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Abstract

Stereophonic audio, especially binaural audio, plays an

essential role in immersive viewing environments. Recent

research has explored generating visually guided stereo-

phonic audios supervised by multi-channel audio collections.

However, due to the requirement of professional recording

devices, existing datasets are limited in scale and variety,

which impedes the generalization of supervised methods

in real-world scenarios. In this work, we propose Pseu-

doBinaural, an effective pipeline that is free of binaural

recordings. The key insight is to carefully build pseudo

visual-stereo pairs with mono data for training. Specifi-

cally, we leverage spherical harmonic decomposition and

head-related impulse response (HRIR) to identify the rela-

tionship between spatial locations and received binaural

audios. Then in the visual modality, corresponding visual

cues of the mono data are manually placed at sound source

positions to form the pairs. Compared to fully-supervised

paradigms, our binaural-recording-free pipeline shows great

stability in cross-dataset evaluation and achieves compara-

ble performance under subjective preference. Moreover,

combined with binaural recordings, our method is able to

further boost the performance of binaural audio generation

under supervised settings1.

1. Introduction

Auditory and visual experiences are implicitly but

strongly connected. In immersive environments, the percep-

tion of sound is impacted by visual scenes [44]. Therefore,

researchers have explored ways to generate stereophonic

audios with visual guidance, in order to improve the user

experience in multimedia products. Specifically, supervised

learning methods [22, 14, 20, 45] have been considered for

this purpose.

*Equal contribution.
1Code, models and demo videos are available at https://

sheldontsui.github.io/projects/PseudoBinaural.

However, it is noteworthy that fully-supervised learning

methods, despite the positive results that they achieve under

constrained settings, would face significant difficulties in

real-world applications. 1) They rely on videos associated

with stereophonic recordings, which we refer to as “visual-

stereo” pairs [22, 14]. Obtaining a high-quality collection of

real stereo data requires complicated and professional record-

ing systems (e.g. microphone arrays or dummy heads), thus

is both resource-demanding and time-consuming. 2) The

models trained on datasets collected under controlled envi-

ronments may overfit to the layout of the rooms, rather than

capturing the general associations between sound effects

and the visual locations of the sound sources. The resultant

models would also have poor generalization capability.

The privilege of learning representations from unlabeled

data has been well discussed in different fields of deep

learning [40, 18, 3, 23, 25]. This inspires us to explore

an alternative approach, namely, to use only mono audios

which can be acquired much more easily compared to bin-

aural audios. We note that mono audios have been success-

fully applied in learning visually informed sound separa-

tion [9, 1, 13, 43, 42, 15]. Zhou et al. [45] recently leverage

mono audios for stereo generation. However, their stereo-

phonic learning procedure still depends on stereo data.

In this work, we propose PseudoBinaural, a novel

pipeline that generates visually coherent binaural audios

without accessing any recorded binaural data. Our key in-

sight is to carefully build pseudo visual-stereo pairs from

mono data. Two questions need to be identified in order to

achieve our goal. Given a spatial location, 1) what is the

relationship between a mono audio and its binaural counter-

part sourcing from that location? 2) How should visual cues

be organized to represent the source visually? Our solution

is to utilize two mappings. A Mono-Binaural-Mapping to

reproduce binaural audios of a single source positioned at

any spatial location, and a Visual-Coordinate-Mapping that

associates visual modality with spatial locations. Specifi-

cally, the Mono-Binaural-Mapping is achieved by adopting

spherical harmonic decomposition [8]. A head-related im-

pulse response (HRIR) [6] is then used to render binaural
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Figure 1: The pipeline of our method. Given one mono source, we create a pseudo visual-stereo pair {V̂ , (l̂, r̂)} by assigning

the source direction ϑ = (ϑ, ϕ) in the spherical coordinates according to our manually created V̂ . Then mono source s(t)

is converted to binaural channels (l̂(t,ϑ), r̂(t,ϑ)) through our Mono-Binaural-Mapping procedure by leveraging spherical

harmonics decomposition. Within this pipeline, multiple sources can be linearly blended together to build training pairs. Then

mono-to-binaural networks can be trained on the created pseudo data.

audios from the zero- and first-order terms of the decomposi-

tion. As for the Visual-Coordinate-Mapping, we pre-define a

correspondence between pixel coordinates and spherical co-

ordinates, so that we can easily manipulate visual content to

meet the designation of the corresponding source direction.

Existing models for visually informed binaural audio

generation can be readily adapted to train on our pseudo

visual-stereo pairs. In order to make the best use of mono

data, we further propose a new way of leveraging the task of

audio-visual source separation [43, 15] to assist the training.

The inference procedure is to simply apply the trained mod-

els to videos with mono audios and generate corresponding

binaural audios. Our framework renders stable performances

on two datasets and in-the-wild scenarios. Moreover, we can

mix our pseudo data with real stereophonic recordings to

further boost the performance of binaural audio generation

under the supervised setting.

Our contributions can be summarized as follows: 1) We

identify the mapping between source directions and binaural

audios with theoretical analysis. 2) By manipulating the

visual modality, pseudo visual-stereo pairs can be generated

for model training without relying on any recorded binaural

data. 3) Extensive experiments validate the effectiveness and

stability of our method on a variety of scenes. Moreover, our

pseudo visual-stereo data can serve as a strong augmentation

under the supervised setting.

2. Related Work

Visually Informed Stereophonic Audio Generation.

While stereo is strongly correlated with visual information,

only few papers have proposed to guide the generation of

stereo with vision. Li et al. [19] combine a synthesized early

reverberation and a measured late reverberation tail for the

generation of stereo sound in the desired room. However,

the usage of such method is restricted to specific rooms

and serves for 360◦videos. Morgado et al. [22] propose

to recover ambisonics based on the datasets collected from

YouTube. They assume that their end-to-end network is able

to separate sound sources and reformulate them with learn-

able weights. Lu et al. [20] leverage flow with corresponding

classifier for stereo generation. Specifically, Gao et al. [14]

collect the FAIR-Play dataset using professional bianural

audio collecting mics in a music room. Then they propose

the Mono2bianural pipeline for converting mono audios to

bianural ones in a U-Net framework. Their data is precious

yet limited, models trained on their lab-collected data are

difficult to generalize well on in-the-wild scenarios. Very

recently, Zhou et al. [45] leverage mono data and propose to

tackle stereophonic audio generation and source separation

at the same time. Nevertheless, their method uses mono

data to train separation only. All the above methods rely on

recorded stereophonic data and visual-stereo pairs for train-

ing. We target to generate visually guided binaural audios

without any binaural data.

Visually Indicated Sound Source Separation. The task of

visually guided sound source separation aims at separating a

mixed audio into independent ones, according to their sound

source’s visual appearances. It has long been an interest

of research for both human speech [10, 21, 26, 9, 1] and

music [27, 13, 43, 42, 15, 11]. Recent learning-based meth-

ods [1, 43, 42, 15, 39] all leverage the Mix-and-Separate

training pipeline that creates training pairs using collected

solo data. Our work also exploits the same type of data to

build training samples for binaural generation. We also adopt

the setting of separating two sources [45] to boost the final

performance.

Sound Source Localization. One of the most important

features for human auditory system is to localize sound by

the subtle differences of intensity, spectral and time cues

between ears [7]. In the audio domain, previous research
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mostly relies on microphone arrays to perform direction of

arrival estimation [41]. Multi-modality works learn audio-

visual associations [4, 5, 35, 34, 38, 46] and propose to

localize the responses of sound in the visual domainas [43,

31, 28, 17] a different type of “source localization". Recent

works [12, 36] propose to detect the position of vehicles

with stereo audio, which deals with the opposite of our task.

Normally, the visualization of activation is used to show

auditorily associated visual information [4, 26, 25, 5, 42, 22,

14]. Our model also shows the ability of source localization

by training only on our pseudo visual-stereo pairs.

3. Methodology

Different from previous completely learning-based and

data-driven methods that rely on the ground-truth stereo, we

train networks on self-created pseudo visual-stereo pairs.

Our method is thus called PseudoBinaural. The overall

pipeline is illustrated in Fig. 1.

3.1. Mapping Mono to Binaural

The key of our method relies on identifying the rela-

tionship between mono and stereo. This whole procedure,

as illustrated in Fig. 2, is called Mono-Binaural-Mapping.

Given a mono audio with an arbitrarily assigned source po-

sition ϑ = (ϑ, ϕ) (Fig. 2 a), our goal is to first convert it

to binaural channels with correct auditory sense of location.

We empirically choose spherical harmonic decomposition

for its expressive ability and its substantial connection with

ambisonics (Fig. 2 b). Finally, the decomposed coefficients

are transformed to virtual array and rendered to audios with

HRIR (Fig. 2 c).

Spherical Harmonic Decomposition. The Laplace spheri-

cal harmonics represent a complete set of orthonormal basis

defined on sphere surface [8]. The normalized form of spher-

ical harmonics defined at azimuth angle ϑ and zenith angle

ϕ in spherical coordinates can be represented as:

Y m
l (ϕ, ϑ) = N

|m|
l P

|m|
l (cosϕ)ejmϑ, (1)

where P
|m|
l (cosϕ) is the associated Legendre polynomials,

integer l is its order and m is the degree, limited to [−l, l].

N
|m|
l is a normalization factor. Real spherical harmonics can

serve as a type of generalized Fourier series, to decompose

any function f :

f(ϕ, ϑ) =

∞∑

l=0

l∑

m=−l

Ψm
l Y m

l (ϕ, ϑ). (2)

The coefficients Ψm
l are the analogs of Fourier coefficients

which can be represented as (∗ denotes the conjunction):

Ψm
l =

∫ 2π

0

∫ π

0

f(ϕ, ϑ)Y m
l (ϕ, ϑ)∗ sinϕ dϕdϑ. (3)

Decomposed Coefficients for Mono Source. Here we fol-

low the simplest assumption that only the impulse response

from the direction ϑ = (ϑ, ϕ) of a single sound source s(t)
is received, the Fourier coefficients can be derived from

Eq. (3) as:

Ψm
l (ϑ) = s(t)Y m

l (ϕ, ϑ). (4)

This is the same as the encoding of ambisonics, where the

Ψm
l (ϑ) can also be regarded as ambisonics’ components.

For simplicity, ϑ is omitted in the following representations

associated with this pre-defined direction.

The zero- and first-order components (l = 0, 1) that

contribute most to 3D audio effect are leveraged in our

model. Based on Eq. (1) and Eq. (4), the coefficients

{Ψ0
0,Ψ

1
1,Ψ

−1
1 ,Ψ0

1} (ϑ omitted) can be written as:

Ψ0
0 = s(t)N0

0 ,

Ψ1
1 = s(t)N1

1 cosϕ cosϑ,

Ψ−1
1 = s(t)N1

1 cosϕ sinϑ,

Ψ0
1 = s(t)N0

1 sinϕ, (5)

which correspond to the W, X, Y and Z channels of ambison-

ics, respectively. W is the omnidirectional base channel, X,

Y and Z are the orthogonal channels lie along 3D Cartesian

axes as illustrated in Fig. 2 (b).

We adopt the Schmidt semi-normalization (SN3D) [37] to

Eq. (1), which can be written as Nm
l =

√
(2− δm) (l−|m|)!

(l+|m|)! ,

where δm = 1 if m = 0 else 0.

Binaural Decoding. Regarding the decomposed coeffi-

cients as ambisonic channels, we can roughly predict the

left and right binaural channels l̂(t) and r̂(t) using simple

transformation: l̂(t) = W+Y and r̂(t) = W−Y. However,

this paradigm is unable to recover real binaural.

On the other hand, binaural sound can be directly synthe-

sized given a source position with the head-related impulse

response (HRIR). One set of HRIR data can serve as filters

hr(ϑ) and hl(ϑ) with respect to the direction ϑ of the sound

source. The transferred binaural sound can be represented as

l̂(t) = hl(ϑ) ⊛ s(t) and r̂(t) = hr(ϑ) ⊛ s(t), where ⊛ is

the convolution operation. However, open-sourced HRIR [2]

are recorded in the free-field, thus cannot recover binaurals

in a normal scene owing to reverberations.

Our solution is to leverage the binaural rendering tech-

nique that combines ambisonics with HRIR [24]. A vir-

tual speaker array is pre-defined to make up for the rever-

berations as shown in Fig. 2 (c). Denoting the Fourier

coefficients (ambisonic channels) as vectors Ψ(ϑ) =
s(t)Y (ϑ) = [Ψ0

0,Ψ
1
1,Ψ

−1
1 ,Ψ0

1]
T (Refer to Eq. 5), we can

further decompose Ψ(ϑ) into M virtual speakers at di-

rections Θ = [ϑ′
1, . . . ,ϑ

′
M ] to analog the multi-source ef-

fect caused by room reverberations. We define the matrix

D(Θ) = [Y (ϑ′
1), . . . ,Y (ϑ′

M )], each column representing
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Figure 2: The steps for the Mono-Binaural-Mapping procedure. (a) Firstly the mono sound source s(t) is assigned at direction

ϑ = (ϑ, ϕ). (b) Then through spherical harmonics decomposition of the source, we can derive the zero- and first-order

spherical-based Fourier coefficients (which are also ambisonic channels). The figure represents the directions of the channels.

(c) Finally, the Fourier coefficients can be transferred to a set of speaker array with fixed positions, and generate binaural with

HRIR.

the harmonics for each virtual source. The virtual audio

signals s′(t) = [s′1(t), . . . , s
′
M (t)]T can be constraint as:

D(Θ)s′(t) = Ψ(ϑ), (6)

As the matrix D(Θ)
T
D(Θ) is of full-column rank, the

virtual signals can be computed:

s
′(t) = (D(Θ)

T
D(Θ))−1

D(Θ)
T
Ψ(ϑ). (7)

Finally, we take advantage of HRIR filters to acquire the

desired left and right channels:

l̂(t,ϑ) =

M∑

m=1

hl(ϑ
′
m)⊛ s′m(t),

r̂(t,ϑ) =

M∑

m=1

hr(ϑ
′
m)⊛ s′m(t). (8)

The above is the binaural audio generated from a single

mono source s(t) from direction ϑ.

3.2. Creating Pseudo Visual­Stereo Pairs

With the Mono-Binaural-Mapping. there are two ques-

tions left to achieve visually informed binaural generation:

1) How to leverage the visual information, and 2) how to

connect the direction of the sound source with visual infor-

mation. To this end, we create pseudo visual information

and define a Visual-Coordinate-Mapping.

Pseudo Visual Information Creation. As illustrated in

Fig. 1, assuming that the listener is facing towards the x axis

in 3D Cartesian coordinates, frontal-view scenes can thus

be projected to the y − z image plane. Given a video vk
with a single sound source, we can place the center of the

sound source v′k to a random position in the image plane.

More specifically, the cropped frames v′k are placed to a

background image V̂ according to V̂ (y, z) = v′k.

Visual-Coordinate-Mapping. We then define the mapping

fv2a from pixel position (y, z) on frontal-view images to

spherical angles ϑ = fv2a(y, z). In the spherical coordinate,

the frontal-view image plane is defined as part of a cylinder

centered at the coordinate origin as shown in Fig. 3 (a).

Based on the fact that the effective visual field of hu-

mans is approximately 120 degrees [33], we define the bor-

der azimuth angle as ϑv0 = π/3. So that objects within

V̂ are distributed within ϑ ∈ [−ϑv0, ϑv0]. The ratio be-

tween the height and width of the background image is set

to H/W = 1/2, thus the top edge of the image is cor-

responding to ϕv0 = π/2 − arctan(π/3). The range is

ϕ ∈ [π/2− arctan(π/3), π/2 + arctan(π/3)]. In this way,

for each point in the image plane, we can find an angle in

the spherical coordinate. We have also explored other field

of view settings and find subtle differences.

Create Pseudo Visual-Stereo Pairs. By calculating the

corresponding angle ϑk in spherical coordinates, a pair of

binaural audios {r̂k(t, ϑk), l̂k(t, ϑk)} can be recovered from

the mono audio sk(t) accompanying vk(t) through Eq. (8).

Audio recordings collected in real-world scenarios are

mostly mixed,therefore, we propose to mix multiple solo

videos together in one scene to create pseudo visual-stereo

pairs {V̂ , (l̂, r̂)}. Each time, we assemble a random number

of K independent mono videos s(t) = {s1(t), . . . , sK(t)}
together to form a pseudo visual-stereo pair. The self-created

binaural can be written as l̂(t) =
∑K

k=1 l̂k(t, ϑk) and r̂(t) =∑K

k=1 r̂k(t, ϑk). The manually built visual information is

V̂ , where V̂ (ϑk) = vk, k ∈ [1,K].

Note that the patch size and audio amplitude are both

directly proportional to the reciprocal of the depth. There-

fore, the mono audio is firstly normalized according to its

wave amplitude, and the corresponding cropped patch v′k is

normalized in the same scale as the audio. When the pseudo

scene is assembled, v′k is randomly resized and placed on V̂
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Figure 3: (a) Mapping from visual positions in the image domain to spherical angles. Normally we place the image V̂ at the

frontal-view to be part of a cylinder. The borders of the image are corresponding to the angles ϕv0 and ϑv0. (b) Network

details. The input to the audio UNet Neta is the STFT of a mono audio. The output is the prediction of the STFT difference

between the left and right channels. During training, Netv extract the visual feature fv from our self-created image V̂ , and

concatenate it to the audio UNet. During testing, this network can be applied to normal frames.

to represent objects at different depths. Only mono audios

are used in building the data.

3.3. Learning

We leverage neural networks for learning from mono

and visual guidance to pseudo binaural output. Previous

networks and training paradigms from Mono2Binaural [14]

and Sep-Stereo [45] can be readily adapted to train on our

data. The learning procedure is depicted in Fig. 3 (b).

Stereo Training. The main part of our learning procedure

is to directly train networks using our pseudo visual-stereo

pairs. The whole training procedure is basically follow-

ing [14, 45]. It consists of a backbone U-Net [30] au-

dio network Neta, and a ResNet18 [16] visual network

Netv. The audios are all processed in the complex Time-

Frequency domain in form of Short-Time Fourier Trans-

formation (STFT). Mono is created from the left and right

channels sm(t) = l̂(t) + r̂(t) and the input to Neta is the

transformed mono spectrum Sm = STFT(sm(t)). Neta
returns the complex mask M for final predictions. The train-

ing objective is the difference of the left and right spectrums

SD = STFT(l̂(t)− r̂(t)), which can be written as:

Lstereo = ‖SD −M∗ Sm‖2 (9)

Then the predicted difference spectrum is transferred back to

the difference audio s̃D = ISTFT(M∗ Sm) . The predicted

left and right can be computed as l̃(t) = (sm(t) + s̃D(t))/2
and r̃(t) = (sm(t)− s̃D(t))/2.

Separation Training. Specifically, we leverage the task of

separating two sources inspired by Sep-Stereo [45]. We care

less about the performance on separation, but more about

its benefits on distinguishing sound sources. Thus different

from their visual feature rearrangement, we directly place

two sources at separate edges when creating the pseudo

visual input V̂ (as shown in Fig. 3 (b)). The network input

would be the pseudo pair {V̂ , (sa, sb)}, where sa and sb
are the individual mono audio signals. Then we leverage

one APNet branch from [45] to predict the original STFTs

Sa and Sb. In this way, the backbone network can learn

better the association between the sources’ visual and audio

information. Please refer to the supplementary materials for

details.

4. Experiments

4.1. Datasets

We emphasize creating binaurals for music, which is an

important scenario for stereo production. We will at first

show our analysis on the FAIR-Play dataset, then introduce

other datasets we use.

Revisiting FAIR-Play. Collected in a music room, FAIR-

Play [14] is one of the most influential datasets in this field.

However, by carefully examining the dataset, we find that

the original train-test splits are somewhat problematic. The

whole dataset contains 1, 871 clips cut from several different

long camera recordings with approximately the same camera

view and scene layouts. The clips are randomly divided into

10 different train-test splits. As a result, the scenes within

train and test splits are overlapped, probably originate from

the same recording. This would lead to serious overfitting

problems. The models might learn layouts of the room

instead of visual-stereo association that we desired.

In order to evaluate the true generalization ability of dif-

ferent models on this dataset, we take efforts to re-organize

the FAIR-Play dataset through reconstructing the original

videos and re-splitting them. Specifically, we first run a

clustering algorithm on all the clips to roughly group them

according to the scenes. Then by matching the first and last
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Table 1: Quantitative results of binaural audio generation on FAIR-Play and MUSIC-Stereo dataset.Except for SNR, the lower

the score, the better the results. The upper half shows the results of standard benchmarks and our PseudoBinaural method. The

lower half shows the augmentation results and our ablation studies on different binaural decoding schemes (Sec. 3.1). Our

method outperforms previous methods when augmented with binaural recordings. Moreover, our chosen decoding scheme

achieves the best performance among three decoding methods.

FAIR-Play MUSIC-Stereo

Method STFT ENV Mag Dphase SNR ↑ STFT ENV Mag Dphase SNR ↑

Mono-Mono 1.024 0.145 2.049 1.571 4.968 1.014 0.144 2.027 1.568 7.858

Mono2Binaural [14] 0.917 0.137 1.835 1.504 5.203 0.942 0.138 1.885 1.550 8.255

PseudoBinaural (w/o sep.) 0.951 0.140 1.914 1.539 5.037 0.953 0.139 1.902 1.564 8.129

PseudoBinaural (Ours) 0.944 0.139 1.901 1.522 5.124 0.943 0.139 1.886 1.562 8.198

Sep-Stereo [45] 0.906 0.136 1.811 1.495 5.221 0.929 0.135 1.803 1.544 8.306

Augment-HRIR 0.896 0.137 1.791 1.472 5.255 0.940 0.138 1.866 1.550 8.259

Augment-ambisonic 0.912 0.139 1.823 1.477 5.220 0.909 0.137 1.817 1.546 8.277

Augment-PseudoBinaural 0.878 0.134 1.768 1.467 5.316 0.891 0.132 1.762 1.539 8.419

frame of each clip within groups, we find the original order

of the clips and concatenate them to recover the recorded

videos. Finally, we select the videos whose scenes are com-

pletely absent in other videos as the validate and test sets.

In this way, we create 5 different splits in which train and

test sets are not overlapped. In our experiments, we re-train

all supervised models (including Mono2Binaural [14] and

Sep-Stereo [45]) and report the average results on the five

splits. Please be noted that our model is also trained on this

dataset, using only the solo part and mono audios.

MUSIC-Stereo [43, 42]. Containing 21 different types of

instruments, MUSIC(21) is originally collected for visually

guided sound separation. We select all the videos with bin-

aural audio from MUSIC(21) and MUSIC-duet [43] to form

a new dataset MUSIC-Stereo. Composed of solo and duet

parts, it includes 1, 120 unique videos of different musi-

cal performances. MUSIC-Stereo lasts 49.7 hours in total,

which is 10 times larger than the FAIR-Play dataset. Follow-

ing the post-processing steps in [14], we cut these videos

into 17, 940 10s clips and split them into training, validation,

and test sets in an 8:1:1 ratio. Similar to FAIR-Play, only

the solo part and mono audios are exploited for our model’s

training.

YT-Music [22]. This dataset is collected from 360◦videos

on YouTube in the ambisonic format. The audios are trans-

ferred to binaural in the same way as our decoding scheme.

With distinct vision configurations and stereo audio charac-

teristics, YT-MUSIC is the most challenging dataset.

4.2. Evaluation Metrics

Previous Metrics. The evaluation protocol within this field

is basically the STFT distance and the envelope distance

(ENV) between recovered audios and recorded ones [22, 14].

The STFT distance represents the mean square error com-

puted on predicted spectrums, and the ENV distance is per-

formed on raw audio waves through Hilbert transform [32].

To evaluate the predicted binaural audios more comprehen-

sively, we also adopt two widely-used metrics Magnitude

Distance (Mag) and Signal-to-noise Ratio (SNR) from [22].

The Mag distance reflects the L2 deviation on the magnitude

of spectrums and SNR is operated on the waveform directly.

Newly Proposed Metric. In 3D audio sensation, audiences

care more about sensing the source direction, where the

phase of binaural audio is the key. As illustrated in [29],

phase errors will introduce perceivable distortions but are al-

ways neglected during the optimization. Inspired by this, we

further propose a new metric named Difference Phase Dis-

tance (Dphase), which is performed on the Time-Frequency

domain. Note that, the binaural audio is completely de-

termined by the difference between left and right spec-

trums 3.3. Hence, Dphase is to evaluate the phase distortion

between the ground-truth difference SD and the predicted

one S̃D = M∗ Sm:

Dphase = ‖phase(SD)− phase(S̃D)‖2, (10)

where the phase is represented by the angle values, thus

Dphase ∈ [0, 2π]. It’s worth emphasizing that Dphase is

sensitive to the audio directions, i.e., switching left and right

channels would bring a significant change on this metric.

4.3. Quantitative Results

Binaural-Recording-Free Evaluation. Since no binaural-

recording-free method has been proposed before, supervised

method Mono2Binaural [14] whose backbone we borrow

from, can be served as our baseline and upper bound. The

evaluation is made on our newly-split FAIR-Play [14] and

MUSIC-Stereo. For comparison, Mono2Binaural is trained

with both visual frames and binaural audio, whereas our
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Table 2: Cross-dataset evaluation results on five metrics. While the model trained on FAIR-Play is used for testing on the

others, the model trained on MUSIC-Stereo is for the evaluation on FAIR-Play. PseudoBinaural presents better generalization

ability than the supervised method Mono2Binaural on all datasets.

Mono2Binaural [14] PseudoBinaural (Ours)

Dataset STFT ENV Mag Dphase SNR ↑ STFT ENV Mag Dphase SNR ↑

FAIR-Play 0.996 0.142 1.993 1.562 5.876 0.959 0.140 1.917 1.496 6.057

MUSIC-Stereo 0.971 0.140 1.942 1.552 7.933 0.952 0.139 1.904 0.574 8.099

YT-MUSIC 0.717 0.118 1.435 1.597 9.214 0.653 0.111 1.306 1.357 9.848

method PseudoBinaural only leverages frames and mono

audio to do the training. Please be noted that we do not

rely on an extra dataset. The result of Mono-Mono is also

listed, which copies the mono input two times as the stereo

channels. This method should have no stereo effect at all,

thus outperforming it means the success of generating the

sense of directions. As the whole model of ours includes the

separation training described in Sec. 3.3, we also evaluation

the ablation of this module (w/o sep.). Table 1 shows the

results of these methods on all metrics.

With no supervision, it is reasonable that our PseudoBin-

aural cannot outperform the supervised setting. However,

the fact that our model outperforms Mono-Mono on all met-

rics proves the effectiveness of our proposed method. In

line with previous work [45], introducing the separation task

in the training framework can further improve the overall

performance of generated binaural audio.

Augmentation to Binaural Audio Training. Since our

method just relies on the pseudo visual-stereo pairs, a natu-

ral idea is to leverage both pseudo data and recorded ones

to boost the performance of the traditional fully-supervised

approach. As demonstrated in the lower half of Table 1, our

method, denoted as Augment-PseudoBinaural, can surpass

the traditional setting Mono2Binaural [14] on all 5 metrics.

Moreover, compared to Sep-Stereo [45], which incorporates

extra data, we create pseudo pairs with the same set of col-

lected data, providing more effective and complementary

information to guide the training. Consequently, our method

outperforms theirs on both FAIR-Play and MUSIC-Stereo.

Cross-Dataset Evaluation. We specifically show the results

of cross-dataset evaluation in Table. 2 to prove that 1) super-

vised methods can easily overfit to a specific domain and 2)

the generalization ability of our method. YT-MUSIC [22]

with special 360◦videos and ambisonics sounds is also used

for evaluation. Here we use the non-augmented version of

PseudoBinaural for evaluation. For Mono2Binaural, the

model evaluated on FAIR-Play is trained on MUSIC-Stereo,

and the model tested on MUSIC-Stereo and YT-MUSIC is

trained on FAIR-Play. During cross-testing on FAIR-Play

and MUSIC-Stereo, the visual to angle mapping fv2a is

defined in the frontal view. But when cross-testing on YT-

MUSIC, the video is defined in the form of 360◦.

Table 3: Ablation study on the number K of mono videos

to mix based on FAIR-Play dataset. When K is a mixture

of the three different numbers, the ratio is empirically set to

1 : 2 : 3 = 0.4 : 0.5 : 0.1.

K STFT ENV Mag Dphase SNR ↑

1 0.965 0.143 1.914 1.483 4.976

2 0.935 0.141 1.871 1.480 5.026

3 0.967 0.142 1.936 1.527 5.004

1,2 0.895 0.136 1.793 1.479 5.282

1,2,3 0.878 0.134 1.768 1.467 5.316

We can see from the table that our method stably out-

performs Mono2Binaural in all cross-dataset evaluations.

The supervised method tends to perform badly when test-

ing in a different domain, while our recording-free method

generalizes well by training only on mono data.

Ablation Study. The lower half of Table 1 presents our

ablation studies on different binaural decoding schemes. As

written in Sec. 3.1, binaural audios can be decoded directly

from HRIR or ambisonic. It can be seen that our way of

combining both leads to the best results.

When preparing pseudo visual-stereo pairs, the num-

ber of mono videos to mix is also another important hy-

perparameter for consideration. As shown in Table 3, a

fixed mixing number K always fails to construct various

training samples, introducing inconsistency with those nat-

urally collected datasets. Hence, an empirical ratio of

1 : 2 : 3 = 0.4 : 0.5 : 0.1 for the number K is applied

to ensure the diversity of generated visual-stereo pairs.

Additionally, we evaluate the choice of visual field-of-

view (FOV) when building the Visual-Coordinate-Mapping.

The influential parameter is the border azimuth angle ϑv0

which is set to π/3 (Sec. 3.2). The results are shown in

Table 4, that our choice achieves the best results.

4.4. Qualitative Results

User Study2. In total 30 users with normal hearing partici-

pated in our study to perform the quality evaluation. There

2Please refer to https : / / sheldontsui . github . io /

projects/PseudoBinaural for demo videos.
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Figure 4: Qualitative results. (a) shows the results of our user studies. It can be seen that the users slightly prefer our approach

over supervised Mono2Binaural [14]. (b) is the visualization of the activation maps of ours and Mono2Binaural. While the

attention of theirs is messier, the results of ours are more compact. We focus more on sound sources.

are three sets of studies, each with 20 videos selected from

the test set of FAIR-Play [14] and MUSIC-Stereo [42], most

of which are duets. 1) The users are asked to watch one video

and listen to the binaural audios generated by PseudoBinau-

ral, Mono2Binaural [14] or Mono-Mono. The question is

which one of the three methods creates the best stereo sen-

sation. The results show the percentage of the users’ Stereo

Preferences. 2) The users are asked to listen to the audio

generated by the above methods without viewing videos, and

decide where is the specific instrument (left, right, or center).

Ground truth audios are also included for reference. The

results show the Sound Localization Accuracy of these

methods. 3) A subjective Ablation Study is conducted to

show the influence of different choices of binaural decoding

methods. The users are asked to tell which decoding dia-

gram, direct HRIR, ambisonic, or ours, creates the best 3D

hearing experience.

The results are shown in Fig 4 (a). From the first and

second experiments, we can see that users find our method

slightly better than supervised Mono2Binaural on both the

two measurements. This is enough to validate that our results

are highly competitive to supervised methods in subjective

evaluations, which is extremely important for auditory tasks.

In the sound localization experiment, users can only achieve

81% accuracy even given the ground-truth audio, which

demonstrates the misguiding caused by the room reverbera-

tions. The subjective ablation study shows that our decoding

procedure apparently creates the best sense of hearing among

all decoding choices.

Visualization. We also visualize the activation map gen-

erated by our method and Mono2Binaural [14] on the

visual domain. In Fig. 4 (b) we can see that Pseu-

Table 4: Ablation study on the border azimuth angle ϑv0.

The horizontal visual field-of-view is 2ϑv0.

ϑv0 π/6 π/4 π/3 5π/12 π/2

STFT ↓ 0.923 0.896 0.878 0.884 0.886

SNR ↑ 5.138 5.181 5.316 5.302 5.271

doBinaural can successfully attend to sound sources while

Mono2Binaural [14] would focus on less important areas.

For example, their approach would attend to the ceiling for

all three scenes shown, which is not the sound source.

5. Conclusion

In this work, we propose PseudoBinaural, a binaural-

recording-free method for generating binaural audios from

corresponding mono audios and visual cues. For the first

time, the problem of visually informed binaural audio

generation is tackled without binaural audio recordings.

Based on the theoretical analysis of Mono-Binaural-

Mapping, the created pseudo visual-stereo pairs can be

capitalized to train models for binaural audio generation.

Extensive experiments validate that our framework can

be very competitive both quantitatively and qualitatively.

More impressively, augmented with real binaural audio

recordings, our PseudoBinaural could outperform current

state-of-the-art methods on various standard benchmarks.
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