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Abstract

Space-time video super-resolution (STVSR) aims to

increase the spatial and temporal resolutions of low-

resolution and low-frame-rate videos. Recently, deformable

convolution based methods have achieved promising STVSR

performance, but they could only infer the intermediate

frame pre-defined in the training stage. Besides, these meth-

ods undervalued the short-term motion cues among adja-

cent frames. In this paper, we propose a Temporal Modu-

lation Network (TMNet) to interpolate arbitrary interme-

diate frame(s) with accurate high-resolution reconstruc-

tion. Specifically, we propose a Temporal Modulation Block

(TMB) to modulate deformable convolution kernels for con-

trollable feature interpolation. To well exploit the temporal

information, we propose a Locally-temporal Feature Com-

parison (LFC) module, along with the Bi-directional De-

formable ConvLSTM, to extract short-term and long-term

motion cues in videos. Experiments on three benchmark

datasets demonstrate that our TMNet outperforms previ-

ous STVSR methods. The code is available at https:

//github.com/CS-GangXu/TMNet.

1. Introduction

Nowadays, flat-panel displays using liquid-crystal dis-

play (LCD) or light-emitting diode (LED) technologies

can broadcast Ultra High Definition Television (UHD TV)

videos with 4K (3840 × 2160) or 8K (7680 × 4320) full-

color pixels, at the frame rate of 120 frames per second

(FPS) or 240 FPS [39]. However, currently available videos

are commonly in Full High Definition (FHD) with a reso-

lution of 2K (1920 × 1080) at 30 FPS [45]. To broadcast

FHD videos on UHD TVs, it is necessary to increase their
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Figure 1: Flexible STVSR performance by our TMNet.

Given input frames at moments 0 (begin) and 1 (end), [45]

could only interpolate pre-defined intermediate frame at

moment 0.5 (a), while our TMNet can generate interme-

diate frames at arbitrary moments (e.g., 0.3, 0.5, 0.7) (b).

space-time resolutions comfortably with the broadcasting

standard of UHD TVs. Although it is possible to increase

the spatial resolution of videos frame-by-frame via single

image super-resolution methods [4,22], the perceptual qual-

ity of the enhanced videos would be deteriorated by tempo-

ral distortion [17]. To this end, the space-time video super-

resolution (STVSR) methods [31, 45] are developed to si-

multaneously increase the spatial and temporal resolutions

of low-frame-rate and low-resolution videos.

Previous model-based STVSR methods [30–32] rely

heavily on precise spatial and temporal registration [38],

and would produce inferior reconstruction results when

the registration is inaccurate. Besides, they usually require

huge computational costs on solving complex optimization

problems, resulting in low inference efficiency [21, 25].

Later, deep convolutional neural networks [12, 13, 34, 44]

have been widely employed in video restoration tasks such

as video super-resolution (VSR) [3, 37], video frame in-

terpretation (VFI) [1, 27, 46], and the more challenging

STVSR [17, 45]. A straightforward solution for STVSR

is to perform VFI and VSR successively on low-resolution

and low-frame-rate videos, to increase their spatial resolu-

tions and frame rates [45]. However, these two-stage meth-

ods ignore the inherent correlation between temporal and

spatial dimensions. That is, the videos with high-resolution

frames contain richer details on moving object(s) and back-
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ground, while those in high-frame-rate provide finer pixel

alignment between adjacent frames [8]. Therefore, these

two-stage STVSR methods would suffer from the temporal

inconsistency problem [45] and produce artifacts, e.g., “the

attentional blink phenomenon” [36] on STVSR.

To well exploit the correlation between the temporal

and spatial dimensions in videos, several one-stage STVSR

methods [8, 17, 45] have been proposed to simultaneously

perform VFI and VSR reconstruction on low-frame-rate

and low-resolution videos. The work of STARnet [8] es-

timates the motion cues with an additional optical flow

branch [5], and performs feature warping of two adja-

cent frames to interpolate the intermediate frame. But

this flow-based method [8] needs to learn an extra branch

for optical flow estimation, which consumes expensive

costs on computation and memory. To alleviate this prob-

lem, Xiang et al. [45] employed the deformable convolu-

tion backbone [41], and directly performed STVSR on the

feature space. Though with promising performance, cur-

rent STVSR networks could only generate the intermediate

frames pre-defined in the network architecture, and thus are

restricted to highly-controlled application scenarios with

fixed frame-rate videos. However, in many commercial sce-

narios, such as sports events, it is very common for the user

to flexibly adjust the intermediate video frames for better

visualization. Thus, it is necessary to develop controllable

STVSR methods for smooth motion synthesizing.

To fulfill the versatile requirements of broadcasting sce-

narios, in this paper, we propose a Temporal Modulation

Network (TMNet) to interpolate an arbitrary number of in-

termediate frames for STVSR, as shown in Figure 1. But

current deformable convolution based methods [45] could

only generate pre-defined intermediate frame(s). To tackle

this problem, we propose a Temporal Modulation Block

(TMB) to incorporate motion cues into the feature inter-

polation of intermediate frames. Specifically, we first es-

timate the motion between two adjacent frames under the

deformable convolution framework [41], and learn control-

lable interpolation at an arbitrary moment defined by a tem-

poral parameter. In addition, we also propose a Locally-

temporal Feature Comparison module to fuse multi-frame

features for effective spatial alignment and feature warping,

and a globally-temporal feature fusion to explore the long-

term variations of the whole video. This two-stage temporal

feature fusion scheme accurately interpolates the interme-

diate frames for STVSR. Extensive experiments on three

benchmarks [23,35,46] demonstrate that our TMNet is able

to interpolate an arbitrary number of intermediate frames,

and achieves state-of-the-art performance on STVSR.

The contribution of this work are three-fold:

• We propose a Temporal Modulation Network (TM-

Net) to perform controllable interpolation of arbi-

trary frame-rates for flexible STVSR performance.

This is achieved by our Temporal Modulation Block

under the deformable convolution framework.

• We present a two-stage temporal feature fusion

scheme for effective STVSR. Specifically, we pro-

pose a locally-temporal feature comparison module to

exploit the short-term motion cues of adjacent frames,

and perform globally-temporal feature fusion by ex-

ploring the long-term variations over the whole video.

• Experiments on three benchmarks show that our TM-

Net is able to perform controllable frame interpola-

tion at arbitrary frame-rate, and outperforms state-

of-the-art STVSR methods.

2. Related Work

Video frame interpolation (VFI) aims to synthesize new

intermediate frames between adjacent frames [2, 15, 20].

Early VFI methods mainly resort to optical flow tech-

niques for motion estimation [2, 15, 27]. Jiang et al. [15]

modeled motion interpretation for arbitrary frame-rate VFI.

Niklaus et al. [26] warped the input frames with contex-

tual information, and interpolated context-aware interme-

diate frames. Bao et al. employed motion estimation and

compensation for VFI in [2], and obtained improved per-

formance by further exploring the depth information [1].

Niklaus et al. [27] tackled the conflicts of mapping multi-

ple pixels to the same location in VFI by softmax splatting.

However, these optical flow based methods need huge com-

putational costs on motion estimation. Therefore, recently

researchers exploited to learn spatially-adaptive convolu-

tion kernels [28] or deformable ones for VFI [20].

Video super-resolution (VSR) is the task of increasing the

spatial resolutions of low-resolution (LR) videos [16, 37,

41]. Existing VSR methods [16, 37, 41] mainly aggregate

spatial information of multiple frames for high-resolution

(HR) reconstruction, with the help of optical flow tech-

niques [5]. Jo et al. [16] generated dynamic upsampling

filters to enhance the LR frames with residual learning [12].

Wang et al. [41] proposed the Pyramid, Cascading and De-

formable (PCD) module to perform frame alignment, and

then fused multiple frames into a single one by spatial and

temporal attention. Haris et al. [7] designed an iterative

refinement framework by integrating the spatial and tem-

poral contexts of multiple frames. Tian et al. [37] utilized

the learned sampling offsets of deformable convolution ker-

nels to align the supporting frames with the reference ones,

which are both used to reconstruct the HR frames.

Space-time video super-resolution (STVSR) aims to in-

crease the spatial and temporal dimensions of the low-

frame-rate and low-resolution videos [8, 17, 45]. Shecht-

man et al. [31] tackled the STVSR problem by employing a

directional space-time smoothness regularization on the HR

video reconstruction problem. Mudenagudi et al. [25] for-
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Figure 2: Overview of our Temporal Modulation Network (TMNet) for STVSR. Given the input low-frame-rate and

low-resolution video IL, we first extract initial features and perform Controllable Feature Interpolation (CFI, implemented

by our Temporal Modulation Block) for the intermediate frame at an arbitrary moment t ∈ (0, 1). Then, we feed the obtained

feature maps FL into a two-stage temporal feature fusion scheme. For short-term motion consistency, the feature maps

FL are refined to FL
LFC by our Locally-temporal Feature Comparison (LFC) module. To exploit long-term motion cues, the

feature maps FL
LFC are further improved to FL

GFF by globally-temporal feature fusion (GFF), implemented by Bi-directional

Deformable ConvLSTM (BDConvLSTM) [45]. Finally, we employ 40 residual blocks to reconstruct high-resolution feature

maps FH , and two Pixel-Shuffle layers to output the high-frame-rate and high-resolution video IH .

mulated their STVSR method under the Markov Random

Field framework [6]. STARnet [8] leveraged inherent mo-

tion relationship between spatial and temporal dimensions

with an extra optical flow branch [5], and perform feature

warping of two adjacent frames to interpolate the intermedi-

ate frame. Xiang et al. [45] developed a unified framework

to interpolate the multi-frame features via PCD alignment

modules [41], the intermediate features by bidirectional de-

formable ConvLSTM [34], and finally performed STVSR

by multi-frame feature fusion. In this work, our goal is to

develop a temporally controllable network for powerful and

flexible STVSR. Though built upon [45], our TMNet arrives

at better performance on benchmark datasets, owing to the

proposed locally temporal feature comparison module.

Modulation networks. Recently, researchers proposed to

control the restoration intensity of the main network by ad-

ditional modulation branches [9,10,40,42]. These modula-

tion networks are trained to trade-off the restoration quality

and flexibility, which are controlled by hyper-parameters.

He et al. [9] put feature modulation filters after each con-

volution layer to modulate the output according to user’s

preference. Later, He et al. [10] expanded this design to

multiple dimensions, and modulated the output according

to the levels of multiple degradation types. Wang et al. [40]

learned the features from tuning blocks and residual ones

with different objectives, to control the trade-off between

noise reduction and detail preservation. In this work, we

consider the modulation on temporal dimension, instead of

on restoration intensity as in these modulation networks. As

far as we know, our work is among the first to implement

temporal modulation in the STVSR problem. As will be

shown in §4, our TMNet can explore the potential of tem-

poral modulation for controllable STVSR.

3. Proposed Method

In this section, we first overview our Temporal Mod-

ulation Network (TMNet) for STVSR in §3.1. Then, we

introduce our Temporal Modulation Block for controllable

feature interpolation in §3.2. We present temporal feature

fusion in §3.3, and high-resolution reconstruction in §3.4.

Finally, the training details are given in §3.5.

3.1. Network Overview

As illustrated in Fig. 2, our TMNet consists of three

seamless stages: controllable feature interpolation, tempo-

ral feature fusion, and high-resolution reconstruction.

Controllable feature interpolation. Given a sequence of

low-frame-rate and low-resolution video IL = {IL
2i−1}

n
i=1,

our TMNet firstly extracts the corresponding initial fea-

ture maps {FL
2i−1}

n
i=1 through 5 residual blocks. To per-

form temporally controllable feature interpolation, we pro-

pose a Temporal Modulation Block (TMB) to modulate

the deformable convolution kernels with a temporal hyper-

parameter t. Here, t∈(0, 1) indicates the (arbitrary) moment

at which we plan to interpolate a feature map F
L
2i,t from the

feature maps FL
2i−1 and F

L
2i+1 of two adjacent frames IL

2i−1

and I
L
2i+1, respectively. Finally, we obtain a feature se-

quence FL = {FL
1 ,FL

2,t,F
L
3 , ...,FL

2n−2,t,F
L
2n−1} of high-

frame-rate and low-resolution video frames.

Temporal feature fusion. The extracted (or interpolated)

feature maps in FL are often of low-quality, since they are

extracted from individual LR frames (or interpolated by the

initial feature maps of adjacent LR frames). Thus, we pro-
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Figure 3: Proposed Temporal Modulation Block (TMB) modulated Pyramid, Cascading and Deformable (PCD) mod-

ule [41] for controllable feature interpolation. f0→1
TMB (f1→0

TMB ) is the PCD module modulated by our TMB block to model

the forward (backward) motion. Our TMB modulates all the three levels of the PCD module, by transforming the temporal

hyper-parameter t into a modulation vector vt via a fully connected network (FCN) consisted of three convolutional layers.

pose a Locally-temporal Feature Comparison (LFC) mod-

ule, to refine every feature map in FL with the help of

the feature maps of adjacent frames. After the local fea-

ture refinement, we further improve the feature maps in FL

by performing globally-temporal feature fusion (GFF). This

is implemented by employing a Bi-directional Deformable

ConvLSTM (BDConvLSTM) network [45], to consecu-

tively aggregate the useful information from individual fea-

ture maps along the temporal direction. Both the LFC and

GFF fusion modules well exploit the intra-correlation be-

tween spatial and temporal dimensions to improve the qual-

ity of feature maps in FL. In the end, we obtain the se-

quence of improved feature maps FL
GFF .

High-resolution reconstruction. Here, we feed the se-

quence of feature maps FL
GFF into 40 residual blocks to

improve their quality along the spatial dimension. Next,

we increase the spatial resolution of these improved fea-

ture maps via the widely used Pixel-Shuffle layers [33], and

output the final high-frame-rate and high-resolution video

sequence IH = {IH
1 , IH

2,t, ..., I
H
2n−2,t, I

H
2n−1}.

3.2. Controllable Feature Interpolation

Given a sequence of low-frame-rate and low-resolution

video frames IL = {IL
2i−1}

n
i=1, we first extract the corre-

sponding initial features FL = {FL
2i−1}

n
i=1 via five residual

blocks. Each residual block contains a sequence of “Conv-

ReLU-Conv” operations with a skip connection. For any

two adjacent frames I
L
2i−1 and I

L
2i+1 (i ∈ {1, ..., n − 1}),

our goal here is to interpolate the feature of intermediate

frame at an arbitrary moment t ∈ (0, 1). To this end, we

need to estimate the motion cues from I
L
2i−1 to the interme-

diate frame (forward) and that from I
L
2i+1 to the intermedi-

ate frame (backward). Previous STVSR methods [41, 45]

utilized the Pyramid, Cascading and Deformable (PCD)

module to estimate the offset between F
L
2i−1 and F

L
2i+1

as the motion cues, to align and interpolate the features of

the intermediate frame under the deformable convolutional

framework [48]. However, the vanilla PCD module could

only estimate the motion to a predefined moment, which is

fixed in both training and inference stages.

To overcome this limitation, we propose a Temporal

Modulation Block (TMB) to modulate the learned offset be-

tween F
L
2i−1 and F

L
2i+1. The modulation is controlled by a

hyper-parameter t ∈ (0, 1), indicating an arbitrary moment

that we plan to interpolate a new frame. This enables our

TMNet to control the feature interpolation process upon the

initial feature maps FL
2i−1 and F

L
2i+1 of two adjacent frames

I
L
2i−1 and I

L
2i+1 in the input video. The PCD module modu-

lated by our TMB block can estimate the forward and back-

ward motions and interpolate the feature map F
L
2i,t of a new

frame at the arbitrary moment t ∈ (0, 1).
Denote by f0→1

TMB and f1→0
TMB the PCD modules modulated

by our TMB block, to model the forward and backward mo-

tions, respectively. Here, we perform modulated feature in-

terpolation from the forward and backward directions:

F
L
2i,0→t = f0→1

TMB (F
L
2i−1,F

L
2i+1, t),

F
L
2i,1→t = f1→0

TMB (F
L
2i−1,F

L
2i+1, 1− t),

(1)

where F
L
2i,0→t and F

L
2i,1→t are the interpolated features

aligned from the feature maps FL
2i−1 and F

L
2i+1 of the adja-

cent frames. Note that the two TMB-modulated PCD mod-

ules share the same network structure but have different

weights. Here we only take the f0→1
TMB as an example to ex-

plain how the PCD modules modulated by our TMB work
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on modeling the forward motion. The PCD module f1→0
TMB

modeling the backward motion can be similarly explained.

As shown in Fig. 3, the PCD module has three levels

to estimate the motion in different scales. To realize flexi-

ble modulation on the temporal dimension, we embed our

TMB block into each level of the vanilla PCD module in-

dependently, to modulate the offset before the deformable

convolutional network (DCN). The benefits of adding our

TMB block to all three levels of the PCD module will be

verified in §4. To adaptively modulate the offset by our

TMB at different levels of PCD, we use three convolutional

layers to map the temporal hyper-parameter t onto a mod-

ulation vector vt of size 1 × 1 × 64. To well exploit the

motion cues for precise modulation, we feed the features in

each vanilla PCD level into two convolutional layers to en-

large their receptive fields. Then, the generated feature is

multiplied with the modulation vector vt along the channel

dimension, to produce the TMB-modulated features. For

robustness, we add the TMB-modulated features with the

corresponding pre-modulated features before DCN.

Once obtaining the modulated feature maps FL
2i,0→t and

F
L
2i,1→t, we interpolate the intermediate feature F

L
2i,t via

channel-wise concatenation “[·, ·]” followed by a 1× 1 con-

volution layer f1×1 as:

F
L
2i,t = f1×1([F

L
2i,0→t,F

L
2i,1→t]). (2)

Now, we obtain the features of the interpolated sequence

FL = {FL
1 ,FL

2,t,F
L
3 , ...,FL

2n−2,t,F
L
2n−1} for the high-

frame-rate and low-resolution video. Next, we perform fea-

ture fusion along the temporal dimension.

3.3. Temporal Feature Fusion

Here, the initial features are extracted (or interpolated)

from individual (or adjacent) frames. There is considerable

leeway to improve their quality. But we also feed the initial

features into the Pixel-Shuffle part of our TMNet.

Locally-temporal feature comparison. It is essential to

maintain short-term temporal consistency for each current

frame. For this purpose, we propose a Locally-temporal

Feature Comparison (LFC) module to exploit the com-

plementary information (e.g., motion cues) from adjacent

frames. As illustrated in Fig. 4, to refine the feature map

F
L
2i,t of current frame from adjacent feature maps F

L
2i−1

and F
L
2i+1, we concatenate current frame (FL

2i,t) and adja-

cent frames (FL
2i−1, FL

2i+1), and employ two convolutional

layers to learn the offset in the deformable convolutional

framework [48]. Note that we learn two offsets to describe

the motion cues in the forward (from I
L
2i−1 to current frame)

and the backward (from I
L
2i+1 to current frame) directions.

Then, the learned offset from forward (or backward) direc-

tion is used to align the feature map F
L
2i−1 of previous (or

F
L
2i+1 of next) frame with that of the current frame, via

one deformable convolutional layer. After the alignment,
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Figure 4: Proposed Locally-temporal Feature Compari-

son (LFC) module refines the interpolated feature F
L
2i,t by

exploiting short-term motion cues among adjacent frames.

we concatenate the aligned feature maps of two adjacent

frames with that of the current frame, and perform feature

comparison via four 1 × 1 convolutional layers and an ad-

dition operation. For the first (or last) frame, the previous

(or next) adjacent frame is just itself. Now we get a refined

feature sequence FL
LFC .

Globally-temporal feature fusion. The feature sequence

refined by our LFC module is able to maintain short-term

consistency in the interpolated video. But it would fail

on large or fast motions, since LFC lacks the capability

of modeling the motions over the whole video. To tackle

this problem, we propose to exploit the long-term informa-

tion in videos by globally-temporal feature fusion. Inspired

by [45], we feed the feature sequence FL
LFC generated by

our LFC into the BDConvLSTM network, and obtain the

features FL
GFF in long-term temporal consistency.

As will be illustrated in the experimental section, our

short-term LFC module and the long-term BDConvLSTM

indeed boost the performance of our TMNet on STVSR.

3.4. High­Resolution Reconstruction

Until now, the intra-correlation of temporal and spatial

dimensions is well explored to obtain the high-quality fea-

ture sequence FL
GFF of the whole video. Then, we per-

form spatial refinement for the feature maps via 40 residual

blocks, and get the refined feature maps FH . Then we add

the features FH with the corresponding initial feature maps

in FL, and obtain the reconstructed feature maps FH
final.

Finally, we feed the reconstructed feature maps FH
final into

two Pixel-Shuffle layers, followed by a sequence of “Conv-

LeakyReLU-Conv” operations, to output the reconstructed

HR video frames IH = {IH
1 , IH

2,t, ..., I
H
2n−2,t, I

H
2n−1}.

3.5. Training Details

Implementation details. We employ the Adam opti-

mizer [18] with β1 = 0.9 and β2 = 0.999 to optimize

our TMNet with the Charbonnier loss function [19], as sug-

gested in [45]. The learning rate is initialized as 4 × 10−4,

and is decayed to 1× 10−7 with a cosine annealing [24] for
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Table 1: Comparison of PSNR, SSIM [43], speed (in fps), and parameters (in million) by different STVSR methods

on Vid4 [35], Vimeo-Fast, Vimeo-Medium, Vimeo-Slow [46]. “↑” means that larger is better. The speed is evaluated on

Vid4 [35]. The best, second best and third best results are highlighted in red, blue and bold, respectively.

Method Vid4 [35] Vimeo-Fast Vimeo-Medium Vimeo-Slow Speed Parameters

VFI+(V)SR / STVSR PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ fps↑ million↓

SuperSloMo [15] + Bicubic 22.84 0.5772 31.88 0.8793 29.94 0.8477 28.37 0.8102 - 19.8

SuperSloMo [15] + RCAN [47] 23.80 0.6397 34.52 0.9076 32.50 0.8884 30.69 0.8624 2.49 19.8+16.0

SuperSloMo [15] + RBPN [7] 23.76 0.6362 34.73 0.9108 32.79 0.8930 30.48 0.8584 2.06 19.8+12.7

SuperSloMo [15] + EDVR [41] 24.40 0.6706 35.05 0.9136 33.85 0.8967 30.99 0.8673 6.85 19.8+20.7

SepConv [28] + Bicubic 23.51 0.6273 32.27 0.8890 30.61 0.8633 29.04 0.8290 - 21.7

SepConv [28] + RCAN [47] 24.92 0.7236 34.97 0.9195 33.59 0.9125 32.13 0.8967 2.42 21.7+16.0

SepConv [28] + RBPN [7] 26.08 0.7751 35.07 0.9238 34.09 0.9229 32.77 0.9090 2.01 21.7+12.7

SepConv [28] + EDVR [41] 25.93 0.7792 35.23 0.9252 34.22 0.9240 32.96 0.9112 6.36 21.7+20.7

DAIN [1] + Bicubic 23.55 0.6268 32.41 0.8910 30.67 0.8636 29.06 0.8289 - 24.0

DAIN [1] + RCAN [47] 25.03 0.7261 35.27 0.9242 33.82 0.9146 32.26 0.8974 2.23 24.0+16.0

DAIN [1] + RBPN [7] 25.96 0.7784 35.55 0.9300 34.45 0.9262 32.92 0.9097 1.88 24.0+12.7

DAIN [1] + EDVR [41] 26.12 0.7836 35.81 0.9323 34.66 0.9281 33.11 0.9119 5.20 24.0+20.7

STARnet [8] 26.06 0.8046 36.19 0.9368 34.86 0.9356 33.10 0.9164 14.08 111.61

Zooming Slow-Mo [45] 26.31 0.7976 36.81 0.9415 35.41 0.9361 33.36 0.9138 16.50 11.10

TMNet (Ours) 26.43 0.8016 37.04 0.9435 35.60 0.9380 33.51 0.9159 14.69 12.26

every 150,000 iterations. We initialize the parameters of our

TMNet by Kaiming initialization [11] without pre-trained

weights. The batch size is 24. Our TMNet, implemented in

PyTorch [29] and Jittor [14], is trained in a total of 600,000

iterations on four RTX 2080Ti GPUs, which takes about

8.71 days (209.04 hours). For each input video clip, we

randomly crop it into a sequence of downsampled patches

of size 32× 32. For data argumentation, we horizontal-flip

each frame, and randomly rotate it with 90◦, 180◦, or 270◦.

Network training. When directly trained with the proposed

TMB block, our TMNet suffers from clear performance

drops on STVSR, as shown in our experiments. One possi-

ble reason is that our TMNet can not accurately estimate the

motion cues to interpolate an intermediate frame at the arbi-

trary moment t ∈ (0, 1) since our TMB does not know the

moment before the training modulated feature. To resolve

this problem, we propose to train our TMNet by a two-step

strategy: Step 1, we train our main TMNet without the

proposed TMB block; Step 2, we only train our TMB

block while fixing the trained main network.

In Step 1, we train our TMNet on the Vimeo-90K

dataset [46], which will be introduce in §4.1. This dataset

consists of 7-frame video clips. For each clip, the 1-st, 3-

rd, 5-th, and 7-th LR frames are input into our TMNet as

low-frame-rate and low-resolution video. We set t = 0.5
to get rid of the TMB block from our TMNet, and learn

to generate the 7-frame high-resolution and high-frame-rate

video. This enables our TMNet to fairly compare with pre-

vious STVSR methods [8, 35, 41, 45]. For supervision, we

calculate the loss function over the corresponding 7-frame

HR video clip in the Vimeo-90K dataset [46].

In Step 2, we fix the learned weights of our main net-

work, and only train our TMB block for temporal mod-

ulation. The training is performed on the Adobe240fps

dataset [35], which is in high-frame-rate and suitable for

training our TMB block. We also split it into groups of 7-

frame video clips. For each clip, the 1-st and 7-th HR frames

are downsampled as the inputs of our TMNet. We set the

temporal hyper-parameter t∈{ 1

6
, 2

6
, 3

6
, 4

6
, 5

6
} to interpolate

5 intermediate frames. This step costs 35.26 minutes.

4. Experiments

4.1. Experimental Setup

Dataset. We use Vimeo-90K septuplet dataset [46] as

the training set. It contains 91,701 video sequences, ex-

tracted from 39K video clips selected from Vimeo-90K.

Each sequence contains 7 continuous frames of resolu-

tion 448 × 256. The Vid4 [23] and Vimeo-90K test

set are used as evaluation datasets. As suggested in [45],

we split the Vimeo-90K septuplet test set into three

subsets of Fast motion, Medium motion, and Slow mo-

tion, which include 1225, 4977, and 1613 video clips, re-

spectively. We also remove 5 video clips from the original

Medium motion set and 3 clips from the Slow motion set,

which contain only all-black backgrounds.

To make our TMNet feasible for controllable feature in-

terpolation, we train our TMB block individually on the

Adobe240fps dataset [35]. It has 133 videos (in 720P)

taken with hand-held cameras, and is randomly split into

the train, val, and test subsets with 100, 16, and 17

videos, respectively. For each video, we split it into groups

of 7-frame video clips. We feed the 1-st and 7-th frames in

each clip into our TMNet to generate 5 intermediate frames.

We downsample the HR frames to create the LR frames

by bicubic interpolation, with a factor of 4.
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LR DAIN+EDVR

HR STARnet

SepConv+EDVR Super SloMo+EDVR

Zooming Slow-Mo TMNet (Ours)  Clip 0249 of “0083” in Vimeo-   Clip 0001 of “0070” in Vimeo-

Frame 1549 of “0056”  in Adobe240fps Frame 1550 Frame 1551 Frame 1552 Frame 1553 Frame 1555Frame 1554

PSNR/SSIM

26.01dB/0.7624 26.10dB/0.7561 26.30dB/0.7701 26.13dB/0.7618 26.04dB/0.7653 25.87dB/0.7608

27.05dB/0.8363 25.40dB/0.8892

31.05dB/0.9358 27.51dB/0.9280

26.76dB/0.8727

32.75dB/0.9523

23.18dB/0.7798 26.91dB/0.8351 30.44dB/0.9173

30.65dB/0.9180 30.82dB/0.9244

30.03dB/0.9119

31.61dB/0.9393

26.01dB/0.8219PSNR/SSIM

25.83dB/0.7540

Figure 5: Qualitative and quantitative results of different methods on STVSR. The test video clips are from the

Adobe240fps [35] (1-st row), Vimeo-Fast [46] (2-nd row, left) and Vimeo-Slow [46] (2-nd row, right) datasets.

Evaluation metric. We employ the widely used Peak

Signal-to-Noise Ratio (PSNR) and Structural Similarity

Index (SSIM) [43] to evaluate different methods on the

STVSR task. The PSNR and SSIM metrics are calculated

on the Y channel of the YCbCr color space, as favored by

previous VSR [7, 41] and STVSR [45] methods.

4.2. Comparison to State­of­the­arts

Comparison methods. We compare our TMNet with state-

of-the-art two-stage and one-stage STVSR methods. For

the two-stage STVSR methods, we perform video frame

interpolation (VFI) by SuperSloMo [15], DAIN [1] or

SepConv [28], and perform video super-resolution (VSR)

by Bicubic Interpolation (BI), RCAN [47], RBPN [7] or

EDVR [41]. For one-stage STVSR methods, we com-

pare our TMNet with the recently developed Zooming

SlowMo [45] and STARnet [8]. To fairly compare with

these competitors, we set t = 0.5 in our TMNet to gen-

erate the frame at the middle moment of any two adjacent

frames. That is, the 1-st, 3-rd, 5-th, and 7-th LR frames of

each clip in Vimeo-90K are fed into our TMNet to recon-

struct the 7 HR frames. All these methods are trained on

the Vimeo-90K septuplet dataset [46], evaluated on the

Vimeo-90K test set [46] and the Vid4 [35] dataset.

Objective results. We list the quantitative comparison re-

sults in Table 1. As suggested in [45], we omit the base-

line models with Bicubic Interpolation when comparing

the speed. One can see that our TMNet outperforms the

Zooming SlowMo [45] by 0.12dB, 0.23dB, 0.19dB, and

0.15dB on the Vid4, Vimeo-Fast, Vimeo-Medium, and

Vimeo-Slow datasets in terms of PSNR. On SSIM [43],

our TMNet achieves better results than the competitors in

most cases, but is only slightly inferior to STARnet [8] on

Vid4 [23] and Vimeo-Slow. However, our TMNet needs

only one-ninth of the parameters in STARnet. On speed,

one-stage methods [8, 45] run much faster than two-stage

ones [1, 7, 15, 28, 41]. Our TMNet runs at 14.69fps, and is

only slower than Zooming Slow-Mo [45]. All these results

validate the effectiveness of our TMNet on STVSR.

Visualization. In the 1-st row of Figure 5, we present the

5 intermediate frames (Frame 1550 to Frame 1554) inter-

polated by our TMNet on the sequence “0056” from the

Adobe240fps test set [35], given the Frame 1549 and

Frame 1555 as inputs. It can be seen that our TMNet is

able to perform flexible frame interpolation for STVSR.

In the 2-nd row of Figure 5, we show the reconstructed

frames by different STVSR methods from Vimeo-Fast

and and Vimeo-Slow datasets [46] generated by the com-

peting methods respectively. We observe that our TMNet,

with the proposed LFC module, can restore more clearly the

structures and textures than the competitors. For example,

on the Clip “0001” in the sequence “0070” of Vimeo-Slow

datasets, our TMNet reconstructs clearly the texture pattern

on the bag. In summary, our TMNet demonstrates flexi-

ble and powerful STVSR ability quantitatively and qualita-

tively. More visual comparison on the Vid4 [23], Vimeo-

90K test set [35], and Adobe240fps [46] datasets are pro-

vided in the Supplementary File, because of page limitation.

4.3. Ablation Study

Here, we conduct detailed examinations of our TMNet

on STVSR. Specifically, we assess 1) the importance of

our Temporal Modulation Block (TMB) for controllable

feature interpolation; 2) different strategies that our TMB

block modulates the PCD module; 3) how to design our

TMB block; 4) how our Locally-temporal Feature Compari-

son (LFC) module contribute to the temporal feature fusion

in our TMNet; 5) the combination of high-quality feature

maps FH and initial feature maps FL for STVSR.

1. Does our TMB block contribute to controllable fea-

ture interpolation? To answer this question, we compare

our TMNet with previous STVSR methods [8, 45] on gen-

erating intermediate frames from two adjacent frames. Due

to limited space, we provide the comparison of visual re-

sults on Adobe240fps test set [35] in the Supplementary

File. We observe that our TMNet with TMB block indeed
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exhibits temporally controllable STVSR performance.

2. How different strategies that our TMB block modu-

late the PCD module influence our TMNet on STVSR?

The PCD module [41] has a three-level pyramid structure:

the 1-st level L1; the 2-nd level L2 is downsampled from

the features in L1 by convolution filters at a stride of 2;

similarly, the 3-rd level L3 is downsampled from L2 by a

stride of 2. In our TMNet, the proposed TMB modulates all

the three levels of the PCD module. But our TMB can also

modulate only one level (L1, L2, or L3) of PCD, resulting

three variants of our TMNet called TMB-L1, TMB-L2, and

TMB-L3. These variants are trained on the Adobe240fps

train set [35] and evaluate them on test set. As shown

in Table 2, the three variants perform in descending order,

indicating that the 1-st level of PCD is more important for

temporal modulation. By modulating all three levels of

PCD, our TMNet outperforms the three variants on STVSR,

by better exploiting the motion cues of videos.

Table 2: PSNR results on Adobe240fps test set by dif-

ferent strategies that our TMB modulates the PCD.

Variant TMB-L1 TMB-L2 TMB-L3 TMNet

PSNR (dB) 26.92 26.82 26.60 26.95

3. How to design our TMB block? The goal of our TMB is

to transform the hyper-parameter t into a modulation vector

vt comfortable with the PCD module. A trivial design of

our TMB is a linear convolutional layer. We call it TMB-

Linear. We train our TMB and the TMB-Linear on

Adobe240fps train set [35] and evaluate them on test

set. The PSNR results are listd in Table 3, in which the

TMB-Linear is 0.02dB lower than our TMB with three

nonlinear convolutional layers. This shows that nonlinear

transformation is only a little better than the linear one.

Table 3: PSNR results on Adobe240fps test set by our

TMB with linear or nonlinear design.

Variant TMB-Linear TMB

PSNR (dB) 26.93 26.95

4. How important is the proposed LFC module to our

TMNet? Our TMNet performs a two-stage temporal fea-

ture fusion: first local fusion via LFC and then global fusion

via GFF. Thus, our TMNet can be called “LFC→GFF”. In-

verting the order, i.e., GFF→LFC, makes our TMNet col-

lapse during the training. The main reason is that perform-

ing GFF before LFC brings noisy long-term information,

confusing the learning of deformable convolution in LFC.

Thus, we do not evaluate this variant. To study how our

LFC contributes to the two-stage fusion in our TMNet, we

remove LPC from our TMNet and call this variant “GFF”.

Besides, the features from LFC and GFF can be concate-

nated and fused by a convolutional layer, resulting in a vari-

ant “LPC+GFF”. We train our TMNet and its variants on

the Vimeo-90K septuplet dataset and evaluate them on

the Vid4 [23], Vimeo-Fast, Vimeo-Medium, and Vimeo-

Slow datasets. The PSNR results are listed in Table 4. One

can see that our TMNet (LPC→GFF) achieves the best re-

sults on all cases, and outperforms GFF by 0.07dB on Vid4,

0.17dB on Vimeo-Fast, 0.15dB on Vimeo-Medium, and

0.11dB on Vimeo-Slow. This indicates that our LFC mod-

ule is essential to the success of our TMNet on STVSR, by

exploiting short-term motion cues among adjacent frames.

Table 4: Comparison of PSNR (dB) results by different

variants of our TMNet on STVSR datasets.

Variant GFF LFC+GFF LFC→GFF

Vid4 [23] 26.36 26.35 26.43

Vimeo-Fast 36.87 36.90 37.04

Vimeo-Medium 35.45 35.47 35.60

Vimeo-Slow 33.40 33.43 33.51

5. The benefits of combining the high-quality feature

maps FH and the initial feature maps FL for STVSR.

In our TMNet, we combine the high-quality features FH

with the initial features FL before the Pixel-Shuffle layers

for final STVSR. Since the initial features FL largely in-

fluence our LFC module, we remove them both from our

TMNet and obtain a variant “Baseline”. Then we add FL

to the “Baseline”, and obtain a variant model “+FL”. We

train our TMNet and the two variants on the Vimeo-90K

septuplet dataset [46], and evaluate them on Vimeo-

90K test and Vid4 [23] datasets. As shown in Table 5,

the variant “+FL” clearly exceeds the “Baseline”. This val-

idates that combining high-quality features FH with initial

ones FL is helpful to our TMNet on STVSR.

Table 5: Comparison of PSNR (dB) by our TMNet and

its variants on different STVSR datasets.

Variant Baseline +FL TMNet

Vid4 [23] 26.33 26.36 26.43

Vimeo-Fast 36.75 36.87 37.04

Vimeo-Medium 35.35 35.45 35.60

Vimeo-Slow 33.28 33.40 33.51

5. Conclusion

In this work, we proposed a Temporal Modulation Net-

work (TMNet) to flexibly interpolate intermediate frames

for space-time video super-resolution (STVSR). Specifi-

cally, we introduced a Temporal Modulation Block to mod-

ulate the learning of the deformable convolution framework

for controllable feature interpolation. To well exploit mo-

tion cues, we performed short-term and long-term temporal

feature fusion consisting of our proposed Locally-temporal

Feature Comparison (LFC) module and a Bi-directional De-

formable ConvLSTM, respectively. Experiments on three

benchmarks demonstrated the flexibility of our TMNet on

interpolating intermediate frames, quantitative and qualita-

tive advantages of our TMNet over previous methods, and

effectiveness of our LFC module, for STVSR.
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