
ReNAS: Relativistic Evaluation of Neural Architecture Search

Yixing Xu1, Yunhe Wang1, Kai Han1, Yehui Tang14, Shangling Jui2, Chunjing Xu1, Chang Xu3

1Noah’s Ark Lab, Huawei Technologies, 2Huawei Technologies
3The University of Sydney, 4Peking University

{yixing.xu, yunhe.wang}@huawei.com; c.xu@sydney.edu.au

Abstract

An effective and efficient architecture performance eval-

uation scheme is essential for the success of Neural Archi-

tecture Search (NAS). To save computational cost, most of

existing NAS algorithms often train and evaluate intermedi-

ate neural architectures on a small proxy dataset with lim-

ited training epochs. But it is difficult to expect an accurate

performance estimation of an architecture in such a coarse

evaluation way. This paper advocates a new neural archi-

tecture evaluation scheme, which aims to determine which

architecture would perform better instead of accurately pre-

dict the absolute architecture performance. Therefore, we

propose a relativistic architecture performance predictor in

NAS (ReNAS). We encode neural architectures into feature

tensors, and further refining the representations with the

predictor. The proposed relativistic performance predictor

can be deployed in discrete searching methods to search for

the desired architectures without additional evaluation. Ex-

perimental results on NAS-Bench-101 dataset suggests that,

sampling 424 (0.1% of the entire search space) neural ar-

chitectures and their corresponding validation performance

is already enough for learning an accurate architecture per-

formance predictor. The accuracies of our searched neu-

ral architectures on NAS-Bench-101 and NAS-Bench-201

datasets are higher than that of the state-of-the-art meth-

ods and show the priority of the proposed method.

1. Introduction

Recent years have witnessed the emergence of many

well-known Convolutional Neural Networks (CNNs), (e.g.

VGG [35], ResNet [15], MobileNet [16]). They have

achieved state-of-the-art results in many real-world appli-

cations [26, 32, 35, 48, 39, 14, 6, 5]. However, the design

of these sophisticated CNNs were heavily relied on human

expert experience. Thus, it is attractive to investigate an au-

tomatic way to design neural network architectures without

human intervention. Neural Architecture Search (NAS) has

been proposed to address this need [4, 17, 27, 28, 45, 38].

Motivated by different searching strategies and assump-

tions, a number of NAS algorithms have been proposed to

increase the search speed and the performance of the re-

sulting network [3, 18, 36, 21], including discrete searching

methods such as Evolutionary Algorithm (EA) based meth-

ods [24, 29, 31], Reinforcement Learning (RL) based meth-

ods [2, 30, 49, 50], and continuous searching methods such

as DARTS [25] and CARS [44].

There have been a large body of works focusing on de-

signing different searching methods. However, the archi-

tecture evaluation scheme has not been sufficiently studied

yet. For the sake of evaluation efficiency, early stopping s-

trategy is often adopted in the architecture evaluation phase

of discrete searching methods. Based on the intermediate

performance of a super-net, continuous searching method-

s optimize a series of learnable parameters to select layers

or operations in deep neural networks. Nevertheless, these

coarse architecture evaluations could prevent us from se-

lecting the optimal neural architecture (detailed information

can be found in Sec.3.1). A recent report suggested that the

performances of the networks discovered by current NAS

frameworks are similar to that of random search [33, 43].

Most recently, there is an alternative way to evaluate neu-

ral architecture by learning a performance predictor. For ex-

ample, Domhan et al. proposed a weight probabilistic mod-

el to extrapolate the performance from the first part of a

learning curve [9]. Klein et al. used a Bayesian neural net-

work to predict unobserved learning curves [20]. These two

methods rely on Markov chain Monte Carlo (MCMC) sam-

pling procedures and hand-crafted curve function, which

are computationally expensive. Deng et al. [8] developed

a unified way to encode individual layers into vectors and

brought them together to form an integrated description via

LSTM, and directly predicted the performance of a network

architecture. Sun et al. [37] proposed an end-to-end off-line

performance predictor based on random forest.

Methods mentioned above focused on predicting the

exact performance of a given neural architecture with

element-wise loss function such as mean squared error

(MSE) or least absolute error (L1). However, in neural ar-

4411

Figure 1: Pipeline of the proposed ReNAS. Sampled Networks: Architectures are sampled from the pre-defined search space

and trained until converge to get the ground-truth results. Performance Prediction. Sampled architectures are encoded into

feature tensors by leveraging the adjacency matrix and features that can well represent the computational power. Then, a

predictor is used to predict the final accuracy. Loss Function. The pairwise ranking based loss function is used to train the

predictor. Compared to mean squared error (MSE) loss, ranking based loss function may derive a prediction that is far from

the ground-truth but in the correct ranking position, which is crucial to the following searching algorithms to search for the

best architecture.

chitecture search, what we care about is actually which neu-

ral architecture would lead to a better performance. Hence,

instead of a deterministic evaluation of neural architectures,

it is more reasonable to adopt a relativistic way to evaluate

the performance of architectures.

In this paper, we aim to learn an architecture perfor-

mance predictor that focuses on the rankings of differen-

t architectures. Specifically, given a cell-based search s-

pace with a unified super-net for all of the architectures

(e.g. NASBench [46, 12], DARTS [25]), we produce a way

to encode network architectures into tensors by leveraging

the adjacency matrix of the cell and features that can well

represent the computational power of a given architecture

(e.g. FLOPs and parameters of each node). Then, pairwise

ranking based loss function is used instead of element-wise

loss function, since keeping rankings between different net-

works are more important than accurately predicting their

absolute performance for most of the searching methods.

The pipeline of the proposed method is shown in Fig. 1. The

experimental results on NAS-Bench-101 search space show

that the proposed predictor achieves a higher prediction per-

formance compared to the other state-of-the-art predictors,

and can efficiently find the architecture with top 0.02% ac-

curacy in the whole search space by training only 424 (0.1%
of the entire search space) neural architectures. Comparison

with other state-of-the-art EA/RL/differential NAS methods

on NAS-Bench-201 also shows the priority of the proposed

method. Searched model on NAS-Bench-101 can be found

in the MindSpore model zoo 1.

1https://www.mindspore.cn/resources/hub/

2. Problem Formulation

In this section, we first instantiate the problem of evalua-

tion scheme used in the previous methods. Then, we give an

elaborate introduction of the proposed performance predic-

tor. Specifically, developing architecture performance pre-

dictor consists of three parts: encoding network architecture

into a feature tensor, the regressor (predictor) to predict the

performance and the objective function to be optimized. In

this paper, we propose a new approach to encode neural net-

work architectures in cell-based search space into feature

tensors and to design the regressor. Furthermore, we pro-

pose the pair-wise ranking loss to optimize the regressor.

2.1. Evaluation Scheme

In case of saving computational resource and time, a

commonly used evaluation scheme in the previous NAS

methods is to train the neural network N on part of the

training dataset D̃ ∈ D with early stop strategy, in which

D is the entire training dataset. The model is then test-

ed on the validation set, and the intermediate accuracy

ACC(N, D̃) stands for an approximation of the perfor-

mance of the model in the subsequent searching algorithms

instead of the ground-truth accuracy ACC(N,D). Previ-

ous methods [23, 47, 43] assumed that there is a linear rela-

tionship between the intermediate accuracy and the ground-

truth accuracy:

ACC(N,D) = k ×ACC(N, D̃) + σ, (1)

where k is the scaling factor and σ is the offset. Howev-

er, the assumption in Eq. 1 may not hold in practice, and

the intermediate accuracy may break the original rankings

4412

between architectures since lighter architectures often con-

verge faster on smaller dataset than cumbersome architec-

tures, but perform worse when using the whole training set

[33]. Note that producing correct rankings for the searching

algorithm is rather important, since the searching algorithm-

s always select relatively better architectures regardless of

their absolute performance.

Thus, we focus on learning the correct rankings between

different architectures with predictor. Specifically, given a

predictor ε and two different architectures N1 and N2. De-

note ε(N ;W) as the predicted performance of a given ar-

chitecture N in which W is the weight matrix of the predic-

tor, we should have:

ε(N1;W) > ε(N2;W),

if and only if ACC(N1, D) > ACC(N2, D),
(2)

which means that the predictor should rank different net-

work architectures into the right order according to their

ground-truth performance.

2.2. Feature Tensor of CellBased Search Space

Commonly, a cell-based search space with a unified

super-net stacks the same searched cell to get the final ar-

chitecture [25, 46, 12]. In this section, we give an intro-

duction on encoding the architectures in cell-based search

space into feature tensors.

Encoding a neural architecture is important for a predic-

tor to predict the performance. Peephole [8] chose layer

type, kernel width, kernel height and channel number as the

representations of each layer. E2EPP [37] forced the net-

work architecture to be composed of the DenseNet blocks,

ResNet blocks and pooling blocks, and generated features

based on these blocks.

However, those features are not strong enough to encode

a network architecture. Different from the methods men-

tioned above, we focus on encoding architectures into fea-

ture tensors by leveraging the adjacency matrix of the cell

and features that can well represent the computational pow-

er of a given architecture. In the following, we use NAS-

Bench-101 dataset [46] as an example, which contains over

423k unique CNN architectures and their train, validation

and test accuracies on CIFAR-10 dataset. The same meth-

ods can be applied on other cell-based search space.

Different cells produce different CNN architectures. In

each cell there are no more than 7 nodes in which IN and

OUT nodes are fixed to represent the input and output ten-

sors of the cell, respectively. The other nodes are randomly

selected from 3 different operations: 3×3 convolution, 1×1
convolution and 3 × 3 max-pooling. The edges are limited

to no more than 9. Specifically, the cell can be represented

by a 0-1 adjacency matrix A ∈ {0, 1}n×n and a type vector

t ∈ {1, · · ·, 5}n (5 different node types containing input,

3 × 3 conv, 1 × 1 conv, 3 × 3 max-pooling and output), in

which n is the number of nodes. Furthermore, we calcu-

late FLOPs and parameters of each node and derive a FLOP

vector f ∈ R
n (we assume the input image size is 32× 32)

and a parameter vector p ∈ R
n.

Since the number of nodes may be different in each cell,

we pad the adjacency matrix A with 0 and the size is fixed

as 7 × 7. The type vector t, FLOP vector f and parameter

vector p are padded accordingly. Note that the input and the

output node should be fixed as the first and last node, thus

the zero-padding is added at penultimate row and column

each time until the size of A is 7× 7. After that, we broad-

cast the vectors into matrices, and make an element-wise

multiplication with the adjacency matrix to get the type ma-

trix T, FLOP matrix F and parameter matrix P, and finally

concatenate them together to get a 19 × 7 × 7 tensor T to

represent a specific architecture in NAS-Bench-101. An ex-

ample of the process of deriving feature tensor is shown in

Sec.2 of the supplementary material.

Note that the feature tensor representations are not ro-

bust to permutation, i.e., permuting the adjacency and type

matrices may lead to different results. This problem can be

solved by fixing the order of the nodes. Specifically, we sort

nodes by distances to INPUT node with depth-first-search

in order to reduce the non-unique ordering phenomenon.

For those nodes with the same depth, we investigate a sim-

ple data augmentation method (i.e., permuting the adjacen-

cy and type matrices of the same architecture based on the

nodes with the same depth) so that all of the representations

for a specific architecture are assigned with the same label.

2.3. Architecture Performance Predictor

Given the feature tensor mentioned above, we propose

the architecture performance predictor and introduce the

ranking based loss function.

In practice, there are usually limited training data for

the predictor due to the massive time and resource spen-

t on training a single neural architecture. Thus, in order to

prevent the over-fitting problem, we use a simple LeNet-5

architecture to predict the final accuracy of a given network

architecture tensor T .

When training the predictor, a commonly used loss func-

tion is element-wise MSE or L1 loss function [8, 19, 37].

They assume that a lower MSE or L1 loss leads to a better

ranking results. However, this is not always the case. For

example, given two networks with ground-truth classifica-

tion accuracies of 0.9 and 0.91 on the validation set. In the

first circumstance, they are predicted to have accuracies of

0.91 and 0.9, and in the second circumstance of 0.89 and

0.92. MSE losses are the same in both situations, but the

former is worse since the ranking between two networks is

changed and the architecture with worse performance will

be selected by the searching methods. We believe that the

rankings of predicted accuracies between different architec-

4413

tures are more important than their absolute performance

when applying network performance predictor to different

searching methods.

Formally, given n different network architectures

and their ground-truth performance {(Ni, yi)}
n
i=1, and

{ε(Ni;W)}ni=1 is the output of the predictor (short as

ε(Ni)), which are the n objects to be ranked. We define

the pairwise ranking based loss function as:

L1(W) =

n−1
∑

i=1

n
∑

j=i+1

φ((ε(Ni)− ε(Nj)) ∗ sign(yi − yj)),

(3)

in which φ(z) = (a− z)+ is hinge function with parameter

a. Given a pair of examples, the loss is 0 only when the

examples are in the correct order and differed by a margin.

Other functions like logistic function φ(z) = log(1 + e−z)
and exponential function φ(z) = e−z can also be applied

here.

Besides utilizing the final output, we believe that the fea-

ture extracted before the last FC layer is also useful. The

continuity is a common assumption in machine learning,

i.e. the performance changes continuously along the feature

space. However, this is not the case for primary network

architecture, in which a slightly change of the architecture

may lead to a radical change of the performance (e.g. skip

connect). Thus, we consider learning the feature with the

property of continuity.

In order to generate features with continuity, consider

the triplet {(η(Ni;W), yi)}
3
i=1 in which η(Ni;W) (short

as η(Ni)) is the feature generated before the final FC layer.

The Euclidean distance between the two features is com-

puted as dij = ||η(Ni) − η(Nj)||2, and the difference of

the performance between two architectures is simply com-

puted as lij = |yi − yj |. Thus, we achieve the property of

continuity by defining the loss function as:

L2(W) =

n−2
∑

i=1

n−1
∑

j=i+1

n
∑

k=j+1

φ((dij − dik) ∗ sign(lij − lik)).

(4)

Given a single triplet, there are several different pairs, and

the pair with smaller distance (smaller dij) should have sim-

ilar performance (smaller lij). Eq.(4) compares two dif-

ferent pairs, and produces a cost when the former pair has

larger distance (bigger dij) but similar performance (small-

er lij) compared to the latter, and vice versa. The loss is

accumulated on all different triplets.

Note that although the form of Eq. 3 and Eq. 4 are sim-

ilar, the purposes behind are quite different. Given the e-

quations above, the final loss function is the combination of

them:

L = L1 + λL2, (5)

in which λ is the hyper-parameter that controls the impor-

tance between two different loss functions. Therefore, the

effects of the proposed predictor are two folds. The first is

to directly predict accuracies with correct ranking, the sec-

ond is to generate features with the property of continuity

which indirectly helps to predict the accuracies.

Finally, the performance predictor is integrated into dis-

crete searching algorithms such as EA (RL) based searching

method by replacing the fitness (reward) of a given architec-

ture with the output of our predictor (see Fig. 1). EA based

method is used in the following experiments, and the indi-

vidual is fed into the predictor and the output is treated as

the fitness of the model in EA method within milliseconds.

3. Theoretical Analysis

In this section, we analyze the generalization error bound

and prove that using the proposed pairwise ranking based

loss function (Eq. 3) is better than using MSE loss when

solving the ranking problem, under the assumption of using

a two layer neural network with ReLU activation function.

Firstly, we reformulate the ranking based loss function.

Given an input pair (x, y), (x′, y′) ∈ (X × Y)2, denote

f : X → R as the ranking function on X , and ℓ : R× (X ×
Y)2 → {0, R+} be the ranking loss function, the expected

error of f can be defined as [1]:

Rℓ(f) = E((X,Y),(X′,Y ′))∼(X×Y)2 [ℓ(f, (X,Y), (X ′, Y ′))].
(6)

Given a training set D = {xi, yi}
n
i=1 ∈ {X ,Y}n, the em-

pirical error of f is defined as:

R̂ℓ(f) =
1

n(n− 1)

n−1
∑

i=1

n
∑

j=i+1

ℓ(f, (xi, yi), (x
′
i, y

′
i)), (7)

and the regularized empirical error is defined as:

R̂λ
ℓ (f) = R̂ℓ(f) + λC(f), (8)

in which the second term is the regularization term and λ >
0 is the regularization parameter.

Thus, when using the loss function φ(z) = (a − z)+,

Eq. 3 equals to using a hinge ranking loss which is denoted

as:

ℓh(f, (x, y), (x
′, y′)) = [a−(f(x)−f(x′)) ·sign(y−y′)]+,

(9)

and the element-wise MSE loss can be denote as:

ℓmse(f, (x, y), (x
′, y′)) =

1

2
[(f(x)− y)2 + (f(x′)− y′)2].

(10)

In the following, we give the generalization error bounds

when using pairwise ranking based loss function and MSE

loss, and show that the proposed loss function is better. The

proof is applied in the supplementary material.

4414

Theorem 1. Given A as the symmetric ranking algorith-

m2 whose outputs of samples on a training dataset D ∈
(X × Y)n is fD = argminf∈F R̂λ

ℓ (f), in which n ∈ N

is the number of training samples. Denote cx and cf as

the upper bound of the inputs and weights such that for all

x ∈ X and f : X → R we have |x| ≤ cx and ‖f‖2 ≤ cf .

Also given ℓh as the hinge ranking loss function that satis-

fy 0 ≤ ℓh(f, (x, y), (x
′, y′)) ≤ L for all f : X → R and

(x, y), (x′, y′) ∈ (X × Y)2, and ℓmse as the MSE loss func-

tion that also satisfy 0 ≤ ℓmse(f, (x, y), (x
′, y′)) ≤ L. Then

for any 0 < δ < 1, with probability at least 1− δ we have:

Rℓh(fD) < R̂ℓh(fD) +
8c2xc

2
f

λn

+ (
4c2xc

2
f

λ
+ L)

√

2 ln(1/δ)

n
, (11)

and

Rℓmse
(fD) < R̂ℓmse

(fD) +
8(

cxcfL

2
√
λ

+ 1)c2xc
2
f

λn

+ (
4(

cxcfL

2
√
λ

+ 1)c2xc
2
f

λ
+ L)

√

2 ln(1/δ)

n
. (12)

Since (
cxcfL

2
√
λ

+ 1) > 1, also note that the lower the gap

between the expected error and the empirical error, the bet-

ter the generalization ability. Thus, we can say that using

pairwise ranking based loss function (Eq. 3) has a better

generalization ability than using element-wise MSE loss.

4. Experiments

In this section, we conduct several experiments on ver-

ifying the effectiveness of the proposed network perfor-

mance predictor. After that, the best CNN architecture is

found by embedding the predictor into EA algorithm and

is compared to other state-of-the-art predictors to verify its

performance.

The parameter settings for training the predictor and

searching for best architecture are detailed below. When

training the predictor, we used Adam to train the LeNet ar-

chitecture with initial learning rate of 1× 10−3; the weight

decay is set to 5 × 10−4; the batch size is set to 1024 and

trained for 200 epochs. When using the EA algorithm, we

set the maximum generation number to 500 and population

size to 64. The probability for selection, crossover and mu-

tation are set to 0.5, 0.3 and 0.2, respectively.

4.1. Predictor Performance Comparison on NAS
Bench101

We compared the proposed predictor with the method-

s introduced in Peephole [8] and E2EPP [37]. The NAS-

2The output of a symmetric ranking algorithm is independent of the

order of elements in the training sequence D. The proposed algorithm can

be easily proved to be a symmetric ranking algorithm.

Bench-101 dataset is selected as the training and testing sets

of the predictors.

Recall that one of the fundamental idea in ReNAS is that

the ranking of the predicted values is more important than

their absolute values when embedding the predictor into d-

ifferent searching methods. Thus, for the quantitative com-

parison, we use the Kendall’s Tau (KTau) [34] as the indi-

cator:

KTau = 2×
number of concordant pairs

C2
n

− 1, (13)

in which n is the number of samples, C2
n = n(n − 1)/2

and concordant pair means the rankings of predicted values

and the actual values of a given pair are the same. KTau

ranges from −1 to 1 and is suitable for judging the quality

of the predictive rankings. A higher value indicates a better

ranking.

In order to clearly review the influence of using feature

tensor and pairwise loss, we conduct the following 6 ver-

sions of the proposed methods by fixing the predictor as

LeNet and varying the feature encoding method and the loss

function, including:

ReNAS-1 (type matrix + MSE): Using only the type

matrix as feature and MSE loss function.

ReNAS-2 (tensor + MSE): Using the proposed feature

tensor and MSE loss function.

ReNAS-3 (type matrix + L1): Using only the type ma-

trix as feature and loss function L1 (Eq. 3).

ReNAS-4 (tensor + L1): Using the proposed feature

tensor and loss function L1.

ReNAS-5 (type matrix + L): Using only the type matrix

as feature and loss function L (Eq. 5).

ReNAS-6 (tensor + L): Using the proposed feature ten-

sor and loss function L.

Note that the search space in NAS-Bench-101 dataset

and E2EPP are different from each other, and the encoding

method proposed in E2EPP is unable to be used directly on

NAS-Bench-101 dataset. In order to apply NAS-Bench-101

dataset to E2EPP, we produce surrogate method for E2EPP

and use the feature encoding method proposed in the pre-

vious section instead of the original encoding method pro-

duced by E2EPP. The other parts remain unchanged.

The experimental results are shown in Tab. 1. Consid-

er that the training samples can only cover a small propor-

tion of the search space in reality, we focus on the second

column when using only 0.1% (424 models and the cor-

responding validation accuracies) of the NAS-Bench-101

dataset as training set. Different proportions are used in the

experiment for integrity. The results show that the proposed

encoding method can represent an architecture better than

without using it, and the KTau indicator increases about

0.14 when using MSE loss and 0.05 when using pairwise

loss. When using pairwise loss instead of element-wise

4415

Table 1: The Kendall’s Tau (KTau) of Peephole, E2EPP and the proposed algorithms on the NAS-Bench-101 dataset with

different proportions of training samples.

Methods 0.1% 1% 10% 30% 50% 70% 90%

Peephole [8] 0.4556 0.4769 0.4963 0.4977 0.4972 0.4975 0.4951

E2EPP [37] 0.5038 0.6734 0.7009 0.6997 0.7011 0.6992 0.6997

ReNAS-1 0.3465 0.5911 0.7914 0.8229 0.8277 0.8344 0.8350

ReNAS-2 0.4856 0.6090 0.8103 0.8430 0.8399 0.8504 0.8431

ReNAS-3 0.6039 0.7943 0.8752 0.8894 0.8949 0.8976 0.8995

ReNAS-4 0.6335 0.8136 0.8762 0.8900 0.8957 0.8979 0.8997

ReNAS-5 0.6096 0.7949 0.8756 0.8854 0.8898 0.8911 0.8918

ReNAS-6 0.6574 0.8161 0.8763 0.8873 0.8910 0.8923 0.8954

MSE loss, the KTau indicator increases about 0.26 when

using only the type matrix as feature, and about 0.17 when

using the proposed feature tensor. It means that pairwise

loss is better than MSE loss at ranking regardless of input

feature.

Comparing to other state-of-the-art methods, Peephole

used kernel size and channel number as features in addition

to layer (node) type, and shows better result than ReNAS-1

method which uses only the layer (node) type as features.

However, it performs worse than ReNAS-2 method when

using all the feature proposed, which again shows the supe-

riority of using feature tensors. E2EPP used random forest

as predictor, which has advantages only when the training

samples are extremely rare. When using limited training

data, the proposed method with loss function L (Eq. 5)

achieves the best KTau performance, while the proposed

method with L1 loss (Eq. 3) is better when more training

data is used. The results show that generating features with

continuity has advantageous to model ranking when little

training data is used, which is often the case in reality.

A qualitative comparisons on NAS-Bench-101 dataset is

shown in Fig. 2. We show the results of training predictors

using 0.1% training data, the x axis of each point represents

the true ranking among all the points and the y axis denotes

the corresponding predicted ranking. The points made by

a perfect predictor lie on the line y = x, and the closer

the points to line y = x the better. The results show that

the predicted ranking made by ReNAS is better than other

state-of-the-art methods.

4.2. Architecture Search Results on NASBench
101

When searching for the best architecture, the size of the

training set of the predictor should be limited since the

search space in EA algorithm is the same as in NAS-Bench-

101, and we cannot prevent EA algorithm from searching

the architectures in the training set. Thus, in order to reduce

the influence of the training set, we used only 0.1% of NAS-

Bench-101 dataset as training samples to train the predictor,

Table 2: The classification accuracy (%) on CIFAR-10

dataset and the ranking (%) among different architectures in

NAS-Bench-101 dataset using EA algorithm with the pro-

posed predictor and the peer competitors. Predictors are

trained with 0.1% samples randomly selected from NAS-

Bench-101 dataset.

Method accuracy(%) ranking(%)

Peephole [8] 92.63 ± 0.31 12.32

E2EPP [37] 93.47 ± 0.44 1.23

RS 93.72 ± 0.13 0.23

ReNAS-1 92.36 ± 0.27 16.93

ReNAS-2 93.03 ± 0.21 6.09

ReNAS-3 93.43 ± 0.26 1.50

ReNAS-4 93.90 ± 0.21 0.04

ReNAS-5 93.48 ± 0.18 1.21

ReNAS-6 93.95 ± 0.11 0.02

and subsequently used for EA algorithm. The final perfor-

mance tested on CIFAR-10 dataset with the best architec-

ture searched by EA algorithm with the proposed predictor,

the results of random search (RS) and the peer competitors

mentioned above are shown in Tab. 2. Specifically, the best

performances among top-10 architectures selected by EA

algorithm with different predictors are reported and the ex-

periments are repeated 20 times with different random seed

to alleviate the randomness.

The second column represents the classification accu-

racies of the selected models on CIFAR-10 test set, and

the third column represents the true ranking of the select-

ed models among all the 423k different models in NAS-

Bench-101 dataset. The proposed method outperforms oth-

er competitors, and finds an network architecture with top

0.02% performance among the search space using only

0.1% dataset. The fact of achieving good performance with

little training data is reasonable for two reasons. The first

is that the fundamental features of FLOPs and parameters

4416

(a) Peephole (b) E2EPP (c) Proposed

Figure 2: The predicted ranking and true ranking of Peephole, E2EPP and the proposed method on NAS-Bench-101 dataset.

1000 models are randomly selected for exhibition purpose. The x axis denotes the true ranking, and the y axis denotes the

corresponding predicted ranking.

Table 3: The classification accuracy (%) on CIFAR-10

dataset and the ranking (%) among different architectures

in NAS-Bench-101 dataset using the predictors trained with

0.1% samples selected from NAS-Bench-101 dataset. Dif-

ferent selection methods are used.

Method accuracy(%) ranking(%)

random selection 93.95 ± 0.11 0.02

select by parameters 93.84 ± 0.21 0.08

select by FLOPs 93.76 ± 0.13 0.16

Table 4: The classification accuracy (%) on CIFAR-100

dataset among different architectures in NAS-Bench-101

using EA algorithm with the proposed predictor and the

peer competitors. Predictors are trained with 424 samples

randomly selected from NAS-Bench-101.

Method top-1 acc (%) top-5 acc (%)

Peephole [8] 73.58 91.97

E2EPP [37] 75.49 92.77

RS 77.47 93.68

Proposed 78.56 94.17

can represent the architecture well and tensor like input is

suitable for CNN. The second is that using pairwise loss ex-

pand the training set to some extent. Given n individuals,

there are actually n(n− 1)/2 pairs and n(n− 1)(n− 2)/6
triplets for training.

Note that when using performance predictor in practice,

the search space is often different from NAS-Bench-101

dataset, which means the training samples needs to be col-

lected from scratch. Thus, we give some intuitions of s-

electing model architectures from search space as training

samples. 0.1% samples are selected from NAS-Bench-101

dataset as training samples with the method of random se-

lection, select by parameters and select by FLOPs. When

selecting by parameters (FLOPs), all samples are sorted by

their total parameters (FLOPs), and selected uniformly. Dif-

ferent predictors are trained with different training samples

using proposed method, and are further integrated into EA

algorithm for searching. The performance of the best archi-

tectures are shown in Tab. 3. The results show that random

selection performs best. A possible reason is that architec-

tures with similar parameters (FLOPs) perform diversely,

and the uniformly selected architectures cannot represen-

t the true performance distribution of the architectures with

similar parameters (FLOPs). Thus, random selection is our

choice, and is worth trying when generating training sam-

ples from search space in reality.

We further extend our method to search space with un-

known labels by searching for architecture in NAS-Bench-

101 search space that performs well on CIFAR-100 dataset.

Specifically, we randomly select 424 architectures and train

them on CIFAR-100 from scratch and get the ground-truth

labels. These samples are further used to train the predic-

tor, and the best architecture is searched using the methods

mentioned above. The results in Tab. 4 show the priority of

the proposed method. Other experiments on NAS-Bench-

101 dataset are given in the supplementary material.

4.3. Compare with other NAS Search methods on
NASBench201

In order to compare with other state-of-the-art NAS

search methods, we further conduct experiments on NAS-

Bench-201 [12], which is also a cell-based search space

including 15625 different architectures and corresponding

train, validation and test accuracies on CIFAR-10, CIFAR-

4417

Table 5: Search results on NAS-Bench-201.

Method
Search CIFAR-10 CIFAR-100 ImageNet-16-120

seconds validation test validation test validation test

RSPS [22] 7587.12 84.16±1.69 87.66±1.69 59.00±4.60 58.33±4.34 31.56±3.28 31.14±3.88

DARTS-V1 [25] 10889.87 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00

DARTS-V2 [25] 29901.67 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00

GDAS [11] 28925.91 90.00±0.21 93.51±0.13 71.15±0.27 70.61±0.26 41.70±1.26 41.84±0.90

SETN [10] 31009.81 82.25±5.17 86.19±4.63 56.86±7.59 56.87±7.77 32.54±3.63 31.90±4.07

ENAS [30] 13314.51 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00

NPENAS [40] - 91.08±0.11 91.52±0.16 - - - -

REA [31] 0.02 91.19±0.31 93.92±0.30 71.81±1.12 71.84±0.99 45.15±0.89 45.54±1.03

RS 0.01 90.03±0.36 93.70±0.36 70.93±1.09 71.04±1.07 44.45±1.10 44.57±1.25

NASBOT [41] - - 93.64±0.23 - 71.38±0.82 - 45.88±0.37

REINFORCE [42] 0.12 91.09±0.37 93.85±0.37 71.61±1.12 71.71±1.09 45.05±1.02 45.24±1.18

BOHB [13] 3.59 90.82±0.53 93.61±0.52 70.74±1.29 70.85±1.28 44.26±1.36 44.42±1.49

ReNAS(ours) 86.31 90.90±0.31 93.99±0.25 71.96±0.99 72.12±0.79 45.85±0.47 45.97±0.49

ResNet
N/A

90.83 93.97 70.42 70.86 44.53 43.63

optimal 91.61 94.37 73.49 73.51 46.77 47.31

100 and ImageNet-16-120 [7] datasets. During the exper-

iment, 90 randomly selected architectures and the corre-

sponding validation accuracies are used as the training set

for the proposed predictor. After the predictor is trained,

we traverse the search space with the predictor instead of

using EA algorithm, since the number of architectures is

small. Other settings are the same as the experiments on

NAS-Bench-101 dataset. The best validation and test accu-

racies among top-10 architectures selected by the predictor

are reported. Experiments are repeated 20 times with dif-

ferent training samples selected.

The comparative methods include: (1) Random Search

methods, such as random search (RS) and random search

with parameter sharing (RSPS) [22]. (2) EA methods, such

as REA [31] and NPENAS [40]. (3) RL methods, such as

REINFORCE [42] and ENAS [30]. (4) Differentiable meth-

ods, such as DARTS-V1/DARTS-V2 [25], GDAS [11] and

SETN [10]. (5) HPO methods, such as BOHB [13]. (6)

Predictor methods, such as NASBOT [41]. Experimental

settings of the comparative methods are the same as in [12],

and the search results on validation sets and test sets for

each dataset are shown in Tab. 5.

The search cost of ReNAS is the training time of the pre-

dictor. Traversing the search space with the predictor is fin-

ished within milliseconds and is negligible compared to the

training time. The search results show that the proposed Re-

NAS method produces state-of-the-art searching accuracy

on all three datasets based on the test set with an acceptable

search cost within two minutes on a single GeForce GTX

1080 Ti GPU, which indicate the superiority of the proposed

method. Compared to the previous state-of-the-art method

REA [31], NASBOT [41] and random search, ReNAS finds

better architectures that is 0.07%, 0.35% and 0.29% better

on CIFAR-10 test set, 0.28%, 0.74% and 1.08% better on

CIFAR-100 test set, and 0.43%, 0.09% and 1.40% better on

ImageNet-16-120 test set.

5. Conclusion

We proposed a new method for predicting network per-

formance based on its architecture before training. We en-

code an architecture in cell-based search space into a fea-

ture tensor by leveraging the adjacency matrix of the cell

and features that can well represent the computational pow-

er of a given architecture. The pairwise ranking based loss

function is used for the performance predictor instead of

the element-wise loss function, since the rankings between

different architectures are more important than their abso-

lute values in different searching methods. We also theo-

retically proved the superiority of using pairwise ranking

loss. Several experiments are conducted on NAS-Bench-

101 dataset, and shows the priority of the proposed predic-

tor on sorting the performance of different architectures and

searching for an architecture with top performance among

the search space using only 0.1% of the dataset. Exper-

imental results on NAS-Bench-201 dataset shows that the

proposed ReNAS outperform state-of-the-art NAS search-

ing methods with a considerable search cost.

Acknowledgment

We thank anonymous area chair and reviewers for their

helpful comments. Chang Xu was supported by the Aus-

tralian Research Council under Project DE180101438.

4418

References

[1] Shivani Agarwal and Partha Niyogi. Generalization bounds

for ranking algorithms via algorithmic stability. Journal of

Machine Learning Research, 10(Feb):441–474, 2009. 4

[2] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh

Raskar. Designing neural network architectures using rein-

forcement learning. arXiv preprint arXiv:1611.02167, 2016.

1

[3] Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil

Naik. Accelerating neural architecture search using perfor-

mance prediction. arXiv preprint arXiv:1705.10823, 2017.

1

[4] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct

neural architecture search on target task and hardware. arXiv

preprint arXiv:1812.00332, 2018. 1

[5] Hanting Chen, Yunhe Wang, Chang Xu, Chao Xu, and

Dacheng Tao. Learning student networks via feature embed-

ding. IEEE Transactions on Neural Networks and Learning

Systems, 2020. 1

[6] Hanting Chen, Yunhe Wang, Chang Xu, Zhaohui Yang,

Chuanjian Liu, Boxin Shi, Chunjing Xu, Chao Xu, and Qi

Tian. Data-free learning of student networks. In Proceedings

of the IEEE/CVF International Conference on Computer Vi-

sion, pages 3514–3522, 2019. 1

[7] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A

downsampled variant of imagenet as an alternative to the ci-

far datasets. arXiv preprint arXiv:1707.08819, 2017. 8

[8] Boyang Deng, Junjie Yan, and Dahua Lin. Peephole: Pre-

dicting network performance before training. arXiv preprint

arXiv:1712.03351, 2017. 1, 3, 5, 6, 7

[9] Tobias Domhan, Jost Tobias Springenberg, and Frank Hut-

ter. Speeding up automatic hyperparameter optimization of

deep neural networks by extrapolation of learning curves. In

Twenty-Fourth International Joint Conference on Artificial

Intelligence, 2015. 1

[10] Xuanyi Dong and Yi Yang. One-shot neural architecture

search via self-evaluated template network. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 3681–3690, 2019. 8

[11] Xuanyi Dong and Yi Yang. Searching for a robust neural ar-

chitecture in four gpu hours. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 1761–1770, 2019. 8

[12] Xuanyi Dong and Yi Yang. Nas-bench-102: Extending

the scope of reproducible neural architecture search. arX-

iv preprint arXiv:2001.00326, 2020. 2, 3, 7, 8

[13] Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb: Ro-

bust and efficient hyperparameter optimization at scale. arX-

iv preprint arXiv:1807.01774, 2018. 8

[14] Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing

Xu, and Chang Xu. Ghostnet: More features from cheap

operations. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 1580–

1589, 2020. 1

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 1

[16] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017. 1

[17] Shoukang Hu, Sirui Xie, Hehui Zheng, Chunxiao Liu, Jian-

ping Shi, Xunying Liu, and Dahua Lin. Dsnas: Direct neural

architecture search without parameter retraining. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 12084–12092, 2020. 1

[18] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown.

Sequential model-based optimization for general algorithm

configuration. In International conference on learning and

intelligent optimization, pages 507–523. Springer, 2011. 1

[19] Roxana Istrate, Florian Scheidegger, Giovanni Mariani,

Dimitrios Nikolopoulos, Costas Bekas, and A Cristiano I

Malossi. Tapas: Train-less accuracy predictor for architec-

ture search. arXiv preprint arXiv:1806.00250, 2018. 3

[20] Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and

Frank Hutter. Learning curve prediction with bayesian neural

networks. 2016. 1

[21] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Ros-

tamizadeh, and Ameet Talwalkar. Hyperband: A novel

bandit-based approach to hyperparameter optimization. arX-

iv preprint arXiv:1603.06560, 2016. 1

[22] Liam Li and Ameet Talwalkar. Random search and repro-

ducibility for neural architecture search. arXiv preprint arX-

iv:1902.07638, 2019. 8

[23] Liam Li and Ameet Talwalkar. Random search and repro-

ducibility for neural architecture search. In Uncertainty in

Artificial Intelligence, pages 367–377. PMLR, 2020. 2

[24] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha

Fernando, and Koray Kavukcuoglu. Hierarchical represen-

tations for efficient architecture search. arXiv preprint arX-

iv:1711.00436, 2017. 1

[25] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Dart-

s: Differentiable architecture search. arXiv preprint arX-

iv:1806.09055, 2018. 1, 2, 3, 8

[26] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 3431–3440, 2015. 1

[27] Zhichao Lu, Kalyanmoy Deb, Erik Goodman, Wolfgang

Banzhaf, and Vishnu Naresh Boddeti. Nsganetv2: Evolu-

tionary multi-objective surrogate-assisted neural architecture

search. In European Conference on Computer Vision, pages

35–51. Springer, 2020. 1

[28] Zhichao Lu, Gautam Sreekumar, Erik Goodman, Wolfgang

Banzhaf, Kalyanmoy Deb, and Vishnu Naresh Boddeti. Neu-

ral architecture transfer. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, 2021. 1

[29] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya

Rawal, Daniel Fink, Olivier Francon, Bala Raju, Hormoz

Shahrzad, Arshak Navruzyan, Nigel Duffy, et al. Evolving

deep neural networks. In Artificial Intelligence in the Age

4419

of Neural Networks and Brain Computing, pages 293–312.

Elsevier, 2019. 1

[30] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and

Jeff Dean. Efficient neural architecture search via parameter

sharing. arXiv preprint arXiv:1802.03268, 2018. 1, 8

[31] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V

Le. Regularized evolution for image classifier architecture

search. In Proceedings of the aaai conference on artificial

intelligence, volume 33, pages 4780–4789, 2019. 1, 8

[32] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Advances in neural information pro-

cessing systems, pages 91–99, 2015. 1

[33] Christian Sciuto, Kaicheng Yu, Martin Jaggi, Claudiu Musat,

and Mathieu Salzmann. Evaluating the search phase of neu-

ral architecture search. arXiv preprint arXiv:1902.08142,

2019. 1, 3

[34] Pranab Kumar Sen. Estimates of the regression coefficient

based on kendall’s tau. Journal of the American statistical

association, 63(324):1379–1389, 1968. 5

[35] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 1

[36] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Na-

dathur Satish, Narayanan Sundaram, Mostofa Patwary, Mr

Prabhat, and Ryan Adams. Scalable bayesian optimization

using deep neural networks. In International conference on

machine learning, pages 2171–2180, 2015. 1

[37] Yanan Sun, Handing Wang, Bing Xue, Yaochu Jin, Gary G

Yen, and Mengjie Zhang. Surrogate-assisted evolutionary

deep learning using an end-to-end random forest-based per-

formance predictor. IEEE Transactions on Evolutionary

Computation, 2019. 1, 3, 5, 6, 7

[38] Yehui Tang, Yunhe Wang, Yixing Xu, Hanting Chen, Box-

in Shi, Chao Xu, Chunjing Xu, Qi Tian, and Chang Xu. A

semi-supervised assessor of neural architectures. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 1810–1819, 2020. 1

[39] Yehui Tang, Yunhe Wang, Yixing Xu, Dacheng Tao, Chun-

jing Xu, Chao Xu, and Chang Xu. Scop: Scientific con-

trol for reliable neural network pruning. arXiv preprint arX-

iv:2010.10732, 2020. 1

[40] Chen Wei, Chuang Niu, Yiping Tang, and Jimin Liang. N-

penas: Neural predictor guided evolution for neural architec-

ture search. arXiv preprint arXiv:2003.12857, 2020. 8

[41] Colin White, Willie Neiswanger, Sam Nolen, and Yash Sa-

vani. A study on encodings for neural architecture search.

arXiv preprint arXiv:2007.04965, 2020. 8

[42] Ronald J Williams. Simple statistical gradient-following al-

gorithms for connectionist reinforcement learning. Machine

learning, 8(3-4):229–256, 1992. 8

[43] Antoine Yang, Pedro M Esperança, and Fabio M Carlucci.

Nas evaluation is frustratingly hard. arXiv preprint arX-

iv:1912.12522, 2019. 1, 2

[44] Zhaohui Yang, Yunhe Wang, Xinghao Chen, Boxin Shi,

Chao Xu, Chunjing Xu, Qi Tian, and Chang Xu. Cars: Con-

tinuous evolution for efficient neural architecture search. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 1829–1838, 2020. 1

[45] Zhaohui Yang, Yunhe Wang, Kai Han, Chunjing Xu, Chao

Xu, Dacheng Tao, and Chang Xu. Searching for low-bit

weights in quantized neural networks. In Advances in Neural

Information Processing Systems, volume 33, 2020. 1

[46] Chris Ying, Aaron Klein, Esteban Real, Eric Christiansen,

Kevin Murphy, and Frank Hutter. Nas-bench-101: Towards

reproducible neural architecture search. arXiv preprint arX-

iv:1902.09635, 2019. 2, 3

[47] Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu Musat,

and Mathieu Salzmann. Evaluating the search phase of neu-

ral architecture search. arXiv preprint arXiv:1902.08142,

2019. 2

[48] Pan Zhou, Yunqing Hou, and Jiashi Feng. Deep adversarial

subspace clustering. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1596–

1604, 2018. 1

[49] Barret Zoph and Quoc V Le. Neural architecture search with

reinforcement learning. arXiv preprint arXiv:1611.01578,

2016. 1

[50] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V

Le. Learning transferable architectures for scalable image

recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 8697–8710,

2018. 1

4420

