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Abstract

Person search aims to simultaneously localize and iden-

tify a query person from realistic, uncropped images, which

can be regarded as the unified task of pedestrian detection

and person re-identification (re-id). Most existing works

employ two-stage detectors like Faster-RCNN, yielding en-

couraging accuracy but with high computational overhead.

In this work, we present the Feature-Aligned Person Search

Network (AlignPS), the first anchor-free framework to ef-

ficiently tackle this challenging task. AlignPS explicitly ad-

dresses the major challenges, which we summarize as the

misalignment issues in different levels (i.e., scale, region,

and task), when accommodating an anchor-free detector for

this task. More specifically, we propose an aligned feature

aggregation module to generate more discriminative and

robust feature embeddings by following a “re-id first” prin-

ciple. Such a simple design directly improves the baseline

anchor-free model on CUHK-SYSU by more than 20% in

mAP. Moreover, AlignPS outperforms state-of-the-art two-

stage methods, with a higher speed. The code is available

at https://github.com/daodaofr/AlignPS.

1. Introduction

Person search [55, 48], which aims to localize and iden-

tify a target person from a gallery of realistic, uncropped

scene images, has recently emerged as a practical task with

real-world applications. To tackle this task, we need to ad-

dress two fundamental tasks in computer vision, i.e., pedes-

trian detection [34, 52] and person re-identification (re-

id) [15, 1]. Both detection and re-id are very challenging

tasks and have received tremendous attention in the past

decade. In person search, we need to not only address the

challenges (e.g., occlusions, pose/viewpoint variations, and

background clutter) of the two individual tasks, but also pur-

sue a unified and optimized framework to simultaneously

perform detection and re-id.

Previous efforts devoted to this research topic can be

*indicates equal contributions; †indicates corresponding authors.
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Figure 1: Comparison of three person search frameworks.

(a) The two-step framework addresses detection and re-id as

two separate tasks. (b) The one-step model enables end-to-

end training of detection and re-id with an ROI-Align opera-

tion based on a two-stage detector; however, re-id is consid-

ered as a secondary task after detection. (c) The proposed

framework enables single-stage inference for both detection

and re-id, while making re-id the primary task.

generally divided into two categories. The first line of

works [55, 5, 22], which we refer to as two-step approaches,

attempt to deal with detection and re-id separately. As

shown in Fig. 1a, multiple persons are first localized with

off-the-shelf detection models, and then cropped out and

fed to re-id networks to extract discriminative embeddings.

Although two-step models can obtain satisfactory results,

the disentangled treatment of the two tasks is time- and

resource-consuming. In contrast, the second line of ap-

proaches [48, 27, 3, 33, 6] provide a one-step solution that
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unifies detection and re-id in an end-to-end manner. As

shown in Fig. 1b, one-step models first apply an ROI-Align

layer to aggregate features in the detected bounding boxes.

The features are then shared by detection and re-id; with an

additional re-id loss, the simultaneous optimization of the

two tasks becomes feasible. Since these models adopt two-

stage detectors like Faster-RCNN [39], we refer to them

as one-step two-stage models. However, these methods in-

evitably inherit the limitations of two-stage detectors, e.g.,

high computational complexity caused by dense anchors,

and high sensitivity to the hyperparameters including the

size, aspect ratio and number of anchor boxes, etc.

In contrast to two-stage detectors, anchor-free mod-

els exhibit unique advantages (e.g., simpler structure and

higher speed), and have been actively studied in recent years

[37, 23, 30, 14]. Inspired by this, an open question is natu-

rally thrown at us - Is it possible to develop an anchor-free

framework for person search? The answer is yes. How-

ever, this is a non-trivial task due to the following three mis-

alignment issues. 1) Many anchor-free models learn multi-

scale features using feature pyramid networks (FPNs) [25]

to achieve scale invariance for object detection. However,

this introduces the misalignment issue for re-id (i.e., scale

misalignment), as a query person needs to be compared with

all the people of various scales in the gallery set. 2) In the

absence of operations like ROI-Align, anchor-free models

cannot align the features for re-id and detection according

to a specific region. Therefore, re-id embeddings must be

directly learned from feature maps without explicit region

alignment. 3) Person search can be intuitively formulated

as a multi-task learning framework with detection and re-

id as its sub-tasks. Hence, we need to find a better trade-

off/alignment between the two tasks.

In this work, we present the first anchor-free framework

for efficient person search, which we name the Feature-

Aligned Person Search Network (AlignPS). Our model em-

ploys the typical architecture of anchor-free detection mod-

els, but with a carefully designed aligned feature aggrega-

tion (AFA) module. We follow a “re-id first” principle to

explicitly address the above-mentioned challenges. More

specifically, AFA reshapes some building blocks of FPN by

exploiting the deformable convolution and feature fusion to

overcome the issues of region and scale misalignment in

re-id feature learning. We also optimize the training pro-

cedures of re-id and detection to place more emphasis on

generating robust re-id embeddings (as shown in Fig. 1c).

These simple yet effective designs successfully transform

a classic anchor-free detector into a powerful and efficient

person search framework, and allow the proposed model to

outperform its anchor-based competitors.

In summary, our main contributions include:

• We propose the first one-step one-stage framework for

efficient person search. The anchor-free solution will

significantly foster future research in this direction.

• We design an AFA module that simultaneously ad-

dresses the issues of scale, region, and task misalign-

ment to successfully accommodate an anchor-free de-

tector for the task of person search.

• As an anchor-free one-stage framework, our model

surprisingly outperforms state-of-the-art one-step two-

stage models on two challenging person search bench-

marks, while running at a higher speed.

2. Related Work

Pedestrian Detection. Pedestrian or object detection

can be considered as a preliminary task of person search.

Current deep learning-based detectors are generally cate-

gorized into one-stage and two-stage models, according to

whether they employ a region proposal layer to generate

object proposals. Alternatively, object detectors can also

be categorized into anchor-based and anchor-free detectors,

depending on whether they utilize anchor boxes to associate

objects. One of the most representative two-stage anchor-

based detectors is Faster-RCNN [39], which has been ex-

tended into numerous variants [10, 2, 35, 40]. Notably,

some one-stage detectors [29, 26, 38, 53] also work with

anchor boxes. Compared with the above models, one-stage

anchor-free detectors [37, 23, 30, 57, 51, 43, 24] have been

attracting more and more attention recently due to their sim-

ple structures and efficient implementations. In this work,

we develop our person search framework based on a clas-

sic one-stage anchor-free detector, thus making the whole

framework simpler and faster.

Person Re-identification. Person re-id is also closely

related to person search, aiming to learn identity embed-

dings from cropped person images. Traditional methods

employed various handcrafted features [31, 15, 17] before

the renaissance of deep learning. However, to pursue bet-

ter performance, current re-id models are mostly based on

deep learning. Some models employ structure/part infor-

mation in the human body to learn more robust represen-

tations [41, 42, 32, 49], while others focus on learning

better distance metrics [1, 20, 8, 9, 45]. As person re-

id usually lacks large-scale training data, data augmenta-

tion [16, 28, 46, 56] also becomes popular for tackling this

task. Compared with detection which aims to learn common

features of pedestrians, re-id needs to focus more on fine-

grained details and unique features of each identity. There-

fore, we propose to follow the “re-id first” principle to raise

the priority of the re-id task, resulting in more discrimina-

tive identity embeddings for more accurate person search.

Person Search. Existing person search frameworks can

be divided into two-step and one-step models. Two-step

models first perform pedestrian detection and subsequently

crop the detected people for re-id. Zheng et al. [55] intro-

duced the first two-step framework for person search and

7691



Backbone

+

TOIM Loss

1

32

1

16

1

8

AFA

3x3

deformable 

conv
concat

…

Re-id Embeddings

Detection

Head

Detection Head

!×#×256

!×#×256

×4

classification

regression

centerness

×4

3x3 

deformable 

conv

C3

C4

C5

P5

P4

P3

Output Dconv Loss Functions Detection Results

Feature Aggregation Block

Lateral Dconv

+

C4

P5

P4

2x up

Figure 2: Architecture of the proposed AlignPS framework, which shares the basic structure of FCOS [43]. The components

in yellow are newly designed to accommodate FCOS for the task of person search. “Dconv” means deformable convolution.

evaluated the combinations of different detectors and re-id

models. Since then, several models [5, 22, 18, 44] have fol-

lowed this pipeline. In [48], Xiao et al. proposed the first

one-step person search framework based on Faster-RCNN.

Specifically, a joint framework enabling end-to-end train-

ing of detection and re-id was proposed by stacking a re-id

embedding layer after the detection features and proposing

the Online Instance Matching (OIM) loss. So far, a num-

ber of improvements [27, 47, 3, 50, 33, 12, 6] have been

made based on this framework. In general, two-step mod-

els may achieve better performance, while one-step models

have the advantages of simplicity and efficiency. However,

there is still room for improving one-step methods due to

the aforementioned shortcomings of the two-stage anchor-

based detectors they usually adopt. In this work, we in-

troduce the first anchor-free model to further improve the

simplicity and efficiency of one-step models, without any

sacrifice in accuracy.

3. Feature-Aligned Person Search Networks

In this section, we introduce the proposed anchor-free

framework (i.e., AlignPS) for person search. Firstly, we

give an overview of the network architecture. Secondly, the

proposed AFA module is elaborated with the aim of mitigat-

ing different levels of misalignment issues when transform-

ing an anchor-free detector into a superior person search

framework. Finally, we present the designed loss function

to obtain more discriminative features for person search.

3.1. Framework Overview

The basic framework of the proposed AlignPS is based

on FCOS [43], one of the most popular one-stage anchor-

free object detectors. Differently, we adhere to the “re-id

first” principle to put emphasis on learning robust feature

embeddings for the re-id subtask, which is crucial for en-

hancing the overall performance of person search.

As illustrated in Fig. 2, our model simultaneously local-

izes multiple people in the image and learns re-id embed-

dings for them. Specifically, an AFA module is developed

to aggregate features from multi-level feature maps in the

backbone network. To learn re-id embeddings, which is the

key of our method, we directly take the flattened features

from the output feature maps of AFA as the final embed-

dings, without any extra embedding layers. For detection,

we employ the detection head from FCOS which is good

enough for the detection subtask. The detection head con-

sists of two branches, both of which contain four 3×3 conv

layers. In the meantime, the first branch predicts regression

offsets and centerness scores, while the second makes fore-

ground/background classification. Finally, each location on

the output feature map of AFA will be associated with a

bounding box with classification and centerness scores, as

well as a re-id feature embedding.

3.2. Aligned Feature Aggregation

Following FPN [25], we make use of different levels of

feature maps to learn detection and re-id features. As the

key of our framework, the proposed AFA performs three

levels of alignment, beyond the original FPN, to make the

output re-id features more discriminative.

Scale Alignment. The original FCOS model employs

different levels of features to detect objects of different

sizes. This significantly improves the detection perfor-

mance since the overlapped ambiguous samples will be as-

signed to different layers. For the re-id task, however, the

multi-level prediction could cause feature misalignment be-

tween different scales. In other words, when matching a

person of different scales, re-id features are inconsistently

taken from different levels of FPN. Furthermore, the people
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in the gallery set are of various scales, which could eventu-

ally make the multi-level model fail to find correct matches

for the query person. Therefore, in our framework, we only

make predictions based on a single layer of AFA, which ex-

plicitly addresses the feature misalignment caused by scale

variations. Specifically, we employ the {C3, C4, C5} fea-

ture maps from the ResNet-50 backbone, and AFA sequen-

tially outputs {P5, P4, P3}, with strides of 32, 16, and 8,

respectively. We only generate features from {P3}, which

is the largest output feature map, for both the detection and

re-id subtasks, and {P6, P7} are no longer generated as in

the original FPN. Although this design may slightly influ-

ence the detection performance, we will show in Sec. 4.3

that it achieves a good trade-off between the detection and

re-id subtasks.

Region Alignment. On the output feature map of AFA,

each location perceives the information from the whole in-

put image based on a large receptive field. Due to the lack

of the ROI-Align operation as in Faster-RCNN, it is dif-

ficult for our anchor-free framework to learn more accu-

rate features within the pedestrian bounding boxes, and thus

leading to the issue of region misalignment. The re-id sub-

task is even more sensitive to this issue as background fea-

tures could greatly impact the discriminative capability of

the learned features. In AlignPS, we address this issue from

three perspectives. First, we replace the 1×1 conv layers

in the lateral connections with 3×3 deformable conv layers.

As the original lateral connections are designed to reduce

the channels of feature maps, a 1×1 conv is enough. In

our design, moreover, the 3×3 deformable conv enables the

network to adaptively adjust the receptive field on the in-

put feature maps, thus implicitly fulfilling region alignment.

Second, we replace the “sum” operation in the top-down

pathway with a “concatenation” operation, which can bet-

ter aggregate multi-level features. Third, we again replace

the 3×3 conv with a 3×3 deformable conv for the output

layer of FPN, which further aligns the multi-level features

to finally generate a more accurate feature map. The above

three designs work seamlessly to address the region mis-

alignment issue, and we notice that these simple designs are

extremely effective when accommodating the basic anchor-

free model for our person search task.

Task Alignment. Existing person search frameworks

typically treat pedestrian detection as the primary task, i.e.,

re-id embeddings are just generated by stacking an addi-

tional layer after the detection features. A recent work [54]

investigated a parallel structure by employing independent

heads for the two tasks to achieve robust multiple object

tracking results. In our task of person search, we find the in-

ferior re-id features largely hinder the overall performance.

Therefore, we opt for a different principle to align these two

tasks by treating re-id as our primary task. Specifically, the

output features of AFA are directly supervised with a re-id

Lookup table

Circular Queue

Feature map

OIM loss Triplet loss

Center sampling

No id

id=m

id=n

Figure 3: Illustration of the Triplet-aided Online Instance

Matching loss, where both the features from the input image

and the lookup table are sampled to form the triplet.

loss (which will be introduced in the following subsection),

and then fed to the detection head. This “re-id first” design

is based on two considerations. First, the detection subtask

has been relatively well addressed by existing person search

frameworks, which directly inherit the advantages from ex-

isting powerful detection frameworks. Therefore, learning

discriminative re-id embeddings is our primary concern. As

we discussed, re-id performance is more sensitive to region

misalignment in an anchor-free framework. Therefore, it is

desirable for the person search framework to be inclined to-

wards the re-id subtask. We also show in our experiments

that this design significantly improves the discriminative

capability of the re-id embeddings, while having negligi-

ble impact on detection. Second, compared with “detection

first” and parallel structures, the proposed “re-id first” struc-

ture does not require an extra layer to generate re-id embed-

dings, and is thus more efficient.

3.3. Triplet­Aided Online Instance Matching Loss

Existing works typically employ the OIM loss to super-

vise the training of the re-id subtask. Specifically, OIM

stores the feature centers of all labeled identities in a lookup

table (LUT), V ∈ R
D×L = {v1, ..., vL}, which contains L

feature vectors with D dimensions. Meanwhile, a circular

queue U ∈ R
D×Q = {u1, ..., uQ} containing the features

of Q unlabeled identities is maintained. At each iteration,

given an input feature x with label i, OIM computes the

similarity between x and all the features in the LUT and

circular queue by V Tx and QTx, respectively. The proba-

bility of x belonging to the identity i is calculated as:

pi =
exp(vTi x)/τ∑L

j=1
exp(vTj x)/τ +

∑Q

k=1
exp(uT

k x)/τ
, (1)

where τ = 0.1 is a hyperparameter that controls the softness

of the probability distribution. The objective of OIM is to

minimize the expected negative log-likelihood:

LOIM = −Ex[log pt], t = 1, 2, ..., L. (2)

Although OIM effectively employs both labeled and un-

labeled samples, we still observe two limitations. First, the
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distances are only computed between the input features and

the features stored in the lookup table and circular queue,

while no comparisons are made between the input features.

Second, the log-likelihood loss term does not give an ex-

plicit distance metric between feature pairs.

To improve OIM, we propose a specifically designed

triplet loss. For each person in the input images, we employ

the center sampling strategy as in [21]. As shown in Fig. 3,

for each person, a set of features located around the person

center are considered as positive samples. The objective is

to pull the feature vectors from the same person close, and

push the vectors from different people away. Meanwhile,

the features from the labeled persons should be close to the

corresponding features stored in the LUT, and away from

the other features in the LUT.

More specifically, suppose we sample S vectors from

one person; we get Xm = {xm,1, ..., xm,S , vm} and Xn =
{xn,1, ..., xm,S , vn} as the candidate feature sets for the per-

sons with identity labels m and n, respectively, where xi,j

denotes the j-th feature of person i, and vi is the i-th fea-

ture in the LUT. Given Xm and Xn, positive pairs can be

sampled within each set, while negative pairs are sampled

between the two sets. The triplet loss can be calculated as:

Ltri =
∑

pos, neg

[M +Dpos −Dneg], (3)

where M denotes the distance margin, and Dpos and Dneg

denote the Euclidean distances between the positive pair

and the negative pair, respectively. Finally, the Triplet-aided

OIM (TOIM) loss is the summation of these two terms:

LTOIM = Ltri + LOIM. (4)

4. Experiments

4.1. Datasets and Settings

CUHK-SYSU [48] is a large-scale person search dataset

which contains 18,184 images, with 8,432 different iden-

tities and 96,143 annotated bounding boxes. The images

come from two kinds of data sources (i.e., real street snaps

and movies/TV), covering diverse scenes and including

variations of viewpoints, lighting, resolutions, and occlu-

sions. We utilize the standard training/test split, where the

training set contains 5,532 identities and 11,206 images,

and the test set contains 2,900 query persons and 6,978 im-

ages. This dataset also defines a set of protocols with gallery

sizes ranging from 50 to 4,000. We report the results using

the default gallery size of 100 unless otherwise specified.

PRW [55] was captured using six static cameras in a uni-

versity campus. The images are sampled from the videos,

which consist of 11,816 video frames in total. Person iden-

tities and bounding boxes are manually annotated, resulting

in 932 labeled persons with 43,110 bounding boxes. The
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Figure 4: Comparative results on CUHK-SYSU with differ-

ent alignment strategies, i.e., scale alignment (SA), region

alignment (RA), and task alignment (TA).

dataset is split into a training set of 5,704 images with 482

different identities, and a test set of 2,057 query persons and

6,112 images.

Evaluation Metric. We employ the mean average preci-

sion (mAP) and top-1 accuracy to evaluate the performance

for person search. We also employ recall and average pre-

cision (AP) to measure the detection performance.

4.2. Implementation Details

We employ ResNet-50 [19] pretrained on ImageNet [11]

as the backbone. We set the batch size to 4, and adopt the

stochastic gradient descent (SGD) optimizer with weight

decay of 0.0005. The initial learning rate is set to 0.001

and is reduced by a factor of 10 at epoch 16 and 22, with

a total of 24 epochs. We use a warmup strategy for 300

steps. We employ a multi-scale training strategy, where the

longer side of the image is randomly resized from 667 to

2000 during training, while zero padding is utilized to fit the

images with different resolutions. For inference, we rescale

the test images to a fixed size of 1500×900. Following [4],

we add a focal loss [26] to the original OIM loss. All the

experiments are implemented based on PyTorch [36] and

MMDetection [7], with an NVIDIA Tesla V100 GPU. It

takes around 29 and 20 hours to finish training on CUHK-

SYSU and PRW, respectively.

4.3. Analytical Results

Baseline. We directly add a re-id head in parallel with

the detection head to the FCOS model and take it as our

baseline. As shown in Fig. 4, each of the alignment strate-

gies brings notable improvements to the baseline, and com-

bining all of them yields >20% improvements in mAP.

Scale Alignment. To evaluate the effects of scale align-

ment, we employ feature maps from different levels of AFA

and report the results in Table 1. Specifically, we evalu-

ate the features from P3, P4, and P5 with strides of 8, 16,

and 32, respectively. As can be observed, features from the

largest scale P3 yield the best performance, due to the fact

that they absorb different levels of features from AFA, pro-

7694



Detection Re-id
Methods

Recall AP mAP top-1

P3 90.3 81.2 93.1 93.4

P4 87.5 78.7 92.7 93.1

P5 79.0 71.7 89.3 89.5

P3, P4 90.4 80.5 91.1 91.6

P3, P4, P5 90.9 80.4 90.0 90.5

Table 1: Comparative results on CUHK-SYSU by employ-

ing different levels of features. P3, P4, and P5 are the fea-

ture maps with strides of 8, 16, and 32, respectively.

Lateral Output Feature Re-id

dconv dconv concat mAP top-1

83.4 83.7√
90.6 90.8√
91.4 91.9√
84.0 84.1√ √
91.8 92.2√ √
90.7 91.0√ √
92.0 92.5√ √ √
93.1 93.4

Table 2: Comparative results on CUHK-SYSU by em-

ploying different components in AFA for region alignment.

“dconv” stands for deformable convolution.

viding richer information for detection and re-id. Similar to

FCOS, we also evaluate the performance by assigning peo-

ple of different scales to different feature levels. We set the

size ranges for {P3, P4} as [0, 128] and [128, ∞], while the

prediction ranges for {P3, P4, P5} are [0, 128], [128, 256],

and [256, ∞], respectively. We can see that these dividing

strategies achieve slightly better detection results w.r.t. the

recall rate. However, they bring back the scale misalign-

ment issue to person re-id. Also note that this issue is not

well addressed with the multi-scale training strategy. All the

above results demonstrate the necessity and effectiveness of

the proposed scale alignment strategy.

Region Alignment. We conduct experiments with dif-

ferent combinations of lateral deformable conv, output de-

formable conv and feature concatenation, and analyze how

different region alignment components influence the overall

performance. The results are reported in Table 2. Without

all these modules, the framework only achieves 83.7% in

top-1 accuracy, which is ∼10% lower than the full model.

The individual components of lateral deformable conv and

output deformable conv improve the model by ∼7% and

∼8%, respectively. Feature concatenation also brings ∼1%

improvements. By combining two of the three compo-

nents, we observe consistent improvements. Finally, em-

ploying all the three modules yields 93.1% in mAP and

93.4% in top-1 accuracy, significantly boosting the perfor-

(a) Deformable conv at lateral C3 layer in AFA

(b) Deformable conv at lateral C4 layer in AFA

Figure 5: Each image shows the sampling locations of two

levels of 3×3 (92 = 81 points at each location) deformable

filters: (a) Lateral deformable conv C3 + Output deformable

conv; (b) Lateral deformable conv C4 + Output deformable

conv. We illustrate different locations with different colors,

while center locations of people are marked in green. Please

zoom in for better visualization.

AFA

regression

re-id

classification

(a) T1

AFA

regression

re-id

classification

(b) T2

AFA

regression

re-id

classification

(c) T3

AFA

regression

re-id

classification

(d) AlignPS

Figure 6: Illustration of different structures for training the

detection and re-id tasks.

mance. These ablation studies thoroughly demonstrate the

effectiveness of the region alignment strategies.

To further illustrate how the deformable convolutions

work in our framework, we visualize the learned offsets of

the deformable filters in Fig. 5. We observe that the pro-

posed framework is capable of learning adaptive receptive

field according to the layout of the human body, and is ro-

bust to occlusion, crowding, and scale variations. We also

observe that the lateral deformable conv in C3 learns tighter

offsets around the body center, while the offsets in the C4

layer cover larger regions, which makes the two layers com-

plementary to each other.
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Detection Re-id
Methods

Recall AP mAP top-1

T1 87.5 79.0 80.3 79.2

T2 89.1 78.6 77.1 75.9

T3 90.1 81.4 80.7 80.2

AlignPS 90.3 81.2 93.1 93.4

Table 3: Comparative results on CUHK-SYSU with differ-

ent training structures.

Methods mAP top-1 ∆ mAP ∆ top-1

OIM 92.4 92.9 - -

TOIM w/o LUT 92.8 93.2 +0.4 +0.3

TOIM w/ LUT 93.1 93.4 +0.7 +0.5

Table 4: Comparative results on CUHK-SYSU with differ-

ent loss functions.

Backbones Deformable conv mAP top-1

ResNet-50 none 93.1 93.4

ResNet-50 res3 93.5 93.9

ResNet-50 res3 & res4 93.5 94.0

ResNet-50 res3 & res4 & res5 94.0 94.5

Table 5: Comparative results on CUHK-SYSU with differ-

ent deformable conv layers in the backbone model.

Task Alignment. Since person search aims to simul-

taneously address detection and re-id subtasks in a single

framework, it is important to understand how different con-

figurations of the two subtasks influence the overall task and

which subtask should be paid more attention to. To this end,

we design several structures to compare different training

options (as shown in Fig. 6), the performance of which is

summarized in Table 3. As can be observed, the structures

of T1 and T2, where re-id features are shared with the re-

gression and classification heads, respectively, yield signif-

icantly lower performance in re-id compared with our de-

sign. This indicates that the detection task takes advantage

of the shared heads. As for T3 where re-id and detection

have independent feature heads, it achieves slightly better

performance compared with T1 and T2, but still remark-

ably underperforms our design. These results indicate that

our “re-id first” structure achieves the best task alignment

among all these designs.

TOIM Loss. We evaluate the performance of our frame-

work when adopting different loss functions and report the

results in Table 4. We find that directly employing a triplet

loss brings slight improvement. When employing the items

in the LUT, the TOIM improves the mAP and top-1 accu-

racy by 0.7% and 0.5%, respectively. This indicates that

it is beneficial to consider the relations between the input

features and the features stored in the LUT.

Deformable Conv in the Backbone. As shown in Ta-

CUHK-SYSU PRW
Methods

mAP top-1 mAP top-1

o
n

e-
st

ep

OIM [48] 75.5 78.7 21.3 49.4

IAN [47] 76.3 80.1 23.0 61.9

NPSM [27] 77.9 81.2 24.2 53.1

RCAA [3] 79.3 81.3 - -

CTXG [50] 84.1 86.5 33.4 73.6

QEEPS [33] 88.9 89.1 37.1 76.7

BINet [12] 90.0 90.7 45.3 81.7

NAE [6] 91.5 92.4 43.3 80.9

NAE+ [6] 92.1 92.9 44.0 81.1

AlignPS 93.1 93.4 45.9 81.9

AlignPS+ 94.0 94.5 46.1 82.1

tw
o

-s
te

p

DPM+IDE [55] - - 20.5 48.3

CNN+MGTS [5] 83.0 83.7 32.6 72.1

CNN+CLSA [22] 87.2 88.5 38.7 65.0

FPN+RDLR [18] 93.0 94.2 42.9 70.2

IGPN [13] 90.3 91.4 47.2 87.0

TCTS [44] 93.9 95.1 46.8 87.5

Table 6: Comparison with the state-of-the-art methods. The

upper block lists the results of one-step models, while the

lower block shows the results of two-step methods.

ble 5, inserting deformable convolutions into the backbone

network has positive effects on our framework. However,

the contribution of the deformable conv layers in the back-

bone network is less significant than the deformable conv

layers in our AFA module, e.g., only ∼1% improvement

is observed with all the res3 & res4 & res5 deformable conv

layers. These results indicate that the proposed AFA works

as the key module for successful feature alignment.

4.4. Comparison to the State­of­the­Art Methods

We compare our model with the state-of-the-arts, includ-

ing both one-step models [48, 47, 27, 3, 50, 33, 12, 6] and

two-step models [5, 22, 18, 13, 44]. We denote our model

with deformable conv layers in the backbone as AlignPS+.

Results on CUHK-SYSU. As shown in Table 6,

AlignPS/AlignPS+ outperforms all one-step person search

models employing two-stage detection frameworks, which

require region proposals and ROI-Align for inference. In

contrast, our model is anchor-free and allows single-stage

inference with a very simple structure, whilst running at a

higher speed. Notably, AlignPS+ outperforms the current

best-performing NAE+ [6] by 1.9% and 1.6% in mAP and

top-1 accuracy, respectively. Also note that our model out-

performs most two-step models, despite the fact that they

employ two separate models for detection and re-id.

We visualize the results of AlignPS w.r.t. mAP with vari-

ous gallery sizes and compare our model with both one-step

and two-step models. Fig. 8 illustrates the detailed compar-

ison results. As we can see, AlignPS outperforms all the

7696



Figure 7: Difficult cases that can be successfully retrieved by AlignPS but not OIM [48] and NAE [6]. The yellow bounding

boxes denote the queries, while the green and red bounding boxes denote correct and incorrect top-1 matches, respectively.
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Figure 8: Comparative results on CUHK-SYSU with dif-

ferent gallery sizes. Our model (AlignPS) is compared with

both (a) one-step models and (b) two-step models.

one-step models by notable margins, and is only inferior to

the strongest two-step model TCTS [44], which requires an

explicitly trained re-id model to adapt to the detection re-

sults. In contrast, our model does not need such a two-step

process, as the alignment between the two subtasks is per-

formed implicitly within the framework.

Results on PRW. PRW contains less training data;

therefore, all the models achieve worse performance on this

dataset. Nevertheless, as can be observed from Table 6, our

model still outperforms all the one-step methods. We no-

tice that BINet [12] also achieves strong performance on

PRW. However, it requires an additional re-id branch to

achieve region alignment during training, while our model

efficiently addresses this issue with the AFA module.

Efficiency Comparison. Since different methods are

evaluated with different GPUs, it is difficult to conduct a

fair comparison of the efficiency of all the models. Here, we

compare our method with OIM1 [48] and NAE/NAE+ [6]

on the same Tesla V100 GPU. All the test images are re-

sized to 1500×900 before being fed to the networks. As

shown in Table 7, our anchor-free AlignPS only takes 61

milliseconds to process an image, which is 27% and 38%

1We test the PyTorch implementation at https://github.com/

serend1p1ty/person_search.

Methods Backbones GPU Time

(ms)

OIM [48] ResNet-50 V100 118

NAE+ [6] ResNet-50 V100 98

NAE [6] ResNet-50 V100 83

AlignPS ResNet-50 V100 61

AlignPS+ ResNet-50 w/ dconv V100 67

Table 7: Runtime comparison of different models.

faster than NAE and NAE+, respectively. For query-guided

models, e.g., IGPN [13] and QEEPS [33], they needs to

re-compute all the gallery features given each query. As

AlignPS only computes the gallery features once, the total

computation of these models can be thousands of times of

AlignPS. It is also noteworthy that the parameters of all the

two-step models are twice as our framework. These results

clearly demonstrate the advantage of our anchor-free model

in terms of computational efficiency.

Qualitative Results. Some qualitative results are il-

lustrated in Fig. 7, where the query images come from

movies/TV (left) and hand-held cameras (right). We can

observe that our model successfully handles occlusions and

scale/viewpoint variations, where OIM [48] and NAE [6]

fail, demonstrating the robustness of our AlignPS.

5. Conclusion

In this paper, we propose the first anchor-free model to

simplify the framework for person search, where detection

and re-id are jointly addressed by a one-step model. We

also design the aligned feature aggregation module to ef-

fectively address the scale, region, and task misalignment

issues when accommodating an anchor-free detector for the

person search task. Extensive experiments demonstrate that

the proposed framework not only outperforms existing per-

son search methods, but also runs at a higher speed.
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