

As for image manipulation [1], we customize a con-

venient pipeline by improving the closed-form factoriza-

tion [43]. This indicates that our MS-PIE constructs a short-

cut for high-resolution image manipulation with a single

backbone. The implementation details and high-quality ma-

nipulation results are shown in the supplementary material.4

4.3. SinGAN with Positional Encoding

This section demonstrates the effectiveness of explicit

positional encoding in SinGAN with a challenging case. In

Fig. 7, we take a picture from the famous movie ‘Bohemian

Rhapsody’, where Mercury is singing to thousands of audi-

ences. We use SinGAN to extrapolate the original scene so

that Mercy can meet more audiences in a more spacious gym.

However, with zero padding offering unbalanced spatial in-

ductive bias, SinGAN can only capture the detailed structure

at the borders of the image but generate highly unstructured

contents at the center of Fig 7(a).

Different explicit spatial inductive bias enables SinGAN

to fulfill various requirements. Adopting the position-aligned

4YouTube Video, BiliBili Video

noise map with the Cartesian grid, SinGAN can easily in-

terpolate the coarse structure to a larger size, as shown in

Fig 7(b). It is the spatial anchors that keep the positions of

major contents (Mercury and the tent) unchanged. Mean-

while, due to the scale-variant transformation in Eq. (7),

the detailed spatial structure will be stretched, e.g., Mer-

cury accidentally gains a lot of weight. On the contrary, the

scale-invariant spatial inductive bias in SPE leads to a more

reasonable patch recurrence in Fig. 7(c), while it cannot

avoid the shift in the position of Mercury. More results about

the versatile image manipulation with positional encoding

are presented in the supplementary material.

5. Conclusion

In this work, we thoroughly study how zero padding ac-

cidentally encodes imperfect spatial bias for convolutional

generators. We have also discussed the strengths of introduc-

ing explicit positional encodings, including CSG and SPE,

in various existing generator architectures. With the flexible

explicit positional encoding, we propose a new multi-scale

training strategy (MS-PIE) to achieve high-quality image

synthesis at multiple scales with a single 2562 StyleGAN2.

We further show that adopting explicit positional encoding

can improve the versatility and robustness of SinGAN.
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