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Abstract

We address the problem of estimating the 3D pose of

a network of cameras for large-environment wide-baseline

scenarios, e.g., cameras for construction sites, sports stadi-

ums, and public spaces. This task is challenging since de-

tecting and matching the same 3D keypoint observed from

two very different camera views is difficult, making standard

structure-from-motion (SfM) pipelines inapplicable. In such

circumstances, treating people in the scene as “keypoints”

and associating them across different camera views can

be an alternative method for obtaining correspondences.

Based on this intuition, we propose a method that uses ideas

from person re-identification (re-ID) for wide-baseline cam-

era calibration. Our method first employs a re-ID method

to associate human bounding boxes across cameras, then

converts bounding box correspondences to point correspon-

dences, and finally solves for camera pose using multi-view

geometry and bundle adjustment. Since our method does

not require specialized calibration targets except for visi-

ble people, it applies to situations where frequent calibra-

tion updates are required. We perform extensive experi-

ments on datasets captured from scenes of different sizes

(80m2, 350m2, 600m2), camera settings (indoor and out-

door), and human activities (walking, playing basketball,

construction). Experiment results show that our method

achieves similar performance to standard SfM methods re-

lying on manually labeled point correspondences.

1. Introduction

Our task is to solve the 3D camera pose estimation

problem for multi-camera networks. We target challeng-

ing large-environment wide-baseline scenarios where cam-

eras are static, sparse, and spaced far from each other (e.g.,

10 to 20 meters). Conventionally, SfM [55] methods are

often used to estimate camera pose. These methods first

detect keypoints in the images of different camera views

and describe the keypoints using hand-crafted or deep fea-

tures [33, 10]. They then match the keypoint features [22]

across views to obtain 2D-2D point correspondences and

Figure 1: In large-environment, wide-baseline camera net-

works, backgrounds (top, white area), lighting conditions

(middle), and textured areas (bottom, white area) from dif-

ferent camera views can vary massively, causing the failure

of keypoint detection and matching ((a), (b)) in standard

SfM methods. However, matching the same people across

views can still be done correctly using re-ID methods ((c),

(d)). (Points/bounding boxes of the same color correspond.)

solve the camera pose using multi-view geometry [19]. In

our setting, due to the significant difference between camera

poses, images taken from different cameras can have very

different backgrounds, lighting conditions, and texture ar-

eas, as shown in Figure 1, making detecting and matching

the same keypoints across camera views difficult.

Alternatively, we observe that if people are visible in

the scene, we can obtain correspondences by detecting and

matching people across different cameras. Especially for

wide-baseline scenarios, matching the same people across

camera views is easier than matching 2D keypoints since

many human features can be used. For example, when peo-

ple are close to the cameras, we can use the appearance

information (e.g., height, clothes, length of hair) to match

them across camera views (Figure 1). When people are

far away from the cameras, we can still successfully match

them from their temporal motion information (e.g., speed,

smoothness of trajectory). Therefore, to obtain correspon-
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(a) Bounding box correspondences (b) Point correspondences (c) Point correspondences over time

Figure 2: Method overview. Given a set of synchronized videos from different views and detected human bounding boxes,

our method first associates bounding boxes across camera views using a re-ID network (a), then converts the bounding box

correspondences to 2D-2D point correspondences (b). Finally, our method aggregates the point correspondences over time

(c) and solves the camera pose with the point correspondences as input using multi-view geometry and bundle adjustment.

dences in wide-baseline scenarios, we can treat people as

“keypoints” and associate their bounding boxes across cam-

era views using a re-ID algorithm. Nevertheless, simply ob-

taining the associated bounding boxes is not enough to es-

tablish accurate 2D-2D correspondences necessary for cam-

era pose estimation. As a second step, we can associate the

same body parts (e.g., head, foot, the position of body mass)

inside the bounding boxes to further obtain point correspon-

dences. In short, we can solve the feature matching prob-

lem by breaking it into a two-step process: First, matching

people across camera views; Second, converting the bound-

ing box correspondences to point correspondences. Since

we assume that people are moving in the scene, which is

often true, we can obtain a sufficient number of point cor-

respondences for solving camera poses by aggregating the

correspondences from a sequence of video frames.

We summarize our proposed wide-baseline camera pose

estimation method in Figure 2. Our method includes three

stages: 1) person matching, 2) point correspondence ex-

traction, and 3) geometric camera pose estimation. Given a

set of synchronized videos captured by cameras of different

views, whose intrinsic and distortion parameters are given

from the previous calibration, our method first associates

person bounding boxes using a re-ID network pre-trained on

open datasets [50, 60]. As a second step, our method con-

verts the bounding box correspondences to point correspon-

dences by extracting and associating the bounding box cen-

ters, which approximate the body mass positions. Finally,

our method aggregates the point correspondences over time

and solves for camera poses using a structure-from-motion

pipeline (algebraic estimates of pose pairwise cameras, fol-

lowed by non-linear optimization via bundle adjustment).

Our method only assumes the existence of visible mov-

ing people in the scene without the requirement of any

other specialized calibration targets. It is thus suitable for

many situations where consistent camera pose estimation

is required, e.g., basketball training where cameras need to

be moved for each new game or construction sites where

cameras must be moved as the site is constructed. More-

over, our method does not require the re-ID model to out-

put perfect association results since RANSAC [13] in the

later stage can filter outliers. We evaluate our method

on three datasets collected from scenes of different sizes

(80m2, 350m2, 600m2) and lighting conditions (indoor and

outdoor). The human postures in the three datasets also vary

significantly, including walking, shooting, running, jump-

ing, crouching, etc. We aim to use these datasets of various

environment settings and human postures to evaluate the ro-

bustness of our method. Experiments show that our method

achieves similar performance to a standard SfM pipeline

which relies on manually labeled point correspondences.

Our contributions are as follows: 1) We propose to ap-

ply person re-ID algorithms to solve camera pose estima-

tion for multi-camera networks. 2) We contribute a two-step

process treating people as “keypoints” to obtain correspon-

dences for wide-baseline scenarios. 3) Our method achieves

an average accuracy of (0.4m, 1.08◦) across three datasets,

comparable with SfM methods using manual annotation. 4)

We perform extensive robustness and efficiency analysis for

a more comprehensive understanding of our method.

2. Related work

Methods for solving the relative camera pose estimation

problem can generally be categorized into geometric meth-

ods using the SfM pipeline and end-to-end deep pose re-

gressors. We will discuss both categories of methods and

briefly review recent deep re-ID works in this section.

Geometric methods address the camera pose estimation

problem with a two-stage framework by first obtaining 2D-
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2D point correspondences and then solving the camera pose

using a geometric pipeline. Generally, they first detect the

keypoints (Harris [18], FAST [42], etc.) in the images of dif-

ferent views and describe the keypoints with hand-crafted

features (SIFT [33], BRIEF [5], ORB [43], etc.). Then,

they match the keypoints (BFM [22], FLANN [37], etc.)

across images to obtain point correspondences. Recently,

many deep learning methods solve the keypoints detection

and description simultaneously using neural networks (Su-

perPoint [10], UR2KiD [58], D2-net [12], LIFT [59], Lf-

net [40], Elf [3]). Once obtaining 2D-2D point correspon-

dences, these methods solve camera poses using a multi-

view geometry pipeline. They first use the N-point algo-

rithm [19, 28, 39], usually inside a RANSAC [13] loop,

to solve for the Essential matrix, which will then be de-

composed to the camera rotation and an up-to-scale camera

translation [15]. As a final step, they use bundle adjust-

ment [54] to further optimize the 3D poses of all cameras.

There are also works [2, 9] using semantic information for

solving SfM problems. These geometric methods are quite

mature and generally accurate. However, they have diffi-

culty in matching keypoint features across camera views

when the distance between cameras is vast, as in our task.

In this work, we use person matching to obtain correspon-

dences to solve camera poses for wide-baseline scenarios.

Deep pose regressor was first applied in absolute camera

pose estimation. PoseNet [25] is the first attempt that treats

camera pose estimation as an end-to-end regression prob-

lem and solves the problem with a convolutional neural net-

work [17], trained on data labeled using SfM [55]. Since

then, many improvements on PoseNet have been proposed,

including using different network architectures [57, 38, 34]

and new loss designs [24, 27, 4]. Deep pose regressors for

relative camera pose estimation [35, 27, 1, 11] have also

been applied recently. In General, these methods input a

pair of images into a Siamese network architecture[35] to

extract deep features, from which they regress the camera

pose. Despite the convenience of end-to-end regression,

deep regressors still maintain a performance gap compared

to geometric methods [46]. Moreover, deep pose regressors

require images taken from moving cameras for training. In

our task, the cameras are static, meaning that the training

images and test images would be almost the same, making

the deep pose regressors overfit to one camera pose. There-

fore, deep pose regressors are inapplicable in our task.

Deep re-identification has been used for people matching

in our method. Many existing deep re-ID algorithms, e.g.,

[31, 47, 48, 23, 8, 6, 7, 53, 52], are developed to address var-

ious challenges in re-ID problem, such as background clut-

ter, viewpoint changes, and pose variations. For instance,

Yang et al. [62] learn a camera-invariant subspace to deal

with the style variations caused by different cameras. Liu et

al. [32] develop a pose-transferable framework based on

generative adversarial network (GAN) [16] to yield pose-

specific images for tackling pose variations. Several meth-

ods addressing background clutter leverage attention mech-

anisms to emphasize the discriminative parts [30, 51, 49]. In

addition to these methods that learn global features, a few

methods further utilize part-level information [53] to learn

more fine-grained features, adopt human semantic parsing

for learning local features [23], or derive part-aligned repre-

sentations [52] for improving person re-ID. Following these

works, we choose the most commonly used model [61] with

ResNet-50 [21] as the backbone of our re-ID network.

3. Method

To solve the camera pose estimation problem for large-

environment, wide-baseline scenarios, we propose to treat

people as “keypoints” and use person re-ID for obtain-

ing 2D-2D correspondences. Figure 3 presents the system

pipeline of our method, which includes three modules: 1)

“keypoint” matching, 2) point correspondence extraction,

and 3) the geometric camera pose (GeoPose) solver.

3.1. “Keypoint" Matching Using Person Re­ID

The first module of our method is “keypoint” matching.

We adopt the re-ID model in the previous work [61] using

ResNet-50 [21] as the backbone. As shown in Figure 3,

the learning of the re-ID model is guided by a person id

classification loss Lid and a discriminative triplet loss Ltri.

Training: At the training stage, we have an image set

X = {xi}
N
i=1 and its corresponding label set Y = {yi}

N
i=1

with size N , where xi ∈ RH×W×3 and yi ∈ R. We first

employ the classification loss Lid by computing the nega-

tive log-likelihood between the predicted label ỹ ∈ R
K and

the ground truth ŷ ∈ N
K :

Lid = −E(x,y)∼(X,Y )

K∑

k=1

ŷk log(ỹk) (1)

where K is the number of identities (classes).

To further enhance the discriminative property, we im-

pose a triplet loss Ltri, which maximizes the inter-class dis-

crepancy while minimizing intra-class distinctness. Specif-

ically, for each input image x, we sample a positive image

xpos with the same identity label and a negative image xneg

with different identity labels to form a triplet tuple. The

distances between x and xpos/xneg can be computed as

dpos = ‖fx − fxpos
‖2 (2)

dneg = ‖fx − fxneg
‖2 (3)

where fx, fxpos
, and fxneg

represent the feature vectors of

images x, xpos, and xneg, respectively. We then can have

the triplet loss Ltri defined as

Ltri = E(x,y)∼(X,Y ) max(0,m+ dpos − dneg) (4)

13136



Figure 3: System pipeline. Our method includes three stages. First, we use a re-ID network (F) to associate person

bounding boxes across camera views. Second, we use a function (G) to convert bounding box correspondences to point

correspondences. Finally, we solve the camera pose using a GeoPose solver (H). Bt
i1

is the i-th bounding box of camera 1 at

frame t, pi1 is the i-th keypoint of camera 1, the definitions of Bt
j2

and pj2 are similar to Bt
i1

and pi1 , respectively.

where m > 0 is the margin used to define the difference

between the distance of positive image pair dpos and the

distance of negative image pair dneg.

In this work, we allow, to a certain extent, the imperfect-

ness of the re-ID model and use RANSAC in the GeoPose

solver to reject the mis-associations. We pre-train the re-ID

model on open datasets [50, 60]. For the relatively easier

datasets, Terrace and Basketball [14], we directly apply the

pre-trained model for inference. We also collected a more

challenging dataset, ConstructSite, on which we fine-tune

the pre-trained re-ID model first before inference.

Inference: At the inference stage, we use the re-ID model

to associate bounding boxes across cameras. In this work,

we assume that person trajectories in each video are pro-

vided. To extract re-ID feature of a person bounding box

bi in frame i, we first apply the restricted random sam-

pling strategy [29] on the whole tracklet T (a sequence of

bounding boxes) of this person to obtain a smaller tracklet

Ti = {bk}
8
k=1. We then extract the re-ID feature from each

bounding box in Ti and do a max-pooling to obtain the fea-

ture representation of bi. Finally, we apply the Hungarian

algorithm [26] to match bounding boxes across cameras.

3.2. Point Correspondence Extraction

After obtaining bounding box correspondences, our next

step is to find 2D-2D point correspondences from the

bounding box correspondences, such that the matched point

correspondences are semantically meaningful. The intuitive

idea is to associate the same body part (e.g. head, foot, the

center of body mass) inside the bounding boxes. Our idea

leverages the critical observation that the bounding box cen-

ter can serve as a rough estimate of the body mass position.

We visualize in Figure 4 the bounding box centers and

the centers of body mass of various human poses. The

visualized person poses include people walking, sporting

(running, jumping, shooting a basketball etc.), and working

(bending, carrying, crouching, etc.), captured from differ-

ent camera heights and view angles. As Figure 4 shows,

the bounding box center is close to the center of body mass

under different camera poses and human postures. We thus

use the bounding box center to represent the center of body

mass and associate them across camera views as 2D-2D

point correspondences. However, such an approximation

would not be perfect. There will be an offset between the

position of the bounding box center and the center of body

mass, meaning that the obtained point correspondences will

be noisy. Our method uses RANSAC [13] to reject the cor-

respondences with large position offsets. For other point

correspondences, our method treats their position offsets as

noise and optimizes over all the point correspondences us-

ing bundle adjustment [54] to minimize the impact.

Formally, we define a bounding box as [utl, vtl, ubr, vbr],
in which [utl, vtl] and [ubr, vbr] represent the top-left and

bottom-right corners of the bounding box. We can then ob-

tain the position of the body mass center [u, v] as :

[u, v] = [(utl + vbr)/2, (utl + vbr)/2] (5)

3.3. Geometric Camera Pose (GeoPose) Solver

With the 2D-2D point correspondences, our final step is

to solve the camera pose with our GeoPose solver. Figure 5

shows the diagram of the GeoPose solver. We first solve the

relative pose for each camera pair with a five-step pipeline,

then optimize all camera poses using a global bundle ad-

justment. Note that we assume the camera intrinsic and dis-

tortion parameters are provided. Moreover, traditional au-

tomatic feature matching for resectioning fails in our chal-

lenging setting, where cameras are sparse and spaced far

from each other. We thus manually specify the reference

camera (camera 0, or C0) to lower the challenge.

Formally, given a set of point correspondences (pi,p0)
of camera pair (Ci, C0), we first solve the essential matrix

Ei0 inside a RANSAC [13] loop. We then decompose Ei0

into the relative rotation matrix Ri0 and an up-to-scale rel-

ative translation ti0. Next, we triangulate the 3D points Pi0
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Figure 4: Body mass positions (green) and bounding box

centers (red). We present samples from three datasets of

variant camera poses and human postures and observe that

bounding box centers can approximate body mass positions.

using (pi,p0) and {Ri0, ti0}. After that, we use a local

bundle adjustment step to jointly optimize the camera pose

{R1
i0, t1i0} and 3D points P 1

i0 by minimizing the 2D re-

projection error of points from both Ci and C0. We then

use the prior 3D knowledge γ to solve the scale ambiguity

and obtain {R2
i0 = R1

i0, t2i0} and P 2
i0. The above steps can

be mathematically represented as:

Ei0 = essenMatSolver(pi,p0) (6)

Ri0, ti0 = decomposition(Ei0) (7)

Pi0 = triangulation(pi,p0,Ri0, ti0) (8)

R1
i0, t

1
i0,P

1
i0 = localBA(pi,p0,Ri0, ti0,Pi0) (9)

R2
i0, t

2
i0,P

2
i0 = ambiguitySolver(R1

i0, t
1
i0,P

1
i0,γ) (10)

After solving the relative poses for each camera pair, we

use a global bundle adjustment to further optimize the 3D

poses of all cameras. If a 3D point is only visible from one

camera pair, we directly use its 3D coordinates as the input

of the global bundle adjustment. Otherwise, we take the

mean of the coordinates solved from different camera pairs

and set the mean to be the coordinate of the 3D point. We

call this process “merge 3D points”, from which we obtain

P̂ . Finally, we optimize the camera poses using the global

bundle adjustment initialized from {R2
i0, t

2
i0} and P̂ :

P̂ = merge3DPoints({P2
i0}) (11)

{R∗

i0, t
∗

i0} = globalBA({R2
i0, t

2
i0}, P̂ ) (12)

in which, {R∗

i0, t
∗

i0} is the final estimated camera pose.

We explain here the 3D information we use to solve the

scale ambiguity. For Terrace dataset, we use the assump-

tion that the height of a person is 1.75m [41]. For the Bas-

ketball dataset, we use the length of a standard free throw

line (3.6m) [20]. For our ConstructSite dataset, we use the

length of a standard construction steel pipe (1.0m).

Figure 5: GeoPose solver. We first solve the relative camera

pose for each camera pair using a five-step process, then

optimize all camera poses with a global bundle adjustment.

4. Experiment

We report the evaluation results of our method in this

section. We first describe datasets in Section 4.1 and evalua-

tion metrics and baselines in Section 4.2. Following in Sec-

tion 4.3, we present both quantitative and qualitative evalu-

ation results. Next, we analyze the method robustness and

efficiency in Section 4.4. Finally, we apply our method in

tracking and present the result in Section 4.5.

4.1. Datasets

We evaluate our method on three datasets captured from

scenes of different sizes, camera settings, and human poses.

The camera intrinsic and distortion parameters are pro-

vided, and the videos are synchronized for all datasets.

Terrace [14] is an outdoor dataset shot on a terrace out-

side a building. Up to 7 people evolve in front of 4 DV

cameras for 6 minutes 14 seconds. The frame rate is 25 fps,

and the video resolution is 720× 576. The size of the scene

is around 7m × 11m, and the cameras are about 2m-high

from the ground plane. People are walking at slow speeds.

Basketball [14] is an indoor dataset filmed at a training

session of a local basketball team. It was acquired at a bas-

ketball court with 4 DV cameras at 25 fps. The cameras are

about 2m-high. The videos are 2 minutes and 57 seconds

long, with a resolution of 720 × 576. The size of the scene

is about 17.5m× 22m. Up to 14 people are doing different

activities, including running, jumping, shooting a ball, etc.

ConstructSite is a new dataset collected by our research

collaborators using 4 synchronized GoPro HERO7 Black

cameras around an outdoor construction site. The cameras

are about 3m-high from the floor. The videos are 2 minutes

and 57 seconds long, the resolution is 1352 × 760, and the

frame rate is 60 fps. The scene size is about 22m × 28m.

There are about 20 people in similar suits doing construc-

tion works, including standing, crouching, carrying, etc.
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Camera Pose Error (CPE, (mm, ◦)) ↓
Method

Terrace Basketball ConstructSite
Mean ↓

SIFT [33] + BFM [22] 4599mm, 55.03◦ 6140mm, 65.45◦ 10770mm, 45.66◦ 7170mm, 55.38◦

SuperPoint [10] + BFM [22] 358mm, 54.68◦ 20065mm, 53.97◦ 2530mm, 50.10◦ 7651mm, 52.92◦

WxBS [36] 1302mm, 54.14◦ 8.2e4mm, 57.01◦ 7.8e3mm, 48.91◦ 3.0e4mm, 53.35◦

SuperPoint [10] + SuperGlue [44] 9934mm, 36.96◦ 1.2e4mm, 29.07◦ 1722mm, 24.08◦ 7885mm, 30.04◦

Oracle(Manual-pts) 390mm, 1.18◦ 358mm, 0.66◦ 591mm, 2.08◦ 446mm, 1.31◦

Ours (Manual-bbox) 308mm, 0.52◦ 490mm, 0.85◦ 485mm, 1.80◦ 427mm, 1.06◦

Ours (ReID-bbox) 308mm, 0.52◦ 410mm, 0.88◦ 493mm, 1.85◦ 404mm, 1.08◦

Table 1: Camera Pose Error (CPE). We report the camera position and orientation prediction errors. “Manual-pts” denotes

manually annotated 2d point correspondences, “Manual-bbox” denotes manually associated bounding box correspondences,

“ReID-bbox” denotes associating bounding box correspondences using re-ID network. (The terms are the same for the

following tables unless explicitly stated.) For each dataset, we report the mean position and orientation errors of all cameras.

Re-Projection Error (RPE, pixel) ↓ Error Resolution Ratio(ERR, %) ↓
Method

Terrace Basketball ConstructSite Terrace Basketball ConstructSite

SIFT [33] + BFM [22] 254.40 533.15 177.90 44.17% 92.56% 23.41%

SuperPoint [10] + BFM [22] 53.07 9.50 130.65 9.21% 1.65% 17.19%

WxBS [36] 60.09 80.21 18381.56 10.43% 13.93% 2418.63%

SuperGlue [44] + SuperPoint [10] 36.57 11.03 96.38 6.35% 1.91% 12.68%

Oracle(Manual-pts) 0.45 0.51 13.45 0.08% 0.09% 1.78%

Ours (Manual-bbox) 2.30 0.88 46.26 0.40% 0.15% 6.09%

Ours (ReID-bbox) 2.30 1.01 45.10 0.40% 0.18% 5.93%

Table 2: Re-projection error (RPE) and error resolution ratio (ERR). We report the re-projection error, measured by

pixel, and error resolution ratio, defined as RPE
min(H,W ) , where (H,W ) is the video resolution. Except for the oracle baseline,

our method outperforms all the othert baselines that use different hand-crafted/deep features and different matching methods.

4.2. Evaluation Metrics and Baselines

Evaluation Metrics We use three metrics to measure the

performance of our method: (1) Camera pose error (CPE),

(2) Re-projection error (RPE), and (3) Error resolution ratio

(ERR). CPE includes the location error and the orientation

error. The location error is the Euclidean distance between

the estimated camera location and the ground truth (GT)

camera location. The orientation error is the smallest Euler

angle to align the estimated orientation and the GT orien-

tation. RPE reports the mean re-projection error (by pixel)

on 15 pairs of 2D-2D point correspondences that we anno-

tate for each dataset. ERR reports the ratio between RPE

and the video resolution. ERR (relative) provides a more

comprehensive evaluation together with RPE (absolute).

Baselines We compare our method with the following

baselines. For the first baseline, we detect keypoints from

images, use SIFT [33] feature as the descriptor, and match

the keypoints across cameras using Brute-Force Match-

ing [22] (BFM). We then use our GeoPose solver to solve

the camera pose. For the second baseline, we use Super-

Point [10] network to detect and describe the keypoints si-

multaneously. We then apply the BFM matching and the

GeoPose solver. The third baseline is WxBS [36] which

uses the idea of view synthesis for wide-baseline matching.

In our setting, “x” means “geometry” as defined in the liter-

ature. The fourth baseline is SuperGlue [44], a method that

matches two sets of local features using attention mecha-

nism [56] and graph neural networks [45]. We use Super-

Point [10] as the feature detector following the paper. Our

last baseline is an oracle baseline. Specifically, we manually

annotate point correspondences and solve camera poses us-
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Figure 6: Correspondence matching. When the distance between a point and the epipolar line computed from its corre-

spondence is less than a threshold (5 pixels), we consider the correspondence as correct and mark the matching as green. The

incorrect matchings are marked with red. Our method performs well under the wide-baseline setting while the baselines fail.

ing our GeoPose solver. We aim to use the oracle baseline

to measure the performance gap between our method and

standard SfM methods using manual annotations.

4.3. Comparison with Baselines

Quantitative results We present the result of CPE in Ta-

ble 1 and the result of RPE and ERR in Table 2. We have the

following observations: (1) All the baselines fail to predict

reasonable camera poses on any of the three datasets un-

der our challenging experiment condition. (2) Our method

outperforms all the baselines except for the oracle on all

three evaluation metrics. (3) Our method achieves compa-

rable performance with the oracle on the relatively easier

datasets (Terrace and Basketball). (4) Our method performs

somewhat worse than the oracle on ConstructSite, which is

a challenging dataset since all the workers wear the same

suit, making re-ID mis-associations more likely to happen.

Since the oracle baseline is an SfM pipeline using manual

annotations, its performance is the best one can achieve.

Even though our method does not outperform the oracle on

ConstructSite, the result is still encouraging, especially con-

sidering the challenging wide-baseline setting and the fact

that our method does not require manual annotations.

Qualitative results We present in Figure 6 the cor-

respondences matching results using our method and the

baselines except for the oracle. We use the distance be-

tween a point and the epipolar line (not the re-projection

distance) computed from its correspondence to measure the

correctness of this correspondence. If the distance is smaller

Camera Pose prediction error (CPE) ↓

Noise
Terrace Basketball ConstructSite

N=0 308mm, 0.52
◦

410mm, 0.88
◦

493mm, 1.85
◦

N=1 339mm, 0.65
◦

454mm, 1.03
◦

489mm, 1.86
◦

N=2 352mm, 1.00
◦

466mm, 0.95
◦

477mm, 1.83
◦

N=5 407mm, 1.50
◦

532mm, 1.76
◦

537mm, 1.86
◦

N=10 433mm, 1.91
◦

1653mm, 26.20
◦

601mm, 1.85
◦

N=20 1692mm, 28.49
◦

3093mm, 49.20
◦

867mm, 2.31
◦

N=50 4675mm, 47.80
◦

3946mm, 64.70
◦

2395mm, 23.69
◦

Table 3: Noised bounding boxes. “N=i” means adding

uniformly distributed ([−i, i] pixels) random noise to the

top-left and bottom-right corners of the bounding box. We

report camera pose errors with different noise strengths.

than a certain threshold, we treat the correspondence as cor-

rect. We set the threshold to be 5 pixels and observe that the

baselines are not able to correctly match correspondences

in wide-baseline scenarios while our method works well.

4.4. Robustness and Efficiency Analysis

Noised bounding boxes To evaluate the robustness of

our method to the imperfect bounding boxes, we add noises

to the person bounding boxes and report camera pose errors

on all the three datasets in Table 3. We observe that: (1)

Our method demonstrates a certain level of noise robustness

on all the datasets. (2) For the larger scene (ConstructSite)

where people are away from the camera, our method shows
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Figure 7: Tracking results. We track four people in different motions status (walking, playing basketball) and visualize their

3D trajectories and 2D bird’s-eye view trajectory. We compare our method with the ground truth (GT) trajectory and the

oracle baseline, which solves camera poses using manually annotated 2D-2D point correspondences. Our method performs

similar to the oracle baseline, and the average trajectory difference are 0.28m, 0.26m, 0.59m, and 0.36m (from left to right).

better noise robustness. We give our understanding here.

Imagine that there a ray from the camera to the body mass

position in the 3D space. When the person is away from

the camera, a change in the person position will only cause

a small direction (or angle) change on the ray. The same

amount of position change when the person is close to the

camera will lead to a larger change in the ray angle.

Number of correspondences We present in Figure 8

the plots of CPE vs number of person correspondences

used for estimating camera poses. We observe that our

method converges fast as the number of person correspon-

dences increases, and it reaches a good performance with

30 correspondences for all datasets. Considering that we

use RANSAC and compute the Jacobian matrix in BA in

our GeoSolver, using more correspondences is more expen-

sive. Our method only requires a small number of corre-

spondences to reach good performance. The cost is low.

4.5. Application on Tracking

In this experiment, we apply our camera pose estimation

method in the tracking task for estimating the trajectory of

a moving person. We first solve the camera poses using our

method. Next, we specify an object person and estimate the

3D body mass positions of the object person over time us-

ing the solved camera poses. Lastly, we take the mean of

the 3D coordinates solved from all camera pairs as the final

estimation of the body mass location. Figure 7 shows the

trajectories (body mass location over time) of four people

from both 3D view and 2D bird’s eye view. We observe

that our method consistently gives good trajectory estima-

tion over time (3 mins for walking people, 40s for sport-

ing people). The difference between the trajectory from our

method and the trajectory from the oracle is less than 0.6m

Figure 8: CPE vs number of correspondences. We ob-

serve that our method converges with the requirement of

less than 30 correspondences for all three datasets.

even for intense body motions like playing basketball.

5. Conclusion

In this work, we studied the camera pose estimation

problem for large-area, wide-baseline camera networks.

We contribute a method that treats people as “keypoints”

and applies a re-ID network to obtain 2D-2D point cor-

respondence for solving camera poses. We evaluated our

method on datasets of diverse camera settings and person

postures, and our method achieves comparable performance

with SfM methods relying on manual annotations. We also

provided extensive robustness, efficiency, and applicability

analysis. There are still many aspects that need to be ex-

plored, such as how to improve robustness towards the im-

perfectness of the bounding boxes and how to use other ob-

jects, e.g., cars, when people are invisible from the scene.
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