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Abstract

Human pose estimation has achieved significant

progress in recent years. However, most of the recent meth-

ods focus on improving accuracy using complicated mod-

els and ignoring real-time efficiency. To achieve a better

trade-off between accuracy and efficiency, we propose a

novel neural architecture search (NAS) method, termed ViP-

NAS, to search networks in both spatial and temporal levels

for fast online video pose estimation. In the spatial level,

we carefully design the search space with five different di-

mensions including network depth, width, kernel size, group

number, and attentions. In the temporal level, we search

from a series of temporal feature fusions to optimize the to-

tal accuracy and speed across multiple video frames. To

the best of our knowledge, we are the first to search for the

temporal feature fusion and automatic computation alloca-

tion in videos. Extensive experiments demonstrate the ef-

fectiveness of our approach on the challenging COCO2017

and PoseTrack2018 datasets. Our discovered model fam-

ily, S-ViPNAS and T-ViPNAS, achieve significantly higher

inference speed (CPU real-time) without sacrificing the ac-

curacy compared to the previous state-of-the-art methods.

1. Introduction

Human pose estimation has made impressive progress in

recent years with the development of stronger neural net-

works. Most state-of-the-art models [36, 49, 56] only focus

on improving the accuracy, but ignore the computational

complexity and real-time performance. However, both ac-

curacy and efficiency are critical for real-world applications

of video pose estimation. In this paper, we aim to build

a lightweight pose estimator that achieves state-of-the-art

performance with significant model complexity reduction.

For video pose estimation, there is commonly consider-

Figure 1. Speed-accuracy trade-off on PoseTrack2018 [1] val-

idation set. Methods involve SBL [56], LightTrack [38] and our

ViPNAS with various backbones. With accuracy comparable to

state-of-the-art networks, ViPNAS achieves CPU real-time with

significantly lower computation.

able temporal redundancy that leads to superfluous compu-

tation, i.e. adjacent frames in a video share similar global

context information. The temporal contextual information

can be used for improving pose estimation. Therefore, it is

critical to fuse features from adjacent frames to the current

frame in order to effectively utilize the temporal contextual

information for balancing accuracy and efficiency. How-

ever, there are still several open questions:

1. Low-level local features are important for accurate

localization, while higher-level global features are robust to

occlusion and large pose variations. Which stage of features

should be fused?

2. For temporal feature fusion, various fusion operations

(e.g. addition, multiplication, or concatenation) are chosen

by trial-and-error. How to choose the optimal operation?

3. The goal is to optimize the total accuracy subject to

the total computation complexity (Flops) constraints over
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the whole video. Previous works generally explicitly en-

force different frames to apply the same model, which will

result in sub-optimal performance. How to efficiently allo-

cate computation across different video frames?

Manually exploring the design choices regarding the

above questions via trial-and-error can be tedious. We in-

stead apply neural architecture search (NAS) to give a uni-

fied solution to them. We propose a novel spatial-temporal

NAS framework for efficient video pose estimation, termed

ViPNAS. For spatial-level search, we optimize the neural

architecture by a wide spectrum of five dimensions (depth,

width, kernel size, group number, and attention). For

temporal-level search, we jointly search three aspects of de-

signs: 1) the stage of features to be fused, 2) the feature fu-

sion operation, and 3) the allocation of computation across

video frames. The spatial-level and temporal-level search

are jointly optimized through a single framework. Given the

total Flops over multiple frames as constraints, we can ef-

ficiently allocate computation across different video frames

for optimizing performance. Experiments show that ViP-

NAS significantly improves over the state-of-the-art meth-

ods, such as SBL [56] and LightTrack [38], with vari-

ous well-known backbones (ResNet [13], CPN [6], Mo-

bileNets [15, 14], ShuffleNet [35] and EfficientNet [51]).

Our main contributions can be summarized as follows:

• We propose the novel spatial-temporal neural architec-

ture search (NAS) framework for efficient video pose

estimation, termed ViPNAS.

• ViPNAS learns to allocate computational resources

(e.g. Flops) for different frames under the total com-

putation complexity constraints across frames.

• ViPNAS automatically searches temporal connections,

i.e. the fusion module and positions. In the task of

video pose estimation, we achieve the state-of-the-art

accuracy with CPU real-time performance (> 25 FPS).

2. Related Work

2.1. Human Pose Estimation

Recent works in human pose estimation [6, 7, 9, 19,

21, 24, 33, 36, 49, 54, 56] focus on designing stronger

neural network architectures with higher model capac-

ity to improve accuracy. To better capture the context

information, the attention mechanism has been success-

fully applied in human pose estimation. For example,

Chu et al. [8] proposes multi-context attention to improve

model robustness and accuracy. Su et al. [48] proposes

SCARB module to enhance pyramid features via spatial

and channel-wise context. Other popular attention modules

have also been widely explored. For example, Squeeze-and-

Excitation (SE) block [16] models channel-wise relation-

ship and Global Context (GC) block [4] models the global

context via addition fusion as NLNet [53]. Different from

manually design in these works, we propose to apply NAS

to automatically search for optimal architectures.

For online video pose estimation, some works [18, 20,

49, 56, 57, 58] directly apply the image-based pose mod-

els on each video frame. However, such approaches do

not capture the temporal consistency, suffering from mo-

tion blur or occlusion. Other works utilize temporal cues

in order to keep geometric consistency across frames. Such

approaches include directly processing concatenated con-

secutive frames along the channel-axis [42], applying 3D

temporal convolution [10, 52], using dense optical flow to

produce smooth movement [41, 47]. These models are typ-

ically computationally expensive, making them not appli-

cable in real-time applications. Recently, some works [11,

23, 25, 34, 37] follow the pose propagation paradigm, that

transfer features from previous frames to the current frame

in an online fashion. However, how to choose the temporal

feature fusion sites and the fusion operations are still open

questions. We aim to answer this by applying the ViPNAS

framework to explore the most effective combination.

2.2. Neural Architecture Search

NAS for image-level tasks. Neural architecture search

(NAS) focuses on automating the neural network architec-

ture design. Early NAS approaches [29, 45, 50, 64, 65]

sample a large number of architectures and trained them

from scratch, which are very time consuming. Recent NAS

approaches [2, 3, 26, 27, 30, 31, 32, 55, 61, 63] adopt a

weight sharing strategy and train the super-network. Our

method also follows this paradigm that trains the super-

network only once, and evaluates various sub-networks.

NAS for video-level tasks. NAS has been applied in

video-level tasks, such as video recognition [40, 43, 44, 46].

EVANet [44] searches for sequential or parallel model con-

figurations via evolutionary algorithm. AssembleNet [46]

searches for multi-stream (RGB and optical flow) network

connectivity. TinyVideoNet [43] searches for computation-

ally efficient classification model for video recognition.

NAS for single-image pose estimation. PoseNFS [59]

introduces the prior structure of the human body and

searches for multiple personalized modules for part-based

representations. AutoPose [12] proposes a bi-level opti-

mization method that combines reinforcement learning and

gradient-based method.

Our work is different from existing works on NAS in

three aspects. First, we are the first to apply NAS for a

challenging task of video pose estimation. Second, existing

works for image-level and video-level tasks do not search

for different architectures at once, but our work search

frame-specialized models for further leveraging the abil-

ity of NAS in video pose estimation. Third, we propose

the novel spatial and temporal search space for the task.
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To fully exploit the temporal information, we search for

the optimal combination when fusing features from previ-

ous frames to the current frame, which was not explored in

these works. Our method also inherits the merit of once-

for-all [2], i.e. training only once and obtaining many sub-

networks, which effectively reduces the searching cost.

3. Method

3.1. Overview

Video pose estimation aims to localize the human body

parts (also referred to as keypoints or joints) of a person in-

stance in each frame. In this paper, based on the online pose

propagation paradigm, we propose a novel NAS framework

for efficient video pose estimation (ViPNAS). The pipeline

of ViPNAS is shown in Figure 2. The first frame is se-

lected as the key frame for every T +1 frames in the video.

For a key frame, a high-accuracy spatial video pose estima-

tion network (S-ViPNet) is applied to localize human poses.

We follow the common settings to use heatmaps to encode

the joint locations as Gaussian peaks. For a non-key frame,

a lightweight temporal video pose estimation network (T-

ViPNet) is used for pose propagation. In T-ViPNet, some

CNN layers are used for extracting the features of the cur-

rent frame, then a temporal feature fusion module fuses the

features of the current frame and the heatmaps of the last

frame. The fused features are then processed by the remain-

ing CNN layers of the T-ViPNet to obtain the heatmaps.

The predicted heatmaps encode the per-pixel likelihood of

each joint, which are informative cues to guide the keypoint

localization in the subsequent frames. The propagation con-

tinues until the next key frame.

ViPNAS contains two levels of search space, i.e. the

spatial-level and the temporal-level. The architecture of the

key frame (S-ViPNet) is searched in the spatial-level search

space. The architectures of the non-key frames (T-ViPNets),

including the temporal feature fusion module and CNN lay-

ers, are searched in both spatial-level and temporal-level

search space. Different non-key frames have different ar-

chitectures in both the feature fusion module (fusion opera-

tion and feature fusion stage) and CNN layers, as shown by

the example for frames t+ 1 and t+ 2 in Figure 2.

3.2. Spatial­level Search Space

Motivated by [2, 61], we design the weight shared super-

network for model architecture search and search for the

block number and block structure. Our architecture search

spaces extend [2, 61] to include group and attention for a

wider spectrum of five dimensions (depth, width, kernel

size, group, and attention). We find out the best configu-

ration of these settings. Our super-network is divided into

several stages in series and each stage consists of several

blocks having the same spatial resolution of output features.

We search on five dimensions as follows:

Elastic Depth: The number of blocks for each stage. We

activate the first D blocks of a stage when the depth D is se-

lected for this stage. Elastic Width: The number of output

channels in each block. We keep the first W filters when

the width W is selected. Elastic Kernel Size: The ker-

nel size of convolutional layers in each block. We reserve

the centering K × K convolutional kernel when the ker-

nel size K is selected. The possible choices of kernel size

K are {3, 5, 7} for normal convolutional layers and {2, 4}
for deconvolutional layers. Elastic Group Number: The

group number of convolutional layers [22] in each block. It

ranges from 1 (standard convolution) to N (depth-wise con-

volution) for N input channels. Elastic Attention Module:

Using the attention module or not at the end of each block.

Since attention modules are shown to be effective for pose

estimation in [8, 48], we include attention modules in our

search space. We investigate whether to use the attention

module (e.g. GC block [4] or SE Block [16]) at the end

of each block. If the attention module is not selected, we

skip the attention module and identity mapping is applied.

Please refer to the supplementary materials for more details

about the spatial-level search space.

3.3. Temporal­level Search Space

Lightweight pose models alone have difficulty in captur-

ing the global information and distinguishing the joints with

similar appearance. However, considering that poses in ad-

jacent video frames are temporally correlated, lightweight

models can estimate the joint locations with the local ap-

pearance and the guidance from previous frames.

Temporal feature fusion is critical to the task of video

pose estimation, which has also been explored in litera-

ture [11, 23, 25, 34, 37]. Previous works on temporal fusion

mainly differ in two main aspects, i.e. the fusion operations

and the feature fusion stages. Popular fusion operations

may include addition (Add), multiplication (Mul), and con-

catenation (Cat), etc. As different pose networks prefer dif-

ferent fusion operations, the choice of the fusion operation

is carefully hand-crafted. Besides, different stages of the

input features are fused in different approaches. Generally,

low-level features may contain more detailed localization

information, while higher-level features may contain more

global information. In previous works, the levels of features

used are mainly chosen by trial-and-error. In ViPNAS, we

instead allow the networks to automatically search for the

optimal fusion operation and the best stage of features to

fuse in a single run of the search.

As shown in Figure 2, our designed temporal feature fu-

sion module includes two inputs, i.e. heatmaps of the pre-

vious frame and features of the current frame t + 1. The

temporal feature fusion module first selects the location of

the input features F t+1
2 . The pose heatmaps from the adja-
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Figure 2. ViPNAS consists of one image-based key frame pose model S-ViPNet, and T video-based pose model T-ViPNets containing

temporal feature module and various CNN architectures. Videos are processed frame-by-frame in an online mode. S-ViPNet first predicts

the pose heatmaps Ht of the key frame t, and propagates them to the next frame t+ 1. T-ViPNet selects the CNN architecture, as well as

the input features (e.g. F1 to F4) and fusion operation (e.g. Add, Cat and Mul) of fusion module. The fusion module combines the selected

feature F t+1

2 with the propagated heatmaps Ht, and generates the fused features F̂ t+1

2 for predicting the heatmaps Ht+1.

cent frame are processed by one 1×1 convolution, followed

by one bi-linear interpolation layer to adjust the channels

and the resolution (width & height) to match those of the

selected features F t+1
2 . The heatmaps and features are then

fused by the selected fusion operator (Cat), which are then

processed by one 1 × 1 convolution, making the fused fea-

tures (F̂ t+1
2 ) have the same shape as the input features.

Our temporal-level search space for a non-key frame in-

cludes NO choices for the feature fusion operations, e.g. ad-

dition (Add), multiplication (Mul), and concatenation (Cat);

and NS choices for the input feature stages, e.g. F1, F2, F3,

and F4. The size of temporal search space is (NO ×NS)
T ,

which is impossible to optimize by trial-and-error.

3.4. Train and Search for ViPNAS

3.4.1 Train and Search for S-ViPNet

Based on the spatial-level search space defined in Sec-

tion 3.2, we use the approach in [61] to train the super-

network. Sandwich rule [60, 61] and in-place distilla-

tion [60, 61] are applied. Then we sample the sub-networks

under the given constraint and evaluate each of them on the

validation set to search the architecture of S-ViPNet, which

is the network for the key frame.

3.4.2 Training for T-ViPNet

In this section, we introduce the multi-frame propagation

training scheme of our ViPNAS. The goal is to optimize

the overall model accuracy at spatial and temporal levels

simultaneously in the process of poses propagation across

multiple video frames. The overall objective function can

be formulated as follows:

min
θT

T
∑

t=1

∑

archt

L(T (It, Ht−1; {θT , archt})), (1)

where Ht =

{

T (It, Ht−1; {θT , archt}), t ≥ 1,

S(It; {θS}), t = 0.
(2)

S is the key frame model S-ViPNet, whose weights are

denoted by θS . It is pre-trained and fixed when training

and searching for T-ViPNets. T is the super-network of

T-ViPNets, which is parameterized by θT . During train-

ing, we sample sub-network consisting of architecture archt

from T and the weights of this architecture copied from the

super-network weights θT . For each frame t, It is the in-

put image, and Ht is the predicted heatmaps. We use MSE

loss function L to measure the difference between the target

heatmaps and the predicted ones of each non-key frame.
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The multi-frame pose propagation training of T-ViPNet

is shown in Figure 3, where the heatmaps of the key frame

are propagated to T (T ≥ 2) non-key frames iteratively. We

apply a single super-network T for all the non-key frames

and all T-ViPNets share the weights, which saves memory

during training. Moreover, with one-time training of the

super-network, we can search for multiple sets of T-ViPNets

with various numbers of propagation frames, see Table. 4.

We make the super-network T to share the same CNN ar-

chitecture as the discovered S-ViPNet. First, since the tasks

of image-based and video-based pose estimation are highly

correlated, the good-performing image-based pose estima-

tor can serve as a good candidate architecture for video pose

estimation. Second, the pre-trained weights of S-ViPNet

can be reloaded for the initialization of the super-network.

Third, by sharing similar architectures, the features for the

key frame and non-key frames are better aligned.

We jointly train the temporal models (T-ViPNets) in the

spatial-level and temporal-level search space for the global

optimum. We apply the Sandwich rule [60, 61] to sam-

ple the smallest sub-network, the biggest sub-network and

N randomly sampled sub-networks (N = 2 in our experi-

ments) for each mini-batch. We train and search for the

CNN architectures and temporal fusion module (includ-

ing fusion operations and fusion stages) simultaneously.

For the biggest (or smallest) sub-network, T-ViPNets of

all the frames use the biggest (or smallest) CNN architec-

tures, while the temporal-level search spaces are randomly

sampled. For N randomly sampled sub-networks, each T-

ViPNet samples unique architecture at both spatial and tem-

poral search spaces. Inplace knowledge distillation [60, 61]

takes the prediction of biggest sub-network as the soft labels

to enhance supervision for other sub-networks. The biggest

sub-network is supervised by ground truth heatmaps with

MSE loss, while others are supervised by both the soft la-

bels and the ground truth heatmaps with equal loss weights.

3.4.3 Automatic Computation Allocation

As stated above, the sub-networks (T-ViPNets) of different

frames do not necessarily share the same architecture. In

ViPNAS, different model complexities are assigned to dif-

ferent frames automatically.

Formally, we aim to search for a group of sub-network

architectures ({archt}t=1:T ) that optimize the overall Aver-

age Precision (AP) under the overall computation complex-

ity (Flops) constraints C:

max
arch1:T

T
∑

t=1

AP(T (It, Ht−1; {θT , archt}))

s.t.

T
∑

t=1

Flops(archt) ≤ C

(3)

In the search process, we simply follow [61] to randomly

Figure 3. Multi-frame pose propagation training of ViPNAS. The

key frame S-ViPNet is first pre-trained and fixed. T (T ≥ 2) vari-

ous non-keyframe sub-networks are sampled from a single super-

network with sharing weights, and jointly supervised by MSE loss

for each frame. The solid lines indicate the forward process and

the dotted lines indicate the back propagation process.

sample sub-networks that fulfill the given constraints and

evaluate the accuracy on the validation set. The sampled

sub-networks with the highest AP on the validation set un-

der the Flops constraint are used as the T-ViPNets.

4. Experiments

4.1. Datasets

COCO2017 Dataset [28] is a standard benchmark for

human pose estimation. It contains over 200,000 images

and 250,000 person instances. We train the models on

the COCO train2017 dataset (57K images), and evaluate

them on the val2017 set (5K images) and test-dev2017 set

(20K images) using the official evaluation metric1: Aver-

age Precision (AP) and Average Recall (AR), which are

based on the standard object keypoints similarity (OKS).

OKS =
∑

i
exp(−d2

i
/2s2k2

i
)δ(vi>0)

∑
i
δ(vi>0) , where di is the Eu-

clidean distance between each ground-truth and the detected

keypoint, vi is the visibility flag, s is the scale of person, and

ki is a constant to control falloff.

PoseTrack2018 Dataset [1] is a large-scale dataset for

human pose estimation in videos. It contains various videos

of human activities with 6 person instances per frame on

average. We use PoseTrack2018 V0.25 annotation, which

includes 593 training videos, 74 validation videos and 375

testing videos. We follow the common settings [38, 49, 56]

to pre-train models on COCO train2017 dataset and fine-

tune them on PoseTrack2018 training set. The evaluation

follows [23, 25, 34, 37] for video pose estimation [17, 62]

that estimates human poses given ground-truth bounding

boxes. Pose estimation accuracy is evaluated using the stan-

dard AP metric2.

1http://cocodataset.org/#keypoints-eval
2https://posetrack.net/
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4.2. Implementation Details

We train and search our single-frame pose estimator,

termed S-ViPNAS, on COCO dataset. For training, we re-

size the cropped person image to 256× 192, and apply ran-

dom rotation ([−40◦, 40◦]) and random flip as data aug-

mentation. We train the super-network with inplace knowl-

edge distillation for 250 epochs. Weights are initialized

from zero-mean Gaussian distribution with σ = 0.001. The

basic learning rate is 1e-3, and is reduced by a factor of 10

at the 200th and 230th epoch. We sample 500 models un-

der the Flops constraints and search for S-ViPNAS with the

highest AP on the validation set.

We directly transfer the discovered architecture (S-

ViPNAS) on the COCO dataset to the PoseTrack dataset.

We fine-tune S-ViPNAS on PoseTrack dataset for 20

epochs. The basic learning rate is 1e-4, and drops to 1e-5 at

10 epochs then 1e-6 at 15 epochs. We use S-ViPNAS as the

key frame pose estimator and the super-network for tem-

poral propagation models (T-ViPNAS). During multi-frame

super-network training, the same augmentation methods are

applied across T+1 frames (T = 3 by default). We train the

super-network using the sandwich rule for 60 epochs with

initial learning rate 1e-3 and cosine learning rate schedule.

The search cost is 16 GPU days for training and 2GPU days

for search on V100 GPUs.

4.3. ViPNAS for efficient video pose estimation

Table 1 compares our proposed ViPNAS with the state-

of-the-art methods on PoseTrack2018 [1] validation set.

SBL [56] proposes to add deconvolutional layers to the

backbone network, which has been proved effective. We ex-

tend [56] to include more well-known efficient backbones

for comparisons, such as EfficientNet [51], ShuffleNet [35],

and MobileNet [14]. These models are pre-trained on

COCO dataset and fine-tuned on PoseTrack dataset with the

same experimental configurations as [56]. LightTrack [38]

is a recently proposed light-weight framework for video

pose estimation. The results are obtained using the official

codes3 with the released pre-trained models.

We evaluate our methods on two well-known backbones,

i.e. ResNet-50 [13] and MobileNet-V3 [14]. For both

backbone models, we build the super-network based on

the spatial-level search space (Sec. 3.2) and temporal-level

search space (Sec. 3.3). Please refer to the supplemen-

tary materials for more details. SBL, LightTrack, and S-

ViPNAS directly apply the image-based pose models on

each video frame, while T-ViPNAS searches for temporal

feature fusion for more efficient pose estimation. #Param

and Flops are calculated by averaging over the whole video

frames including both key frames and non-key frames.

From Table 1, we see that ViPNAS achieves the state-of-

3https://github.com/Guanghan/lighttrack

Figure 4. Comparisons among SBL [56], S-ViPNAS and T-

ViPNAS with ResNet-50 backbone. ViPNAS discovers models

with much less computational complexity and significantly higher

speed (single core of a 3.2GHz Intel i7-8700 CPU).

the-art accuracy with significantly lower model complexity.

T-ViPNAS significantly boosts the model efficiency and re-

duces the computation without sacrificing the overall accu-

racy. For example, T-ViPNAS-MobileNetV3 achieves 10x

Flops reduction (0.37 vs 4.1) without accuracy drop (78.2

vs 78.1).

Figure 4 compares SBL [56], S-ViPNAS and T-ViPNAS

with ResNet-50 backbone on PoseTrack2018 validation set.

We report mAP, GFlops, and speed (FPS). Speed is evalu-

ated on a single core of an Intel i7-8700 CPU (3.2GHz).

We show that T-ViPNAS is significantly faster (41FPS on

CPU) than the baseline, with comparable accuracy, making

it practical for real-world applications.

4.4. ViPNAS for image­based pose estimation

Table 2 demonstrates the performance of the discovered

S-ViPNAS models on COCO2017 dataset, compared with

other state-of-the-art hand-crafted methods and concurrent

NAS based pose estimators. We report our discovered re-

sults based on multiple backbones (i.e. HRNet-W32 [49],

ResNet-50 [13] and MobileNetV3 [14]). For fair compar-

isons, we retrain S-ViPNAS models using the same train-

ing recipe and use the same Faster-RCNN human detection

bounding boxes as SBL [56] and HRNet [49].

We see that our discovered S-ViPNAS-HRNetW32 sig-

nificantly outperforms the popular hand-crafted models and

the NAS based models. Compared with the current state-of-

the-art HRNet [49], we achieve higher accuracy and lower

complexity (5.64 vs 7.10 GFlops). Compared with other

NAS pose models PoseNFS [59] and AutoPose [12], ViP-

NAS also shows superiority in terms of both accuracy and

computation complexity. Note that AutoPose [12] uses a

stronger human detector [5] on COCO val2017 set.

We further search for lightweight pose estimators to

boost the model efficiency. Based on ResNet-50 [56],

we obtain a 6x smaller (1.44 vs 8.90 GFlops) model

(S-ViPNAS-Res50) without sacrificing the accuracy. For

MobileNet-V3 [14], our method finds a 5.8x smaller

(0.69 vs 4.06 GFlops) model (S-ViPNAS-MobileNet) with

3.1mAP gain (67.8 vs 64.7) on COCO val2017 set.
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Table 1. Comparisons with other video pose estimation approaches on PoseTrack2018 validation set. Our ViPNAS achieves the state-of-

the-art performance with significantly lower computation complexity.
Method Backbone Image Size #Params GFLOPs Head Sho. Elb. Wri. Hip Knee Ank. Total AP

SBL [56] ShuffleNetV2 [35] 256× 192 4.7M 4.21 84.5 83.0 74.4 63.1 74.4 70.7 63.4 63.4

SBL [56] EfficientNetB0 [51] 256× 192 14.9M 5.05 87.3 87.9 82.0 73.4 79.0 79.2 72.9 80.7

SBL [56] ResNet-18 [13] 256× 192 15.3M 5.79 86.5 86.9 80.8 71.5 79.3 77.9 70.6 79.6

LightTrack [39] MobileNetV1 [15] 384× 288 15.8M 11.3 85.2 81.7 74.7 62.9 72.9 69.4 61.4 73.4

LightTrack [39] CPN101 [6] 384× 288 46.3M 22.9 87.9 87.7 83.5 75.8 79.1 80.4 77.0 82.1

LightTrack [39] ResNet152 [13] 384× 288 68.6M 35.6 89.4 88.5 84.4 76.2 81.2 80.5 77.5 83.0

SBL [56] MobileNet-V3 [14] 256× 192 5.5M 4.1 86.4 85.9 78.8 69.6 76.5 76.1 69.1 78.1

S-ViPNAS MobileNet-V3 [14] 256× 192 5.4M 0.69 87.8 88.0 82.3 74.1 78.8 79.1 74.0 81.1

T-ViPNAS MobileNet-V3 [14] 256× 192 2.5M 0.37 87.3 85.6 78.9 70.3 75.7 75.0 70.1 78.2

SBL [56] ResNet-50 [13] 256× 192 34.0M 8.99 86.7 88.1 83.0 75.7 80.8 80.4 74.2 81.6

S-ViPNAS ResNet-50 [13] 256× 192 7.3M 1.44 88.1 89.6 84.5 77.4 81.1 81.8 77.6 83.2

T-ViPNAS ResNet-50 [13] 256× 192 3.9M 0.82 87.7 88.2 82.6 74.7 79.3 79.8 75.4 81.6

Table 2. Comparisons on COCO2017 dataset. Our approach significantly outperforms other hand-crafted and NAS models in terms of

both speed and accuracy on COCO val2017 set and test-dev2017 set. † means using a stronger person bounding box detector (HTC [5]).

Method Image Size #Params GFLOPs AP AP50 AP75 APM APL AR

COCO Val2017 Set

Hand-Crafted Models

MobileNet-V3[14] 256× 192 5.5M 4.06 64.7 86.7 72.6 61.4 70.9 76.3

SBL-50 [56] 256× 192 34.0M 8.90 70.4 88.6 78.3 67.1 77.2 76.3

HRNet-W32[49] 256× 192 28.5M 7.10 74.4 90.5 81.9 70.8 81.0 79.8

NAS Models

PoseNFS-3 [59] 384× 288 6.1M 4.0 68.0 - - - - -

PoseNFS-3 [59] 384× 288 15.8M 14.8 73.0 - - - - -

AutoPose [12]† 256× 192 - 10.65 73.6 90.6 80.1 69.8 79.7 78.1

Ours

S-ViPNAS-MobileV3 256× 192 2.8M 0.69 67.8 87.2 76.0 64.7 74.0 75.2

S-ViPNAS-Res50 256× 192 13.5M 1.44 71.0 89.3 78.7 67.7 77.5 76.7

S-ViPNAS-HRNetW32 256× 192 16.3M 5.64 74.7 89.9 82.0 71.0 81.5 81.2

COCO Test-Dev2017 Set

Hand-Crafted Models
SBL-50 [56] 256× 192 34.0M 8.90 70.0 90.9 77.9 66.8 75.8 75.6

HRNet-W32[49] 256× 192 28.5M 7.10 73.5 91.6 81.7 70.1 79.1 80.1

NAS Models
PoseNFS-3 [59] 384× 288 6.1M 4.0 67.4 89.0 73.7 63.3 74.3 73.1

PoseNFS-3 [59] 384× 288 15.8M 14.8 72.3 90.9 79.5 68.4 79.2 77.9

Ours
S-ViPNAS-Res50 256× 192 13.5M 1.44 70.3 90.7 78.8 67.3 75.5 77.3

S-ViPNAS-HRNetW32 256× 192 16.3M 5.64 73.9 91.7 82.0 70.5 79.5 80.4

Table 3. Effect of temporal-level NAS for video pose estimation

on PoseTrack2018 dataset. Given the same GFlops constraints,

T-ViPNAS discovers better architectures with higher accuracy.

Method Backbone GFLOPs mAP

S-ViPNAS-a ResNet-50 0.82 80.3

T-ViPNAS-a ResNet-50 0.82 81.6

S-ViPNAS-b MobileNet-V3 0.37 77.2

T-ViPNAS-b MobileNet-V3 0.37 78.2

4.5. Ablation Study

Effect of temporal-level search. To validate the effect

of temporal-level search, we search S-ViPNAS under the

constraints of the same model complexity as T-ViPNAS. We

apply the image-based S-ViPNAS models independently for

each frame. As shown in Table 3, we see that given the

same Flops constraints, T-ViPNAS discovers better model

architectures with higher accuracy (81.6 vs 80.3 mAP for

ResNet-50 based models (-a) and 78.2 vs 77.2 mAP for

MobileNet-V3 based models (-b)).

Effect of temporal feature fusion. As shown in Fig-

ure 6(a), we explore the effect of temporal feature fusion

on the PoseTrack2018 validation set. We search for four

groups of T-ViPNAS models with ResNet-50 backbone in a

range of average computation complexity levels (from 0.8

to 1.2 GFLOPs) for comparisons. The number of propaga-

tion frames is set as T = 3, so for each group, we have 4

different models (i.e. 1 S-ViPNet and 3 T-ViPNets) in total.

To validate the effectiveness of temporal feature fusion,

we remove the temporal feature fusion from T-ViPNAS

(red) in each group, keep the model architecture the same,

and re-train them based on single images (blue). We see

that our T-ViPNAS consistently improves over the baselines

for various Flops requirements. Our experiments show that

temporal fusion captures the consistency among adjacent

frames and propagates poses efficiently using extremely

lightweight models.

Effect of automatic computation allocation. As shown

in Figure 6(b), we further explore the effect of automatic

computation allocation on the PoseTrack2018 validation

set. For comparisons, we search for the temporal models

sharing both the spatial and temporal architectures (blue)

under the same Flops constraints as our T-ViPNAS (red).
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Figure 5. Example of T-ViPNAS with ResNet-50 backbone. {Depth, Width, Kernel Size, Group} are listed in the figure.

Figure 6. Comparing T-ViPNAS with (a) baselines without temporal feature fusion modules (b) baselines with the same architectures for

different frames. We see that our proposed T-ViPNAS consistently improves over the baseline architectures for a range of complexity levels

(from 0.8 to 1.2 GFlops). We visualize the architecture of one example T-ViPNAS (red star) in Figure 5.

We find that our T-ViPNAS consistently improves over the

baseline architectures by at least 0.5% mAP, demonstrating

the effectiveness of automatic computation allocation that

searches for frame-specialized models. Example architec-

tures of our discovered models are visualized in Figure 5.

Effect of the number of propagation frames. We eval-

uate the transferability of our proposed ViPNAS training

scheme to various propagation frames T . During training

of T-ViPNAS (Sec. 3.4.2) with ResNet-50 backbone, we set

the number of non-key frames as T = 3, but search on

different propagation lengths without re-training the super-

network. As shown in Table 4, we set the constraints of the

average model computation complexity to be 1.0 GFlops,

and search for different propagation frame numbers, i.e.

T = 2, T = 3 or T = 4 frames. We see that our ViPNAS is

relatively robust to the number of propagation frames.

5. Conclusion

In this paper, we propose ViPNAS for online video pose

estimation, trading-off between accuracy and the compu-

tation cost. ViPNAS automatically allocates computation

resources (i.e. Flops) for different frames to achieve the

overall optimum. By designing the novel spatial-temporal

Table 4. Effect of the number of propagation frames. We ex-

periment with training the super-network for T = 3 frames and

searching for T = {2, 3, 4} frames with 1.0 GFlops complexity

constraint on average.

#Propagation Frames (T ) GFLOPs mAP

2 1.0 81.7

3 1.0 81.7

4 1.0 81.4

search space, we can simultaneously search for CNN archi-

tectures and temporal connections, i.e. the fusion operations

and the feature fusion sites. Empirical experiments demon-

strate that our proposed ViPNAS successfully discovers the

architecture that achieves the state-of-the-art accuracy with

CPU real-time performance.
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