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Abstract

Text segmentation is a prerequisite in many real-world

text-related tasks, e.g., text style transfer, and scene text re-

moval. However, facing the lack of high-quality datasets

and dedicated investigations, this critical prerequisite has

been left as an assumption in many works, and has been

largely overlooked by current research. To bridge this

gap, we proposed TextSeg, a large-scale fine-annotated

text dataset with six types of annotations: word- and

character-wise bounding polygons, masks, and transcrip-

tions. We also introduce Text Refinement Network (TexR-

Net), a novel text segmentation approach that adapts to

the unique properties of text, e.g. non-convex boundary, di-

verse texture, etc., which often impose burdens on tradi-

tional segmentation models. In our TexRNet, we propose

text-specific network designs to address such challenges,

including key features pooling and attention-based similar-

ity checking. We also introduce trimap and discriminator

losses that show significant improvement in text segmenta-

tion. Extensive experiments are carried out on both our

TextSeg dataset and other existing datasets. We demon-

strate that TexRNet consistently improves text segmenta-

tion performance by nearly 2% compared to other state-of-

the-art segmentation methods. Our dataset and code can

be found at https://github.com/SHI-Labs/Rethinking-Text-

Segmentation.

1. Introduction

Text segmentation is the foundation of many text-related

computer vision tasks. It has been studied for decades as

one of the major research directions in computer vision,

and it continuously plays an important role in many ap-

plications [2, 55, 56, 47, 9]. Meanwhile, the rapid ad-

vances of deep neural nets in recent years promoted all sorts

of new text-related research topics, as well as new vision

challenges on text. Smart applications, such as font style

transfer, scene text removal, and interactive text image edit-

ing, require effective text segmentation approaches to parse

Figure 1: Example images and annotations from the pro-

posed TextSeg dataset. From left to right are images, word

and character bounding polygons, pixel-level word (dark

gray) and word-effect (light gray) masks, and pixel-level

character masks.

text accurately from complex scenes. Without any doubt,

text segmentation is critical for industrial usages because

it could upgrade the traditional text processing tools to be

more intelligent and automatic, relaxing tedious efforts on

manually specifying text regions.

However, modern text segmentation has been left behind

in both datasets and methods. The latest public text segmen-

tation challenge was in 2013-2015, hosted by ICDAR [26].

Since then, three datasets: Total-Text [10], COCO TS [5],

and MLT S [6], were introduced. However, Total-Text is

limited in scale, and the labeling quality in COCO TS and

MLT S needs further improvement (Figure 5). Moreover,

all the three datasets contain only common scene text, dis-

couraging text in other visual conditions, e.g., artistic de-

sign and text effects. As a result, these datasets do not

meet modern research standards, such as large-scale and

fine-annotated. Thus, we propose a new text segmentation

dataset: TextSeg, that collects images from a wider range

of sources, including both scene and design text, and with a

richer set of accurate annotations. This dataset would lead

to further advancements in text segmentation research.

Additionally, text segmentation algorithms and methods
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Figure 2: Images examples from the proposed TextSeg dataset. The left four columns show scene text that dominantly

presents in existing text segmentation datasets, and the rest columns are design text w/ or w/o text effects, which distinguishes

TextSeg from all the other related datasets.

in recent years fall behind other research topics, partially

due to the lack of a proper dataset. Unlike the rapid ad-

vances in other segmentation research, only a few stud-

ies [46, 6, 14] have brought new text segmentation ideas.

Meanwhile, these studies did not provide an intuitive com-

parison with modern SOTA segmentation approaches and

were unable to demonstrate their advantages over other

techniques. As aforementioned, effective text segmentation

models are valuable in applications. With our strong moti-

vation to bridge this gap, we propose Text Refinement Net-

work (TexRNet), and we thoroughly exam its performance

on five text segmentation datasets including the proposed

TextSeg dataset. The details of our design principles and

our network structure are given in Session 3, and experi-

ments and ablations studies are shown in Session 5.

In summary, the main contributions of this paper are in

three-folds:
• We introduce a new large-scale fine-annotated text seg-

mentation dataset, TextSeg, consisting of 4,024 text

images, including scene text and design text with var-

ious artistic effects. TextSeg has six types of anno-

tations for each image, i.e., word- and character-wise

quadrilateral bounding polygons, pixel-level masks,

and transcriptions. TextSeg surpasses prior datasets on

these aspects: 1) more diverse text fonts/styles from di-

verse sources/collections, 2) more comprehensive an-

notations, and 3) more accurate segmentation masks.

• We provide a new text segmentation approach, Text

Refinement Network (TexRNet), aiming to solve the

unique challenges from text segmentation. We de-

sign effective network modules (i.e., key features pool-

ing and attention-based similarity checking) and losses

(i.e., trimap loss and glyph discriminator) to tackle

those challenges, e.g., diverse texture and arbitrary

scales/shapes.

• Exhaustive experiments are conducted to demonstrate

the effectiveness of the proposed TexRNet, which out-

performs SOTA on our TextSeg and on another four

representative datasets. Besides, we give prospects for

downstream applications that could significantly bene-

fit from text segmentation.

2. Related Work

2.1. Segmentation in Modern Research

Semantic and instance segmentation are popular tasks

for modern research. In semantic segmentation, pixels

are categorized into a fixed set of labels. Datasets such

as PASCAL VOC [15], Cityscapes [12], COCO [34], and

ADE20K [61] are frequently used in this task. Traditional

graph models,e.g., MRF [31] and CRF [29], predict seg-

ments by exploring inter-pixel relationship. After CNNs be-

came popular [28], numerous deep models were proposed

using dilated convolutions [60, 7, 8, 50], encoder-decoder

structures [44, 60, 8, 33], and attention modules [51, 48,

16]. Instance segmentation methods predict distinct pixel

labels for each object instance. These methods can be

roughly categorized into top-down approaches [20, 32, 21,

35, 53, 27] and bottom-up approaches [4, 17, 37, 54, 40].

Top-down approaches are two-stage methods that first lo-

cate object bounding boxes and then segment object masks

within those boxes. Bottom-up approaches locate key-

points [57, 40] and find edges and affinities [17, 37, 54, 4]

to assist the segmentation process.

2.2. Text Segmentation

Early methods frequently used thresholding [41, 45] for

segmentation particularly on document text images. Yet

such methods cannot produce satisfactory results on scene

text images with complex colors and textures. Other ap-
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proaches used low-level features [36, 52, 3] and Markov

Random Field (MRF) [38] to bipartite scene text images.

In [36], text features created from edge density/orientation

were fed into an multiscale edge-based extraction algorithm

for segmentation. In [52], a two-stage method was intro-

duced in which foreground color distribution from stage

one was used to refine the result for stage two. In [3],

seed points of both text and background were extracted

from low-level features and were later used in segmenta-

tion. Inspired by MRF, [38] formulated pixels as random

variables in a graph model, and then graph-cut this model

with two pre-selected seeds. In recent years, several deep

learning methods [46, 14, 6] were proposed for text seg-

mentation. The method proposed by [46] is a three-stage

CNN-based model, in which candidate text regions were de-

tected, refined, and filtered in those stages correspondingly.

Another method SMANet was jointly proposed with the

dataset MLT S in [6]. They adopted the encoder-decoder

structure from PSPNet [60], and created a new multiscale

attention module for accurate text segmentation.

2.3. Text Dataset

Spotlight datasets motivate researchers to invent effec-

tive methods to tackle computer vision problems. For ex-

ample, the MNIST dataset of handwritten digits [30] il-

lustrated the effectiveness of a set of classical algorithms,

e.g., KNN [1], PCA [42], SVM [13], etc. In recent years,

the huge success of deep learning inspires researchers to

create more challenging datasets to push forward the vi-

sion research front. Many text datasets are created for

OCR purpose like CUTE80 [43], MSRA-TD500 [58], IC-

DARs [25, 26, 39], COCO-Text [49], and Total-Text [10],

which are scene text datasets with word-level bounding

boxes. Other datasets such as Synth90K [24] and Synth-

Text [19] are synthetic text dataset for recognition and de-

tection. Among these dataset, ICDAR13 [26] and Total-

Text [10] provide pixel-level labels for text segmentation.

Recently, Bonechi et al. introduced segmentation labels

to COCO-Text and ICDAR17 MLT, forming up two new

text segmentation datasets COCO TS [5] and MLT S [6].

In general, ICDAR13 and Total-Text are relatively smaller

sets, and COCO TS and MLT S are of larger scale but their

labeling quality is not precise.

3. Text Refinement Network

We propose a new approach, namely Text Refinement

Network (TexRNet), specifically targets text segmentation.

Since text segmentation is intrinsically similar to modern

semantic segmentation, the related state-of-the-art methods

can be leveraged to provide the base for our proposed TexR-

Net. Figure 3 overviews the pipeline of TexRNet, which

consists of two components: 1) a backbone and 2) the key

features pooling and attention module that refines the back-

bone for the text-domain. The design of the latter module

is inspired by the uniqueness of text segmentation, and the

principles will be discussed in Section 3.1. The network

structure and corresponding loss functions will be detailed

in Sections 3.2 and 3.3, respectively.

3.1. Design Principle

Multiple unique challenges distinguish text segmenta-

tion from modern semantic segmentation, thus motivating

specific designs for text segmentation. In semantic segmen-

tation, common objects, e.g., trees, sky, cars, etc., tend to

share texture across different scenes. However, in text seg-

mentation, the text texture may be extremely diverse across

different words, although it could be homogeneous inside

each word. To accommodate larger texture diversity, TexR-

Net dynamically activates low-confidence areas according

to their global similarity to high-confidence regions, i.e.,

the yellow block in Figure 3, which aims to adaptively find

similar textures in the same scene while relaxing the model

from “remembering” those diverse textures.

Another challenge of text segmentation is the arbitrarily

scaled text. The commonly adopted convolutional layers in

semantic segmentation would limit the receptive field, re-

ducing adaptiveness to diverse scale and aspect ratio. To

achieve higher adaptiveness to scale, we adopt the popular

non-local concept [51, 48]. We use dot product and soft-

max to enforce attention on similar texture across the entire

image.

3.2. Network Structure

As aforementioned, the backbone can employ an arbi-

trary semantic segmentation network. Here, we choose two

representative works, i.e., ResNet101-DeeplabV3+ [8] and

HRNetV2-W48 [50], because they are the milestone and

state-of-the-art in semantic segmentation, respectively. The

rest of this section will focus on the new designs of TexR-

Net, i.e., the yellow block in Figure 3, which is the key to

boosting text segmentation performance.

Assume an input image x ∈ R
H×W×3, where H and W

denote image height and width, respectively. The feature

map extracted from the backbone is xf . The remainder of

the proposed TexRNet could be described in the following

three sequential components.

Initial Prediction: Similar to most traditional segmen-

tation models, the feature map xf is mapped to the semantic

map xsem through a convolutional layer (the kernel size is

1×1) with bias. After the softmax layer, xsem becomes the

initial segmentation prediction x′
sem, which can be super-

vised by ground truth labels as the following.

Lsem = CrossEntropy(x′
sem, xgt), (1)

where x′
sem = Softmax(xsem), and xgt indicates the

ground truth label.
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Figure 3: Overview of the proposed TexRNet. Most parts of the network are well-explained in Session 3.2. Besides, ”Char-

Crop” is the modules that help cropping characters for classifier. It requires ground truth character bounding boxes as input,

and therefore will only be available if those boxes are provided. During inference time, neither ”Char-Crop” nor ”Classifier”

need to be loaded, and xrfn will be the model’s final output.

Key Features Pooling: Because text does not have a

standard texture that can be learned during training, the

network must determine that text texture during inference.

Specifically, the network should revise low-confidence re-

gions if they share similar texture with high-confidence re-

gions of the same class. To achieve this goal, we need to

pool the key feature vector from high-confidence regions

for each class i ∈ C to summarize the global visual prop-

erty of that class. In our case, |C| = 2, corresponding to

text and background. More specifically, we conduct a mod-

ified cosine-similarity on the initial prediction x′
sem and use

its output as new biases to transform x′
sem into x̂′

sem which

is the weight map for key pooling. The cosine-similarity is

written in Eq. 2, assuming x′
sem ∈ R

c×n, where c = |C|
denotes the number of classes, and n is the number of pixels

in a single channel.

CosSim(x′
sem) = X ∈ R

c×c,

Xij =











xix
T
j

||xi|| · ||xj ||
, i 6= j

0, i = j

,

xi = x′(i,)
sem ∈ R

1×n, i = 1, · · · , c,

(2)

where CosSim(·) denotes the modified cosine-similarity

function, and x′(i,)
sem denotes the ith channel of x′

sem, i.e., the

predicted score map on class i. From our empirical study,

the cosine-similarity value Xij indicates the ambiguity be-

tween prediction on classes i and j. For example, when Xij

is close to 1, pixels are activated similarly in both x′(i,)
sem and

x′(j,)
sem, and thus cannot be trusted. Therefore, we use zero

bias on class i and use biases in proportional to Xij on class

j 6= i equivalent to decrease the confidence scores on class

i. Those regions remains high-activated in class i are then

confidence enough for the key pooling. The final key pool-

ing is a normalized weighted sum between the weight map

x̂′
sem and feature map xf :

vi =
xf ·

(

x̂
′(i,)
sem

)T

∥

∥x̂
′(i,)
sem

∥

∥

, v =
[

vi, · · ·
]

, i = 1, · · · , c, (3)

where xf ∈ R
m×n denotes the feature map with m chan-

nels and n pixels in each channel, vi ∈ R
m×1 denotes the

pooled vector for class i, and v ∈ R
m×c is the concatenated

matrix from vi.

Attention-based Similarity Checking: We then adopt

an attention layer, which uses v as key and xf as query, and

computes the query-key similarity xatt through dot-product

followed by softmax:

xatt = Softmax(vT · xf ), xatt ∈ R
c×n. (4)

The xatt will activate those text regions that may be ignored

due to low-confidence in the initial prediction x′
sem. Then,

we fuse xatt with the input image x and backbone feature

xf into our refined result xrfn through several extra con-

volutional layers (orange block in Figure 3). Note that our

attention layer differs from the traditional query-key-value

attention [48] in several ways. Traditional attention requires

identical matrix dimensions on query and key, while our

approach uses a key v that is significant smaller than the

query xf . Also, traditional attention fuses value and atten-

tion through dot product, while ours fuses xatt with other

features through a deep model. The final output xrfn is

supervised by the ground truth as shown in the following.

Lrfn = CrossEntropy(xrfn, xgt). (5)
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3.3. Trimap Loss and Glyph Discriminator

Since human vision is sensitive to text boundaries, seg-

mentation accuracy along the text boundary is of central im-

portance. In addition, text typically has a relatively high

contrast between the foreground and background to make

it more readable. Therefore, a loss function that focuses

on the boundary would further improve the precision of text

segmentation. Inspired by [23], we proposed the trimap loss

as expressed as follows,

Ltri = WCE (xrfn, xgt, wtri) ,

WCE(x, y, w) = −

∑n

j=1 wj

∑c

i=1 xi,j log(yi,j)
∑n

j=1 wj

(6)

where wtri is the binary map with value 1 on text bound-

aries and 0 elsewhere, and WCE(x, y, w) is cross-entropy

between x and y weighted by the spatial map w.

Another unique attribute of text is its readable nature,

i.e., the segments of glyphs should be perceptually recog-

nizable. Given that the partial segmentation of a glyph di-

minishes its readability, we train a glyph discriminator to

improve text segments’ readability. It is worth noting that

the glyph discriminator also improves the evaluation score,

as shown in the evaluation. More specifically, we pre-train

a classifier for character recognition given the ground-truth

character bounding boxes in the training set (the proposed

dataset TextSeg provides these annotations). In our case,

there are 37 classes, i.e., 26 letters, 10 digits, and misc.

During the training of TexRNet, the pre-trained classifier

is frozen and applied to the initial prediction x′
sem, serving

as the glyph discriminator. As illustrated in Figure 3, x′
sem

is cropped into patches according to the character locations

and then fed into the discriminator to obtain the discrim-

inator loss Ldis, which indicates whether and how these

patches are recognizable.

Unlike Ltri that operates on xrfn, the glyph discrimina-

tor is applied on the initial prediction x′
sem for mainly two

reasons: 1) Ltri focuses on boundary accuracy while Ldis

focuses on the body structure of the text, which “distracts”

each other if they are applied on the same prediction map.

Our empirical studies also show that the improvements from

Ltri and Ldis would be diminished if they work together on

the same output, which aligns with our analysis. 2) Ltri can

directly impact the performance, so it oversees the model’s

final output xrfn, while Ldis reinforces the deep perception

on text thus it can be placed on earlier layers. Above all, the

final loss of TexRNet will be

L = Lsem + αLrfn + βLtri + γLdis, (7)

where α, β, and γ are weights from 0 to 1. In the following

experiments, α = 0.5, β = 0.5, and γ = 0.1. We select

these loss weights in the way that the weight sums on two

branches are roughly balanced (i.e. 0.5 + 0.5 ≈ 1 + 0.1).

4. The New Dataset TextSeg

As text in the real world is extremely diverse, to bridge

text segmentation to the real world and accommodate the

rapid advances of the text vision research, we propose a new

dataset TextSeg, a multi-purpose text dataset focused on but

not limited to segmentation.

4.1. Image Collection

The 4,024 images in TextSeg are collected from posters,

greeting cards, covers, logos, road signs, billboards, digital

designs, handwriting, etc. The diverse image sources could

be roughly divided into two text types: 1) scene text, e.g.,

road signs and billboards, and 2) design text, e.g., artistic

text on poster designs. Figure 2 shows examples of the two

types. Existing text-related datasets tend to focus on scene

text, while TextSeg balances the two text types to achieve

a more real-world and diverse dataset. In addition, rather

than focusing on text lines, the proposed TextSeg includes

a large amount of stylish text. Sharing the language set-

ting from those representative text segmentation datasets,

the proposed TextSeg mainly focuses on English (i.e., case-

sensitive alphabet, numbers, and punctuation).

4.2. Annotations

TextSeg provides more comprehensive annotations as

compared to existing datasets. More specifically, TextSeg

has annotated the smallest quadrilateral, pixel-level mask,

and transcription for every single word and character. Be-

sides, text effects, e.g., shadow, 3D, halo, etc., are annotated

in TextSeg, which distinguishes text from traditional objects

and significantly affects text segmentation. To the best of

our knowledge, the proposed TextSeg is the only dataset

with such comprehensive annotation for text segmentation.

Smallest Quadrilaterals are annotated to tightly bound

words, characters, and punctuation. These quadrilaterals

are recorded in the image coordinate (i.e., top-left origin,

x axis is horizontally right, and y axis is vertically down),

and the four vertices are ordered clockwise starting from the

top-left corner in the natural reading direction. A smallest

quadrilateral tightly bounds a word or character, as shown

in Figure 1. In certain cases like blurry text or long strokes,

the quadrilaterals would cover the text’s core area by ignor-

ing the ambiguous boundary or decorative strokes.

Pixel-level Masks consist of word masks, character

masks, and word-effect masks. The word mask is a sub-

set of the word-effect mask since the word mask labels the

word surface without the effects like shadow and decora-

tion, while the effect mask covers both word and effects.

Similar to word masks, the character masks label charac-

ter surfaces without those effects. Borrowing the concept

from modern segmentation, word masks enable semantic

segmentation, and character masks allow instance segmen-

tation. For character masks, the most challenging cases are
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Dataset # Images
Approx.

Text Type
# Bounding Word-level # Character

Image Size Polygons Masks Masks

Scene Text Segmentation # Word # Char

ICDAR13 FST [26] 462 1000× 700 Scene 1,944 6,620 Word 4,786

COCO TS† [5] 14,690 600× 480 Scene 139,034 – Word –

MLT S† [6] 6,896 1800× 1400 Scene 30,691 – Word –

Total-Text [10] 1,555 800× 700 Scene 9,330 – Word –

TextSeg (Ours) 4,024 1000× 800 Scene + Design 15,691 73,790 Word, Word-Effect 72,254

† The 14,690 images in COCO TS is a subset of the totally 53,686 images in COCO-Text [49]. Similarly, the 6,898 images in MLT S is a subset of the 10,000 images in ICDAR17 MLT [39].

Thus, their word bounding polygons can be directly extracted from their parent datasets.

Table 1: Statistical comparison between TextSeg and other datasets for text segmentation. The “–” marker indicates absence

of the corresponding annotation in a dataset.

(a) Number of objects (b) Text coverage ratio

(c) Letter frequency

Figure 4: Statistics of TextSeg. (a) Number of images with

different numbers of words and characters. (b) Text cover-

age ratio against the image. (c) Character frequency of the

whole dataset.

handwriting and artistic styles, where there are no clear

boundaries between characters. Thus, the criterion is to

keep all masks perceptually recognizable.

4.3. Statistical Analysis

Statistical comparison between TextSeg and four repre-

sentative text segmentation datasets is listed in Table 1, i.e.,

ICDAR13 FST [26], MLT S [6], COCO TS [5], and Total-

Text [10]. In general, TextSeg has more diverse text types

and all types of annotations. Another dataset that provides

character-level annotations is ICDAR13 FST, but its size is

far smaller than other datasets. COCO TS and MLT S are

relatively large, but they lack character-level annotations

and mainly focus on scene text. The Total-Text was pro-

posed with similar scope to those existing datasets.

The 4,024 images in TextSeg are split into training, val-

idation, and testing sets with 2,646, 340, and 1,038 images,

respectively. In TextSeg and all its splits, the ratio between

the number of scene text and design text is roughly 1:1. Fig-

ure 4a counts the number of images with different numbers

of words and characters, where 12-16 characters and 2-4

words per image is the majority. Figure 4b shows the dis-

tribution of the text coverage ratio, where the blue line is

set up for word masks and the orange line is for word-effect

masks. The rightward shifting from blue to orange indicates

the coverage increment due to the word-effect. Finally, Fig-

ure 4c displays the character frequency in TextSeg, which

roughly aligns with that of English corpus.

4.4. Qualitative Comparison

Figure 5 shows qualitative comparison between TextSeg,

ICDAR13 FST, COCO TS, MLT S, and Total-Text. IC-

DAR13 FST has many box-shape masks (considered as ig-

nored characters), which is not a common case in the pro-

posed TextSeg. Other datasets, i.e., COCO TS, MLT S, and

Total-Text, have only word masks. Note that COCO TS

and MLT S introduce a large number of ignored areas, es-

pecially along text boundaries, which would hinder models

from precisely predicting text boundaries. Those boundary-

ignored annotations are caused by automatic labeling using

weekly supervised models. Similar to TextSeg, Total-Text

is labeled manually, but it is of a much smaller size than

ours and lacks annotations of characters and text effects.

5. Experimental Evaluation

To demonstrate the effectiveness of the proposed TexR-

Net, it will be compared to the state-of-the-art methods

DeeplabV3+ [8] and HRNet-W48 [50] on five datasets,

i.e., ICDAR13 FST [26], COCO TS [5], MLT S [6], Total-

Text [10], and the proposed TextSeg.

5.1. Experiment Setup

Each model in comparison will be re-trained on each of

the aforementioned text segmentation datasets. The models

are initialized by ImageNet pretrains and then trained on 4

GPUs in parallel using SGD with weight decay of 5e−4 for

20,500 iterations. The first 500 iterations are linear warm-

ups [18], and the rest iterations use poly decayed learning

rates starting from 0.01 [8]. Note that 5,500 iterations are

performed on ICDAR13 FST due to its small size as shown

in Table 1. For TextSeg, our model train and evaluate using

word masks as foreground instead of the word-effect masks.

For the data augmentation, we randomly scale the short side
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(a) TextSeg (Ours) (b) ICDAR13 FST (c) COCO TS (d) MLT S (e) Total-Text

Figure 5: Comparison of annotations from multiple text segmentation datasets. The proposed TextSeg and ICDAR13

FST [26] provide character-level annotations (color-coded characters). COCO TS [5], MLT S [6], and Total-Text [10] only

provide word-level annotations, where masks in red and white denote text regions and ignored regions, respectively.

TextSeg (Ours) ICDAR13 FST COCO TS MLT S Total-Text

Method fgIoU F-score fgIoU F-score fgIoU F-score fgIoU F-score fgIoU F-score

PSPNet† [60, 5] – – – 0.797 – – – – – 0.740

SMANet† [6] – – – 0.785 – – – – – 0.770

DeeplabV3+ [8] 84.07 0.914 69.27 0.802 72.07 0.641 84.63 0.837 74.44 0.824

HRNetV2-W48 [50] 85.03 0.914 70.98 0.822 68.93 0.629 83.26 0.836 75.29 0.825

HRNetV2-W48 + OCR [59] 85.98 0.918 72.45 0.830 69.54 0.627 83.49 0.838 76.23 0.832

Ours: TexRNet + DeeplabV3+ 86.06 0.921 72.16 0.835 73.98 0.722 86.31 0.860 76.53 0.844

Ours: TexRNet + HRNetV2-W48 86.84 0.924 73.38 0.850 72.39 0.720 86.09 0.865 78.47 0.848

† In [5, 6], the author augmented the original training dataset with SynthText [19] in both ICDAR13 FST and Total-Text experiments.

Table 2: Performance comparison between TexRNet and other models on TextSeg and other representative text segmentation

datasets. The bold numbers indicate the best results.

of the input images from 513 to 1025 and randomly crop a

513×513 patch as input in training.

The glyph discriminator in TexRNet adopts a ResNet50

classifier [22], which is trained on character patches from

TextSeg training and validation sets. It achieves the classifi-

cation accuracy of 93.38% on the TextSeg testing set. Since

only the proposed TextSeg and ICDAR13 FST provide

character bounding boxes, the glyph discriminator is only

applied on these two datasets and disabled on COCO TS,

MLT S, and Total-Text.

We evaluate our models using multi-scale no-flip ensem-

ble 8 scales from 0.75x to 2.5x of a standard 513 short

side image. To align with modern segmentation tasks, we

use foreground Intersection-over-Union (fgIoU) as our ma-

jor metric. Also, the typical F-score measurement on fore-

ground pixels is provided in the same fashion as [11, 26].

The foreground here indicates the text region in both pre-

diction and ground truth.

5.2. Model Performance

This section compares TexRNet to other text and seman-

tic segmentation methods. To demonstrate the effectiveness

of TexRNet, the comparison is conducted on five datasets

including our TextSeg. As previously claimed, we adopt

DeeplabV3+ [8] and HRNetV2-W48 [50] as our backbone

and baseline. We also compares with the SOTA semantic

segmentation model: HRNetV2-W48 + Object-Contextual

Representations (OCR) [59]. The PSPNet and SMANet re-

sults are from [5, 6] in which their models were trained

on ICDAR13 FST and Total-Text augmented with Synth-

Text [19]. Tables 2 shows the overall results. As the table

shows, our proposed TexRNet outperforms other methods

on all datasets.

5.3. Ablation Studies

This section performs ablation studies on the key pooling

and attention (the yellow block in Figure 3), trimap loss, and

glyph discriminator in the proposed TexRNet. In this ex-

periment, DeeplabV3+ is adopted as the backbone, and the

models are trained and evaluated on TextSeg. Starting from

the base version of TexRNet, the key pooling and attention

(Att.), trimap loss (Ltri), and glyph discriminator (Ldis) are

added incrementally as shown in Table 3, where the fgIoU

and F-score are reported, presenting a consistently increas-

ing trend. The final TexRNet achieves the best performance,

around 2% increase in fgIoU as compared to DeeplabV3+.

An interesting observation is that TexRNet (final) have

exactly the same number of parameters as TexRNet (base),

but the part between them contributes the most improve-

ment. To further investigate whether the performance in-

crease comes from parameter increase, we compared TexR-

Net with HRNetV2-W48+OCR and other models in Fig-

ure 6. We discover that TexRNet achieves higher accuracy

with less parameters as compared to HRNetV2-W48+OCR,

12051



Method Att. Ltri Ldis fgIoU F-score

DeeplabV3+ 84.07 0.914

TexRNet (base) 84.86 0.917

TexRNet X 85.36 0.919

TexRNet X X 85.55 0.921

TexRNet (final) X X X 86.06 0.921

Table 3: Ablation studies of TexRNet on TextSeg. All mod-

els are training on TextSeg train and validation sets, and all

TexRNet use DeeplabV3+ as backbone. The column “Attn.”

represents whether attention layers are included. Similarly,

columns “Ltri” and “Ldis” indicate whether the trimap loss

and glyph discriminator are used.

Figure 6: Comparison of different methods in the number

of parameter vs. text segmentation performance in fgIoU.

demonstrating the effectiveness of our design in TexRNet.

5.4. Downstream applications

This section gives prospects of TexRNet and TextSeg

dataset, especially in driving downstream applications.

Text Removal is a practical problem in photo and video

editing, and it is also an application with high industrial

demand. For example, media service providers frequently

need to erase brands from their videos to avoid legal is-

sues. Since this task is a hole filling problem, Deep Image

Prior [47] is employed, and different types of text masks

are provided to compare the performance of text removal.

Typically, word or character bounding boxes are standard

text masks because they are easy to get from existing text

detection methods. By contrast, the proposed TexRNet pro-

vides much more accurate text masks. Figure 7 compares

the results using these three types of text masks, i.e., text

segmentation mask, character bounding polygon, and word

bounding polygon. Obviously, finer mask yields to better

performance.

Text Style Transfer is another popular task for both re-

search and industry. Mostly, text style transfer relies on

accurate text masks. In this experiment, we use Shape-

Matching GAN [56] as our downstream method, which re-

quires text masks as an input. In their paper, all demo im-

ages are generated using ground truth text masks, which

may be impractical in real-world applications. Therefore,

Figure 7: Examples of text removal with different types of

text masks. From left to right, the top row shows the in-

put image, predicted text mask from our TexRNet, charac-

ter bounding polygons, and word bounding polygons from

ground truth. The second row are text removing results us-

ing corresponding text masks on the same column.

Figure 8: Examples of text style transfer with styles of fire

and maple on the first column. The rest are results with their

original images attached to the bottom-left corner.

we extend TexRNet with Shape-Matching GAN to achieve

scene text style transfer on an arbitrary text image. A few

examples are visualized in Figure 8, and more examples can

be found in the supplementary.

6. Conclusions

We introduce a novel text segmentation dataset TextSeg,

which consists of 4,024 scene text and design text im-

ages with comprehensive annotations including word- and

character-wise bounding polygons, masks, and transcrip-

tions. We also propose a new and effective text segmen-

tation method, TexRNet. We demonstrate that our model

outperforms state-of-the-art semantic segmentation models

on TextSeg and another four datasets. To support our idea

that text segmentation has great potential in the industry, we

introduce two downstream applications, i.e., text removal

and text style transfer, to show promising results using text

segmentation masks from TexRNet. In conclusion, text seg-

mentation is a critical task. We hope that our new dataset

and method would become the corner-stone for future text

segmentation research.
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