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Abstract

Image-text matching is an important multi-modal task

with massive applications. It tries to match the image and

the text with similar semantic information. Existing ap-

proaches do not explicitly transform the different modali-

ties into a common space. Meanwhile, the attention mech-

anism which is widely used in image-text matching models

does not have supervision. We propose a novel attention

scheme which projects the image and text embedding into

a common space and optimises the attention weights di-

rectly towards the evaluation metrics. The proposed atten-

tion scheme can be considered as a kind of supervised atten-

tion and requiring no additional annotations. It is trained

via a novel Discrete-continuous action space policy gradi-

ent algorithm, which is more effective in modelling complex

action space than previous continuous action space policy

gradient. We evaluate the proposed methods on two widely-

used benchmark datasets: Flickr30k and MS-COCO, out-

performing the previous approaches by a large margin.

1. Introduction

Computer Vision and Natural Language Processing are

two important areas of modern artificial intelligence, which

can be processed jointly in cross-modal tasks. A large

amount of research has been conducted to bridge the vi-

sion and language modalities [32, 35, 5, 19, 18]. Image-text

matching or retrieval is one of the critical topics in this area,

which has a huge application scope in many real-world sce-

narios. The image-text matching requires a machine learn-

ing model to extract the high-level semantic representations

and measure the similarities across modalities accordingly.

Existing methods use deep learning models to extract

the image and language features, and apply various met-

ric learning techniques to automatically find the seman-

tic similarities between the samples from the two modali-
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Figure 1: Our Motivations: The attention weights are

utilised as a projection from each modality to a common

space. Existing continuous PG assumes a simple Normal

distribution. Instead, we considered the mean values as dis-

crete actions first and then use multiple Normal distribu-

tions to form a compound distribution, which is more real-

istic. Best Viewed in Colour.

ties [5, 19, 18]. Metric learning is powerful in visual se-

mantic embedding as it tries to measure and manipulate

the similarities between samples regardless of the domain

differences. However, it is not designed to perform an ex-

plicit transformation from one modality to another, often

leading to sub-optimal performance. Though there are ap-

proaches apply Instance Loss [37], i.e., a classification over

image and text categories, to form a multi-task learning ap-

proach with metric learning loss for image-text matching,

the performance gain is limited as the Instance Loss opti-

mises the embedding in the category domain, which does

not perform explicit transformation either. An image often

contains many fine-grained objects. A flat vector represen-

tation from a vanilla deep CNN model such as ResNet [9] is

not powerful enough to discover these objects and their rela-

tionships. Hence, advanced methods employ image features

from a pre-trained object detector [28] and apply the visual

attention mechanism [35] on these features to discriminate

the important features over irrelevant ones [1]. Attention

mechanism plays a significant role in varying computer vi-
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sion tasks. It is considered as hidden neurons in these mod-

els, but often leads to incorrect selection of image features

for lacking a direct supervision [23].

In this paper, to make an explicit transformation and

provide supervision to the attention mechanism in image-

text matching, we propose a policy gradient (PG) [30] opti-

mised attention adjustment over the visual and text features

in image-text matching. The attention weights in our ap-

proach can be considered as a transformation from a spe-

cific modality to a common space, as the attention weights

perform a vector transformation in the last image and text

vectors used for matching, instead of selecting important

features in the previous layers of the deep learning mod-

els [35]. The attention weights are trained by the PG method

with the batch-wise ranking metrics and the instance-wise

Average Precision (AP) as the reward function. These at-

tention weights are directly optimised via PG algorithm to

achieve optimal ranking results and higher AP metrics. It

can be considered as a kind of supervised attention mecha-

nism, and this supervision does not need any additional an-

notations. This PG-based attention mechanism is straight-

forward and is optimised towards the evaluation metrics. It

is also more accurate than the conventional soft attention

which is only a regular neuron.

To be more specific, as shown in Figure 1, we consider

the attention weights generation as an action selecting pro-

cess in PG, whose space can be flexibly pre-defined. The ac-

tion space in conventional PG is discrete, which is not suit-

able for the feature adjustment like in the attention mech-

anism. One solution is applying a continuous action space

PG algorithm [20], which consider the action space as a

Gaussian distribution and sample action values from this

distribution. Restricting the action distribution to Normal

is not optimal, and such a hypothesis lacks theoretical and

practical support. In reality, the distribution of the action

space might be very complex, which cannot be described

via a simple Normal distribution. Hence, we consider the

action is continuous and sampled from multiple Normal dis-

tributions with a different mean (µ) and standard deviation

(σ) values. We first treat the µ as discrete actions, sampled

from a pre-defined action space while σ is obtained from

a neural model as it is continuous. We want to use this µ
and σ to form a Normal distribution and sample continuous

action from this distribution, which is applied as the atten-

tion weights to adjust the feature representations for both

the visual embedding and the text embedding. Usually, in

conventional PG, we do not need the µ to be trainable as we

only back-propagate the gradient to the log-probabilities.

In contrast, in this case, the subsequently obtained Normal

distributions need the µ being able to be back-propagated

to make the Normal distribution learn-able. As there in-

volves sampling in obtaining the µ, it is not trainable in this

current form. To make this µ differentiable, instead of di-

rectly using greedy sampling or ǫ-greedy sampling. We use

a Gumbel-softmax to relax the discreteness [12] and make

the sampled µ trainable together with the Normal distribu-

tion. We call this method “Discrete-continuous PG” as it

involves both discrete and continuous action space, making

them benefit from each other. In fact, by using the discrete

and continuous action space, the action space used to sam-

ple the attention weights is a compound distribution, which

can model a high complex distribution. We evaluate our

algorithm and model on image-text matching task, achiev-

ing state-of-the-art performance on two widely-used bench-

mark datasets. To summarise, our contributions are three-

fold: (1) We propose a novel attention supervision scheme

for image-text matching task based on policy gradient. (2)

We propose a new Discrete-continuous policy gradient al-

gorithm by leveraging both the discrete and continuous ac-

tion space. (3) The achieved state-of-the-art results validate

the effectiveness of the attention supervisions scheme and

the novel policy gradient algorithm.

2. Related Works

2.1. Imagetext Matching

Frome et al. [6] propose a feature embedding method via

CNNs and Skip-Gram for cross-modal matching. They also

utilise a ranking loss to measure the distance between simi-

lar pairs. Faghri et al. [5] focus on the hard negative mining

in the Triplet loss, with improved results. Zheng et al. [37]

utilise an Instance Loss over a large number of categories.

They find that the Instance Loss is helpful in image-text

matching. Gu et al. [8] improve the cross-modal problem

by looking into the generative models. Li et al. [19] pro-

pose a visual semantic reasoning framework by leveraging

graph neural networks and image captioning loss. The vi-

sual semantic reasoning model can reason on the semantic

relationship of the image features, with good performance.

2.2. Attention Mechanism

The visual attention mechanism [35] has been widely ap-

plied in many types of computer vision applications. No-

tably, bottom-up attention model [1] is the current main-

stream for image captioning, visual question answering and

image-text matching. However, there is not much research

on supervised attention. Gan et al. [7] propose a super-

vised attention scheme on visual question answering using

attention annotations. Kamigaito et al. [13] also use atten-

tion annotations for supervised attention in natural language

processing task. Instead, we propose a supervised atten-

tion mechanism based on reinforcement learning, which can

make the attention module directly optimise towards a spe-

cific goal such as AP. Also, the proposed attention module

does not need any additional annotations.
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2.3. Continuous Action Space Policy Gradient

The continuous control problem has long been investi-

gated. For example, Lillicrap et al. [20] propose the deep

deterministic policy gradient by considering a continuous

action space. Previous research has exploited the relation-

ship between discrete and continuous action space. For in-

stance, Dulacc-Arnold et al. [3] leverage the continuity in

the underlying continuous action space for generalisation

on discrete actions. Pazis et al. [27] convert the continuous

control problem into discrete ones, by using a binary dis-

crete action space. Tang et al. [31] show that discretizing

action space for continuous control is a simple yet powerful

technique for on-policy optimisation. We also consider the

combination of discrete and continuous action space for on-

policy optimisation. We prove that a compound distribution

is superior to a strict assumption of one Normal distribution.

3. The Proposed Method

Our goal is to adjust the generated visual and text fea-

tures to facilitate the image-text matching. We first apply

Graph Convolutional Neural Networks [34] on the bottom-

up attention [1] features of the images, which is similar

to the Visual Semantic Reasoning Networks (VSRN) [19].

Once the visual features are obtained, we then use our

Discrete-continuous action space PG to generate the atten-

tion weights, which are used to adjust the visual features.

Similarly, the text features are also adjusted via the pro-

posed Discrete-continuous PG-based attention mechanism.

The obtained image and text embedding are trained via

multi-task loss, including the Triplet Loss, Instance Loss

and Text Decoding Loss. A schematic diagram of the pro-

posed method is shown in Figure 2.

3.1. Image and Text Features Extraction

GCN for image region features reasoning. We apply a

GCN model similar to VSRN approach [19]. Specifically,

the semantic relationship between image region features is

measured via pairwise affinity.

Relation(Fi, Fj) = Ei(Fi)
TEi(Fj), (1)

where Fi and Fj are two bottom-up image region features

obtained from Faster R-CNN detectors. Ei and Ej are em-

bedding functions, which are usually matrices multiplica-

tions, which are can be learnt via backpropagation.

Then a fully-connected relationship graph Gr = (V,E)
is constructed. V is the set of detected image region fea-

tures and E is the set of edges where each of the edges is

described by the affinity matrices Relation(Fi, Fj), which

is presented in Equation 1. We apply the GCN to perform

reasoning on this fully-connected graph. The output of the

GCN reasoning is denoted as Image = {I1, ..., It, ..., IT }.

Text Embedding. Given one-hot text representations,

represented as w, a linear word embedding layer is

constructed to obtain the word representations, repre-

sented as We = {w1
e , ..., w

i
e, ..., w

N
e }, where wi

e =
word-embedding(wi).

3.2. The Proposed Discretecontinuous Action
Space PG

PG is usually with discrete action space for two reasons:

many control problems are modeled in discrete action space

which leads to high performance as it can model complex

action distribution. However, when meeting with continu-

ous action space control problem, we have to develop corre-

sponding PG algorithms. However, as discussed previously,

continuous action space PG normally assumes the actions

follow a Normal distribution, which is too strict. We pro-

pose an approach to essentially sample the continuous ac-

tion from a compound distribution, which can better model

the real distribution.

Discrete Action Sampling. As shown in Figure 2, we first

model the attention weights generation process as a finite

Markov Decision Process (MDP) and sample a discrete ac-

tion by using Multinomial Sampling. We define n action

categories, i.e., A = {a1, a2, ..., an}, The state space con-

tains the input region features and the attention weights gen-

erated so far, which are st = {I0, Att0..., It−1, Attt−1}.

The policy is parametrised via a GRU model to explore the

environment and sample the action. More formally:

ht = GRUmdp(I
t, ht−1), t = 1, ..., T,

F t
I = ht,

at = F t
I ∗W t

µ,

atg = Gumbel-softmax(at),

ats ∼ Multinomial(atg),

logprobta = log atg(a
t
s),

(2)

where It is the tth image feature after the GCN reasoning.

GRUmdp is the Gated Recurrent Unit (GRU) used to model

the attention weights generation problem as MDP. W t
µ ∈

Rs×n are the weights need to be learnt. s is the size of the

feature vector. atg is the probability of each actions after the

Gumbel-softmax activation.

µt = Logistic

(

ats
n

)

,

stdt = F t
I ∗W t

std,

(3)

where Wstd ∈ Rs×1 are the weights need to be learnt.
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Figure 2: A schematic diagram of the proposed method: The image and text are forwarded into the model. The extracted

image features are first processed via a GCN model to reason on the semantic relationships. The region features are then

inputted to the proposed Discrete-continuous PG algorithm to generate attention maps, which are applied to adjust and fuse

the region features subsequently. Similarly, the text embedding is also adjusted via the attention maps generated by the

Discrete-continuous PG algorithm. The final image and text embedding are then connected with Metric Learning losses, the

Discrete PG Loss and the Continuous PG loss for training. Best Viewed in Colour.

Continuous Action Sampling. The sampled µ and σ
form a Normal Distribution, described as follows:

Sample ∼ N (µt, σt),

Attt = Sigmoid(Sample),
(4)

where Attt are the attention weights sampled from this par-

ticular Normal Distribution. The log probabilities of this

Normal Distribution is expressed as:

log
(

f
(

Attt; µt, σt2
))

=

−
n

2
log (2π)−

n

2
log
(

(σt)
2
)

−
1

2(stdt)
2

∑

(

Att− µt
)2
.

(5)

Discrete PG Optimisation. To be simple and efficient,

we formulate the PG as an on-line learning method, specifi-

cally, the REINFORCE algorithm [33]. The PG for discrete

action space is then to maximise the long-term reward with

the following expression:

∇θJ(θ) =

Eτ∼πθ(τ)

[(

T
∑

t=0

∇θ log πθ(at | st)

)(

T
∑

t=0

r(st, at)

)]

,

(6)

we use the one sample Monte-Carlo to approximate the ac-

cumulative reward, i.e.,
∑T

t=0 r(st, at) =
∑T

t=0 R, where

R is the reward and will be defined later. Also, log πθ(at |
st) = logprobta, which is obtained from Equation 2. Hence,

Equation 6 can lead to a PG loss function as follows,

LossPGD
= −

B
∑

b=1

[(

T
∑

t=0

∇θlogprob
t
a

)(

T
∑

t=0

R

)]

,

(7)

where B is the size of each mini-batch. Note that the neg-

ative notation on the right-hand side means that we want to

minimise the loss so as to maximise the R.

Continuous PG Optimisation. Equation 5 provides a

straightforward definition of the log probabilities of a Nor-

mal Distribution. Similarly, the PG loss for the continuous

action space is presented as follows:

LossPGC
=

−
B
∑

b=1

[(

T
∑

t=0

log
(

f
(

Attt; µt, σt2
))

)(

T
∑

t=0

R

)]

.

(8)

Reward Function Formulation. The reward signal is of

vital significance as it guides the attention generation pro-

cess, which is the initial goal of PG method. The reward sig-

nal is obtained from an on-line evaluation of the image and

text embedding using R@K and Average Precision (AP).
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We consider a batch of samples as the gallery, and each sam-

ple as a query to compute the instance-wise AP. Specifically,

we treat each of the samples as one category, and calculate

the R@1 and AP of it on-line in a batch of samples. The

reward signal can thus be expressed as a linear combination

of the R@1 and the AP results:

R = R@1 +AP, (9)

we then use this reward to guide the proposed PG algorithm

to generate attention weights to automatically adjust the im-

age and text features to formulate a more effective embed-

ding for the image-text matching task. To further reduce the

variance and make the PG training more stable, we addition-

ally apply a PG baseline, which is an average of the rewards

from all the other instances within a batch, expressed as:

bk =
1

K − 1

∑

j 6=k

Rj , (10)

where K is the batch size, bk is the baseline for kth instance

and Rj is the reward of jth instance. We apply a coefficient

β = 0.5 over the baseline, which is empirically better.

3.3. Feature Fusion

The image embedding can be adjusted by using the gen-

erated attention weights. Recall the image region features

as Image = {I1, ..., It, ..., IT }, and the generated atten-

tion weights are ATT = {Att1, ..., Attt, ..., AttT }, we use

element-wise multiplication to adjust the image region fea-

tures with the attention weights.

IA = Image ∗ (λ ∗ATT I),

ht
g = GRU I

gr(I
t
A, h

t−1
g ), t = 1, ..., T,

IE = hT
g + [

T
∑

t=1

IA]/T,

(11)

where IA stands for adjusted image region features. GRU I
gr

is used to perform global reasoning of the adjusted image

features. The fused features involve a summation of the out-

puts of the GRUgr and the adjusted image region features.

IE is the image embedding.

Similarly, we apply the same approach to the text embed-

ding generation. Note that we directly apply the proposed

Discrete-continuous PG on the word embedding We.

Then the feature adjustment and fusion of text embed-

ding generation can be presented as follows:

TA = We ∗ (λ ∗ATTT ),

hi
g = GRUT

gr(T
i
A, h

i−1
g ), i = 1, ..., N,

TE = hN
g + [

N
∑

i=1

TA]/N,

(12)

Networks Methods
Caption Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

AlexNet
DSVA [14] 22.2 48.2 61.4 15.2 37.7 50.5

HMlstm [25] 38.1 - 76.5 27.7 - 68.8

VGG

FV [16] 35.0 62.0 73.8 25.0 52.7 66.0

VQA [22] 33.9 62.5 73.8 25.0 52.7 66.0

SMlstm [10] 42.5 71.9 81.5 30.2 60.4 72.3

2wayN [4] 49.8 67.5 - 36.0 55.6 -

ResNet

RRF [24] 47.6 77.4 87.1 35.4 68.3 79.9

VSE [5] 52.9 79.1 87.2 39.6 69.6 79.5

SCO [11] 55.5 82.0 89.3 41.1 70.5 80.1

Faster R-CNN
SCAN [18] 67.4 90.3 95.8 48.6 77.7 85.2

VSRN [19] 71.3 90.6 96.0 54.7 81.8 88.2

Ours 82.8 95.9 97.9 62.2 89.3 93.8

Table 1: Comparison of the image-text matching on

Flickr30k Dataset.

where TA is the adjusted text features and ATTT are the

attention weights generated for text embedding. TE is the

text embedding.

3.4. Loss Functions

To fulfill the image-text matching task, we apply cross-

modal Triplet Loss, Instance Loss, Text Decoding Loss, and

together with the proposed PG loss, to train the model. The

final loss objective function of the model is described as

follows:

L =Losstriplet + Lossxe + lossItd + lossTtd

+ LossIPGc
+ LossIPGd

+ LossTPGc
+ LossTPGd

,

(13)

where Losstriplet is the hinge-based Triplet ranking loss [5,

14, 18]. The Lossxe is the cross-entropy classification loss

which treats each instance as one class categories [37]. The

LossItd and LossTtd are the Image-to-Text Decoding Loss

and Text-to-Text Decoding Loss, respectively. They de-

code the image or text embedding into sentences. Note the

weights of the Text Decoding Module are shared between

image and text branches.

The Triplet loss is expressed as follows:

Lossmetric =[α− S(I, T ) + S(I, T̂ )]++

[α− S(I, T ) + S(Î , T )]+,
(14)

where α is the margin hyper-parameter.[x]+ = max(x, 0).
S(·) is the similarity function. Î and T̂ are the hardest neg-

atives for a positive pair (I, T ).

For the Text Decoding Loss, We apply the convolutional

image captioning model [2] as the decoder of the image and

text decoding module. We use the same loss functions as

in [2], which has a parallel training capability for text de-

coding and is much efficient than the RNN-based one.
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Figure 3: Visualisation of the caption retrieval results and attention mechanism. We select top 3 retrieval results where a

Xmeans the retrieval is correct whilst the × indicates a wrong result. Best Viewed in Colour.

Figure 4: Visualisation of the image retrieval results and attention mechanism. Best Viewed in Colour.

Networks Methods
Caption Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

AlexNet
DSVA [14] 38.4 69.9 80.5 27.4 60.2 74.8

HMlstm [25] 43.9 - 87.8 36.1 - 86.7

VGG

FV [16] 39.4 67.9 80.9 25.1 59.8 76.6

VQA [22] 50.5 80.1 89.7 37.0 70.9 82.9

SMlstm [10] 53.2 83.1 91.5 40.7 75.8 87.4

2wayN [4] 55.8 75.2 - 39.7 63.3 -

ResNet

RRF [24] 56.4 85.3 91.5 43.9 78.1 88.6

VSE [5] 64.6 89.1 95.7 52.0 83.1 92.0

GXN [8] 68.5 - 97.9 56.6 - 94.5

SCO [11] 69.9 92.9 97.5 56.7 87.5 94.3

Faster R-CNN

SCAN [18] 72.7 94.8 98.4 58.8 88.4 94.8

VSRN [19] 76.2 94.8 98.2 62.8 89.7 95.1

Ours 84.0 95.8 97.8 63.9 88.9 95.6

Table 2: Comparison of the image-text matching on MS-

COCO Dataset of 1K test set.

4. Experiments

To evaluate the effectiveness of the proposed Discrete-

continuous PG algorithm, we follow previous research and

perform two kinds of experiments which include sentence

retrieval using image and image retrieval using a sentence.

Networks Methods
Caption Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

AlexNet
DSVA [14] 11.8 32.5 45.4 8.9 24.9 36.3

VGG

FV [16] 17.3 39.0 50.2 10.8 28.3 40.1

VQA [22] 23.5 50.7 63.6 16.7 40.5 53.8

OEM [10] 23.3 - 84.7 31.7 - 74.6

ResNet

VSE [5] 41.3 69.2 81.2 30.3 59.1 72.4

GXN [8] 42.0 - 84.7 31.7 - 74.6

SCO [11] 42.8 72.3 83.0 33.1 62.9 75.5

Faster R-CNN
SCAN [18] 50.4 82.2 90.0 38.6 69.3 80.4

VSRN [19] 53.0 81.1 89.4 40.5 70.6 81.1

Ours 68.7 88.7 93.0 46.2 77.8 85.5

Table 3: Comparison of the image-text matching on MS-

COCO Dataset of 5K test set.

4.1. Datasets and Protocols

We evaluate the performance of our method on

the Flickr30K [36] and Microsoft-COCO datasets [21].

Flickr30K contains 31,783 images. Each image corre-

sponds to 5 human-annotated text descriptions. We use the

standard training, validation and testing split [14], which

consist of 28,000 images, 1, 000 images and 1, 000 im-

ages, respectively. We follow the splits of [5, 8, 14, 18]
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Figure 5: The Instance Loss, Triplet (Retrieval) Loss, Text Decoding Loss and Reward curves are shown in the figures.

Methods
Caption Retrieval Image Retrieval

R@1 R@5 R@10 R@1 R@5 R@10

Triplet Loss 68.2 88.8 93.6 52.6 75.5 86.0

Triplet + Instance 69.3 89.5 93.5 52.1 77.8 87.8

Triplet + Instance + Text (Baseline) 70.9 89.0 93.5 52.2 78.1 87.2

Baseline + Discrete PG 78.0 93.4 94.6 56.0 80.6 89.1

Continuous PG 76.8 90.2 91.6 54.3 78.4 87.4

Multi-head Continuous PG 78.1 91.6 92.0 56.2 79.9 89.2

Baseline + Our PG (Our scheme) 81.0 94.5 97.1 60.6 86.5 92.4

Our Scheme + Reward R@1 79.3 94.5 96.0 57.8 82.3 90.2

Our Scheme + Reward AP 80.4 95.2 96.8 60.8 84.9 92.7

Our Scheme + Reward R@1+AP 81.0 94.5 97.1 60.6 86.5 92.4

Our scheme + (λ = 10) 80.2 95.3 96.9 58.4 82.2 90.6

Our scheme + (λ = 20) 81.0 94.5 97.1 60.6 86.5 92.4

Our scheme + (λ = 30) 79.2 94.7 96.9 57.1 83.0 90.3

Our scheme (+PG baseline) 80.3 94.6 97.5 60.8 86.9 92.4

Our scheme (+multi-head) 81.4 94.9 97.7 61.2 87.5 92.6

Our scheme (+GloVe Embedding) 82.8 95.9 97.9 62.2 89.3 93.8

Table 4: Ablation Studies on Fickr30k Dataset.

for MS-COCO dataset, which includes 113, 287 images for

training, 5, 000 images for validation and 5, 000 images for

testing. Each image has five captions. We use the same

evaluation protocol as the previous research [5, 8, 18, 19],

which is the recall performance at K (R@K) defined as the

proportion of queries for which the correct item is retrieved

in the nearest K samples to each query.

4.2. Implementation Details

We build our model based on PyTorch [26]. We use

the pre-trained bottom-up attention image features provided

by [19]. The word embedding size is 300 and the di-

mension of the image and text embedding is 2048. The

hidden size of the GRU modules used in our model is

2048. We pre-define 100 discrete action categories which

are {0, 1, 2, ..., ai, ...100} , where ai corresponds an action

of enlarging the features with a value of ai/λ, where λ is

a hyper-parameter. Note the choice of the number of ac-

tion categories is mostly empirical. We choose 100 as it

is close to the maximum number of regions of an image,

and also close to the maximum number of words of a sen-

tence, which is powerful enough to describe the difference

between each item of the image regions and the sentence.

The detailed explanation is presented in Equation 11 and 12.

For training, we apply Adam optimiser [15] to train the

model with 30 epochs with a mini-batch size of 128. We

start the training with a learning rate of 4e-4 for 15 epochs

and lower the learning rate to 4e-5 for another 15 epochs.

We apply the early stopping tricks to select the model which

performs the best in the validation set. For the cross-modal

Triplet ranking loss, the margin is set 0.2 for all the exper-

iments. For the classification loss, there are 29, 783 cat-

egories for Flickr30K dataset and 113, 287 categories for

MS-COCO dataset. We perform all the experiments on a

server equipped with an Nvidia Geforce 2080-TI GPU card,

and a Windows 10 operating system.

4.3. Comparison with the Stateoftheart

Results on Flickr30k. We show the results on the

Flickr30k dataset and comparison with the current state-of-

the-art methods in Table 1. We also indicate the backbone

networks that used for each of the state-of-the-art meth-

ods, such as AlexNet [17], VGG [29], ResNet [9], Faster

R-CNN [28]. The proposed method outperforms other ap-

proaches by a large margin. SCAN [18] and VSRN [19]

are two approaches that close to ours. Our method is dif-

ferent from them mainly on the proposed PG-based super-

vised feature attention mechanism as both VSRN and our

method use the same cross-modal Triplet loss and the Text

Decoding Loss. Hence, the main performance gain is from

the proposed Discrete-continuous PG algorithm, which is

effective in improving the existing baseline model that is

similar to the VSRN model [19]. Specifically, we achieve

82.8% R@1 in captioning retrieval using the image, and

62.2% R@1 image retrieval using the caption.

Results on MS-COCO. We present the experimental re-

sults on the 1K and 5K MS-COCO dataset and comparison

with the state-of-the-art models in Table 2 and Table 3, re-

spectively. For the 1K testing protocol, the results are ob-

tained by averaging over 5 folds of 1K test images. When

comparing with the current best method SCAN [18] and

VSRN [19], we follow the same strategy to combine results

from two trained proposed models by averaging their pre-

dicted similarity scores. As shown in Table 2, our proposed

model achieves 84.0% R@1 on caption retrieval using an

image, and 63.9 % R@1 on image retrieval using the cap-

tion, respectively. The results outperform the VSRN and

SCAN by a large margin. For the 5K testing protocol, we

evaluate the proposed model by using the whole 5K test-

ing samples. From Table 3, it is obvious that our method
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achieves the new state-of-the-art, with 68.7% R@1 and on

46.2% R@1 on caption retrieval using image and image re-

trieval using the caption, respectively.

4.4. Ablation Studies

Baseline. We perform ablation studies on each compo-

nent of the proposed model. which are shown in Table 4.

We first evaluate the model with only Triplet Loss, with rel-

atively poor results. Adding an Instance Loss to the model

brings an limited increase in the ranking results. Similarly,

the Text Decoding Loss also improves the performance of

the model, which proves that it is helpful to narrow the do-

main gap between different modalities. Our baseline model

include all of the three Loss functions.

The Impact of the Discrete-continuous PG Method.

Based on the baseline model, to validate the superiority of

the proposed Discrete-continuous action space policy gra-

dient algorithm, we first compare it with the conventional

discrete action space policy gradient scheme. To realise

the Discrete PG scheme, we remove the continuous action

space sampling and utilise the discrete action directly as

the attention weights. The proposed method yields better

results than the Discrete PG scheme. Second, we solely

apply a single Gaussian-based continuous action space PG

scheme. The results of our scheme is also better than

the single Gaussian PG as we form a complex distribu-

tion which better describe the real distribution of the action

space, the results are shown in Table 4.

The Impact of Different Reward Function. We then

perform ablation studies on the reward function, the results

show that using the batch-wise R@1 combined the instance-

wise AP as the reward has the best performance. Note that

AP alone is better than R@1 reward, as the AP evaluation is

more comprehensive and instance-wise reward is more ac-

curate than the batch-wise one. To further reduce the vari-

ance and make the PG training more stable, we addition-

ally apply a PG baseline. The impact of the PG baseline is

evaluated subsequently, which yields a slightly better per-

formance as the PG baseline can stabilise the training and

reduce the variance of this on-line PG method.

The Impact of the Different Values of λ. We evaluate

the proposed method which largely improves the perfor-

mance in our ablation studies, with more than 5% increase

on the R@1 metric of both the image and caption retrieval.

The value of λ controls the scale of the attention weights,

which is with significant importance. The ablation studies

show that a suitable value of λ (20) is critical in maintain-

ing good performance, though our method with different λ
is all with superior results.

The Impact of Applying a Multi-head Mechanism.

Multi-head Mechanism is widely applied in well-known

models like Transformer, often with extra improvement. We

validate the positive effect of this multi-head mechanism on

the proposed PG algorithm. Specifically, we apply a multi-

head mechanism on the latent discrete µ and σ values with

a head number of 2. Increasing the head number would in-

crease the computing burden, which is less practical. The

empirical results reveal that the multi-head mechanism can

improve the performance, by essentially reflecting different

aspects of the sampled latent distribution.

The Impact of Utilising a Pre-trained GloVe Word Em-

bedding. In the vanilla VSRN baseline, the word embed-

ding module is trainable. We investigate the impact of a

pre-trained GloVe Word Embedding module as shown in

the table. Applying a pre-trained GloVe embedding can im-

prove the matching performance slightly as it embeds some

prior information.

4.5. Visualisations

We visualise the retrieval results and attention maps of

both the image and text in Figure 3 and Figure 4. It is clear

from the figures that the attention maps can capture the ex-

pected image regions, and the language attention maps can

reflect the important semantics. Some incorrect examples

are also provided in the figures, which have similar semantic

contents or have similar visual layouts. Visualisation on the

training loss curves and the reward function curve are pre-

sented in Figure 5. The Triplet loss, Instance Loss and Text

Decoding Loss all decrease as the training is performed.

The reward value increases which validates the proposed

Discrete-continuous PG method.

5. Conclusions

In this paper, we propose a novel policy gradient-based

attention mechanism to transform the image and text em-

bedding to a common space and optimise them towards

higher AP. To model complex action space in the atten-

tion weights sampling, we propose a Discrete-continuous

action space policy gradient algorithm, with a compound

action space distribution. Comprehensive experiments on

two widely-used benchmark datasets validate the effective-

ness of the proposed method, leading to state-of-the-art per-

formance.
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