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Abstract

Differential Neural Architecture Search (NAS) requires

all layer choices to be held in memory simultaneously; this

limits the size of both search space and final architecture. In

contrast, Probabilistic NAS, such as PARSEC, learns a distri-

bution over high-performing architectures, and uses only as

much memory as needed to train a single model. Neverthe-

less, it needs to sample many architectures, making it com-

putationally expensive for searching in an extensive space.

To solve these problems, we propose a sampling method

adaptive to the distribution entropy, drawing more samples

to encourage explorations at the beginning, and reducing

samples as learning proceeds. Furthermore, to search fast in

the multi-variate space, we propose a coarse-to-fine strategy

by using a factorized distribution at the beginning which can

reduce the number of architecture parameters by over an

order of magnitude. We call this method Fast Probabilistic

NAS (FP-NAS). Compared with PARSEC, it can sample 64%
fewer architectures and search 2.1× faster. Compared with

FBNetV2, FP-NAS is 1.9× - 3.5× faster, and the searched

models outperform FBNetV2 models on ImageNet. FP-NAS

allows us to expand the giant FBNetV2 space to be wider

(i.e. larger channel choices) and deeper (i.e. more blocks),

while adding Split-Attention block and enabling the search

over the number of splits. When searching a model of size

0.4G FLOPS, FP-NAS is 132× faster than EfficientNet, and

the searched FP-NAS-L0 model outperforms EfficientNet-B0

by 0.7% accuracy. Without using any architecture surrogate

or scaling tricks, we directly search large models up to 1.0G
FLOPS. Our FP-NAS-L2 model with simple distillation out-

performs BigNAS-XL with advanced inplace distillation by

0.7% accuracy using similar FLOPS.

1. Introduction

Designing efficient architectures for visual recognition

requires extensive exploration in the search space; doing

this by hand takes substantial human effort and computa-

tional resources. Since the introduction of AlexNet [18],

handed-crafted models like ResNet [10], Densenet [14] and

*Correspondence to Zhicheng Yan <zyan3@fb.com>.

InceptionV4 [28], have become increasingly deep with more

complex connectivity. Exploring this space manually is diffi-

cult and time-consuming. Neural Architecture Search (NAS)

aims to automate the architecture design process. How-

ever, early approaches based on evolution or reinforcement

learning take hundreds or thousands of GPU days just for

CIFAR10 or Imagenet target datasets [42, 43, 31, 25].

Recently, differentiable neural architecture search

(DNAS) [20] relaxed the discrete representation of archi-

tectures to a continuous space, enabling efficient search with

gradient descent. This comes at a price: DNAS instantiates

all layer choices in memory, and computes all feature maps.

Therefore, its memory footprint increases linearly with the

number of layer choices, and greatly limits the size of both

search space and final architecture. PARSEC [4] presents

a probabilistic version of DNAS which samples individual

architectures from a distribution on search space. PARSEC’s

sampling strategy uses much less memory, but it samples

a large number of architectures to fully explore the space,

which significantly increases computational cost. Here we

pose the following question: Can we reduce PARSEC’s com-

pute cost and maintain a small memory footprint to support

the fast search of both small and large models?

In this work, we accelerate PARSEC by proposing two

novel techniques. First, we replace the fixed architecture

sampling with a dynamic sampling adaptive to the entropy

of architecture distribution. In particular, we sample more

architectures in the early stage to encourage exploration, and

fewer later, as the distribution concentrates on a smaller set of

promising architectures. Furthermore, in multi-variate space

where several variables (e.g. block type, feature channel, ex-

pansion ratio) are searched over, we propose a coarse-to-fine

search strategy. In the beginning stage, we adopt a factorized

distribution representation to search at a coarse-grained gran-

ularity, which uses much fewer architecture parameters and

makes the learning much faster. In the following stage, we

seamlessly convert the factorized distribution into the joint

distribution to support fine-grained search.

When searching in the FBNetV2 space [33], FP-NAS

samples 64% fewer architectures and searches 2.1× faster

compared with the PARSEC method. Compared with FB-

NetV2, FP-NAS is 3.5× faster, and the searched mod-
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Figure 1: Model FLOPS vs. ImageNet validation accu-

racy. All numbers are obtained using a single-crop and a

single model. Top: Small models using less than 350M

FLOPS. Bottom: Large models. Our searched models, in-

cluding both small- (i.e. FP-NAS-S++) and large models (i.e.

FP-NAS-L), achieve better accuracy-to-complexity trade-off

than other models. For example, when model is trained from

scratch, our FP-NAS-L0 model achieves 0.7% higher accu-

racy than EfficientNet-B0 while searching it is over 132×
faster (28.7 Vs. 3790+ GPU-days). We also use notation

(+ distillation) to report the results of our large models with

vanilla model distillation [11].

els outperform FBNetV2 models on ImageNet. To fur-

ther demonstrate FP-NAS’ efficiency, we expand the large

FBNetV2 search space, and introduce searchable Split-

Attention blocks [39] which increases the space size by over

103×. Our main results are shown in Fig 1. In total, we

searched a family of FP-NAS models, including 3 large ar-

chitectures (from L0 to L2) of over 350M FLOPS and 4

small ones (from S1++ to S4++). When searching models

using 0.4G target FLOPS, FP-NAS only uses 28.7 GPU-days,

and is at least 132× faster than the search of EfficientNet-

B0, which uses a similar amount of FLOPS. Moreover, our

method also discovers more superior FP-NAS-L0 model

which outperforms EfficientNet-B0 by 0.7% top-1 accuracy.

The largest model FP-NAS-L2, found via direct search on

a subset of ImageNet, uses 1.05G FLOPS for a single crop.

To our knowledge, this is the largest architecture obtained

via direct search.

To summarize, this work makes the contributions below:

• An adaptive sampling method for fast probabilistic NAS,

which can sample 60% fewer architectures and accelerate

the search in FBNetV2 space by 1.8×.

• A coarse-to-fine search method by adopting a factorized

distribution representation with much fewer architecture

parameters in the early coarse-grained search stage. It can

further accelerate the overall search by 1.2×.

• For searching small models, comparing with FBNetV2,

FP-NAS is not only 3.5× faster, but also discovers models

with substantially better accuracy-to-complexity trade-off.

• For searching large models, compared with EfficientNet,

when searching models of 0.4G FLOPS, FP-NAS is not

only 132× faster, but also discovers a model with 0.7%
higher accuracy on ImageNet. The largest model we

searched is FP-NAS-L2, which uses 1.05G FLOPS, out-

perform EfficientNet-B2 by 0.4% top-1 accuracy, while

the search cost is much lower.

• We expand FBNetV2 search space by replacing Squeeze-

Excite module [13] with searchable Split-Attention (SA)

module [39]. We demonstrate uniformly inserting SA

modules to the model with a fixed number of splits, as done

in hand-crafted ResNeSt [39] models, is sub-optimal, and

models with searched SA modules are more competitive.

2. Related Work

Hand-Crafted Models. The conventional way of build-

ing ConvNet is to design repeatable building blocks, and

stack them to form deep models, including ResNet [10, 35],

DenseNet [14], and Inception [30, 29, 28]. Meanwhile, man-

ually designing compact mobile models has also attracted

lots of interest due the prevalence of mobile devices. Mobile

models uses more compute-efficient blocks, such as inverted

residual block [27] and shuffling layers [40, 21]. However,

recent models discovered by neural architecture search have

surpassed hand-crafted models in various tasks [9, 32, 1, 24].

Non-Differentiable Neural Architecture Search. Early

NAS methods are based on either reinforcement learning

(RL) [31] or evolution [26]. In the pioneering work [42], a

RNN controller is adopted to sample architectures, which are

trained to obtain accuracy as the reward signal for updating

the controller. It requires to train tens of thousands of archi-

tectures, which is computationally prohibitive. Similarly, in

NASNet [43], it takes 2,000 GPU days to search architec-

tures for CIFAR10 and ImageNet. In the AmoebaNet [25],

which is based on evolution, the search algorithm iteratively

evaluates a small number of child architectures evolved from

the best-performing architectures in the population to speed

up the search, but still requires to train thousands of individ-

ual architectures. Recently, EfficientNet [32] built big mod-

els by scaling up the small ones from RL-based search [31]

15140



jointly along the depth, width and input resolution. Big-

NAS [38] trains a single-stage model with inplace distil-

lation, and induce child models of different sizes without

retraining or fine-tuning. In this work, with the proposed fast

probabilistic NAS method, we show directly searched big

architectures without any scaling trick can achieve a better

accuracy-to-complexity trade-off.

Differentiable Neural Architecture Search. DARTS [20]

relaxes the discrete search space to be continuous, and op-

timizes the architecture by gradient descent. While being

much faster, it requires to instantiate all layer choices in

the memory, making it difficult to directly search big archi-

tectures in large space. Therefore, DARTS needs to use a

shallow version of model at search time to serve as the sur-

rogate, and repeats the searched cells many more times at

evaluation time to build larger models.

Following works improve DARTS by path pruning to

reduce memory footprint as in ProxylessNAS [2], more fine-

grained search space [22], hierarchical search space [19],

better optimizer [23], better architecture sampler [5], be-

ing platform-aware [34, 7], and searching over channels

and input resolution in a memory efficient manner [33]. In

GDAS [8] paper, a differentiable sampler based on Gumbel-

Max trick [16] is proposed to only sample one architecture

at a time. This reduces the memory usage but the searched

architectures have performance inferior to those searched

by evolution-based methods [25]. PARSEC [4] proposes a

sampling-based method to learn a probability distribution

over architectures, and is also memory-efficient. However,

to achieve good search results, it needs to constantly sample

a large number of architectures, which is computationally

expensive. In this work, we propose to adaptively reduce

the architecture samples based on entropy of architecture

distribution, substantially reduce the search time, and enable

the search of bigger architectures.

For searching mobile models, differentiable NAS meth-

ods are adapted to be hardware-aware, considering model

cost, such as FLOPS, memory, latency on specific hard-

ware [34, 33, 7, 31, 12]. In this work, we adopt a hinge-linear

penalty on the model FLOPS to constrain the computational

cost and support the search of models with target FLOPS.

3. Fast Probabilistic NAS

3.1. Background

Our method extends PARSEC [4] (a probabilistic NAS),

which we briefly review here. In DNAS [20], for each layer

l we have a set of candidate operations O ; each operation

o(·) can be applied to input feature xl. Discrete choice is

relaxed to a weighted sum of candidate operations:

xl+1 =
∑

o∈O

exp(αl
o)

∑

o′∈O exp(αl
o′)

o(xl) (1)

where {αl
o}o∈O denotes architecture parameters at layer l.

An architecture A is uniquely defined by the individ-

ual choices at L layers A = (A1, ..., AL). In PARSEC, a

prior distribution p(A|α) on the choices of layer operation

is introduced, where architecture parameters α denote the

probabilities of choosing different operations. Individual

architectures can be represented as discrete choices of {Al}
and sampled from p(A|α). Therefore, architecture search is

transformed into learning the distribution p(A|α) under cer-

tain supervision. For simplicity, we first assume the choices

at different layers are independent to each other, and the

probability of sampling an architecture A is shown below.

P (A|α) =
∏

l

P (Al|αl) (2)

For image classification where we have images X and

labels y, probabilistic NAS can be formulated as optimizing

the continuous architecture parameters α via an empirical

Bayes Monte Carlo procedure [3]

P (y|X, ω, α) =

∫

P (y|X, ω,A)P (A|α)dA

≈
1

K

∑

k

P (y|X, ω,Ak)
(3)

where ω denotes the model weights. The continuous integral

of data likelihood is approximated by sampling architec-

tures and averaging the data likelihoods from them. We

can jointly optimize architecture parameters α and model

weights ω by estimating gradients ∇α log P (y|X, ω, α) and

∇w log P (y|X, ω, α) through the sampled architectures.

To reduce over-fitting, separate training- and validation

set are used to compute gradients w.r.t α and ω. The proba-

bilistic NAS proceeds in an iterative way. In each iteration,

K architecture samples {Ak}
K
k=1 are drawn from P (A|α).

For sampled architectures, gradients w.r.t α and ω in sampled

operations are computed on a batch of training data.

3.2. Adaptive Architecture Sampling

In PARSEC [4], a fixed number of architectures are

sampled during the entire search to estimate the gradients.

For example, to search cell structures in the DARTS [20]

space on CIFAR10 (a relatively small search space), the

number of samples is held fixed at 16. Such choice is ad-hoc

and could be suboptimal for searching in spaces of different

size. In the beginning of the search where the architecture

distribution P (A|α) is flat, a larger number of samples

are needed to approximate the gradients. As the search

proceeds, the distribution concentrates mass on a small

set of candidates. In such case, we can reduce the search

computation by drawing fewer samples.
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Formally, we propose a simple yet effective sampling

method adaptive to the learning of architecture distribution.

During the search, we adjust the size of architecture samples

K to be proportional to the entropy of P (A|α). Early in

the search, entropy is high, encouraging more exploration.

Later, entropy decreases as a subset of candidate operations

are deemed to be more promising, and the sampling can be

more biased towards them. Specifically, we set

K = λ H(P (A|α)) (4)

where H denotes the distribution entropy, and λ a prede-

fined scaling factor. In Section 5.2, we show adaptive sam-

pling can greatly reduce the search time without degrading

the searched model. The choice of λ is discussed in Sec-

tion 5.2.1.

3.3. CoarsetoFine Search in MultiVariate Space

The search space of each layer operation Al can include

multiple search variables, such as convolution kernel size,

nonlinearity and feature channel. In such multi-variate space,

when we use a vanilla joint distribution (JD) representation,

the number of architecture parameters is a product of cardi-

nalities of individual variables, which grows rapidly as more

variables are added. For example, the search space used

later in this work (See Table 1 and 2) has 5 variables, in-

cluding kernel size, nonlinearity, Squeeze-Excite, expansion

rate in MobileNetV3 [12] and channel. When their individ-

ual cardinalities are 3, 2, 2, 6, and 10 respectively, the JD

uses prod([3, 2, 2, 6, 10]) = 720 parameters. We can factor-

ize the large JD, and obtain a more compact representation

using multiple small distributions. For the 5-dimensional

search space above, we use 5 small distributions, and the

total architecture parameters can be dramatically reduced to

sum([3, 2, 2, 6, 10]) = 23, which is over 31× less.

Formally, in a search space of layer operation Al with M

search variables, each layer can be represented as a M-tuple

Al = (Al
1, ..., A

l
M ). We adopt a factorized distribution (FD)

for the layer operation below.

P (Al|αl) = P ({Al
m}Mm=1|{α

l
m}Mm=1)

=

M
∏

m=1

P (Al
m|αl

m) where Al
m ∈ Dl

m

(5)

Here, Dl
m denotes the set of choices for variable Al

m. Com-

pared with JD, FD greatly reduces the total architecture

parameters from
∏

m

∣

∣Dl
m

∣

∣ to
∑

m

∣

∣Dl
m

∣

∣, which often leads

to more than an order of magnitude reduction in practice, and

can greatly accelerate the search. However, FD ignores the

correlation between search variables, and can only support

coarse-grained search. For example, the search of expansion

rate and channel is likely to be correlated since the inner

channel within the MBConv block as in MobileNetV3 [12]

is a product of expansion rate and channel. A large expan-

sion rate might be more preferred when the channel is not

high, but can be less preferred when the channel is already

high because it can introduce an excessive amount of FLOPS

but does not improve the classification accuracy.

To support fast search, we propose a coarse-to-fine search

method by using a schedule of mixed distributions which

starts the search with FD for a number of epochs, and

later converts FD to the JD for the following epochs. As

shown in Section 5.3, the coarse-to-fine search can acceler-

ate the search without compromising the performance of the

searched model.

3.4. Architecture Cost Aware Search

Without any constraint on the architecture cost (e.g.

FLOPS, parameters or latency), the search tends to favor

big architectures, which are more likely to fit training data

better but might be not suitable for efficiency-sensitive appli-

cations. To search architectures with a target cost in mind,

we adopt a hinge loss, which penalizes architectures when

they use more than the target cost. We use FLOPS as the

model cost in this work, but other choices, such as latency,

can also be used. Our full cost-aware loss consists of the

data likelihood and the model cost.

L(ω, α) = −log P (y|X, ω, α) + β log C(α)

C(α) =

∫

C(A)P (A|α)dα ≈
1

K

K
∑

k=1

C(Ak)
(6)

where the hinge cost for a sampled architecture is C(Ak) =

max(0, FLOPS(Ak)
TAR

−1), β denotes the coefficient of architec-

ture cost, and C(α) the expected architecture cost, which can

be estimated by averaging the costs of sampled architectures.

The gradient w.r.t α is shown below.

∇α L(ω, α) ≈

K
∑

k=1

mk∇α − log P (Ak|α) (7)

where mk = P (yval|Xval, ω, Ak)∑
k

P (yval|Xval, ω, Ak)
− β

C(Ak)∑
k
C(Ak)

, and de-

notes cost-aware architecture important weights. Intuitively,

architecture parameters α are updated to bias towards those

architectures which both achieve high data likelihood on the

validation data and use low FLOPS. At the end of the search,

we select the most probable one in the learned distribution.

4. Search Spaces

We consider 4 difference spaces below to search models.

FBNetV2-F space [33]. We conduct most ablation studies

in this space, which is defined by the macro-architecture in

Table 1, and the micro-architecture in the 1st row of Table 2.
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Max Input (S2 × C) Operator Expansion Channel Repeat Stride

2242 × 3 conv 3× 3 1 16 1 2

1122 × 16 MBConv 1 (12, 16, 4) 1 1

1122 × 16 MBConv (0.75, 4.5, 0.75) (16, 24, 4) 1 2

562 × 24 MBConv (0.75, 4.5, 0.75) (16, 24, 4) 2 1

562 × 24 MBConv (0.75, 4.5, 0.75) (16, 40, 8) 1 2

282 × 40 MBConv (0.75, 4.5, 0.75) (16, 40, 8) 2 1

282 × 40 MBConv (0.75, 4.5, 0.75) (48, 80, 8) 1 2

142 × 80 MBConv (0.75, 4.5, 0.75) (48, 80, 8) 2 1

142 × 80 MBConv (0.75, 4.5, 0.75) (72, 112, 8) 3 1

142 × 112 MBConv (0.75, 4.5, 0.75) (112, 184, 8) 1 2

72 × 184 MBConv (0.75, 4.5, 0.75) (112, 184, 8) 3 1

72 × 184 conv 1× 1 - 1984 1 1

72 × 1984 avgpool - - 1 1

1984 fc - 1000 1 -

Table 1: FBNetV2-F macro architecture. Each row repre-

sents a block group. MBConv denotes the inverted residual

block in MobileNetV2 [27]. Expansion and Channel denote

expansion rate and the output channel of the block. Their

search range is denoted as (min, max, step). Repeat denotes

the repeating times of the block, and stride means the stride

of first one among them.

linear	c’linear	c’

depthwise	conv depthwise	conv

sum

r-Softmax

sum

.			.			.

1x1	conv

global	pooling

split	1 split	r

linear	c	

.			.			.

split	1 split	r

mul mul
.			.			.

Split-Attention

1x1	conv

X

sum

Figure 2: MBConv block with searchable Split-Attention

module.

It has multiple search variables, including convolution kernel

size, nonlinearity type, the use of Squeeze-Excite block [13],

block expansion rate, and block feature channel, and contains

6× 1025 different architectures.

FBNetV2-F-Fine space. The difference from FBNetV2-F

space is each MBConv block is allowed to have different

micro-architecture. FBNetV2-F-Fine contains 1× 1045 ar-

chitectures, which is 1019× larger than FBNetV2-F, and can

be viewed as a fine-grained version of FBNetV2-F space.

FBNetV2-F++ space. To demonstrate the search efficiency

of our method, we extend the micro-architecture by replac-

ing Squeeze-Excite (SE) module with Split-Attention (SA)

module [39] in the MBConv block (Fig 2), and denote it as

FP-NAS micro-architecture (Table 2, 2nd row). SA mod-

Micro-arch
Search Variables

Kernel Nonlinearity No. of Splits

FBNetV2
{0, 3, 5} {relu, swish}

Squeeze-Excite {0, 1}
FP-NAS Split-Attention {0, 1, 2, 4}

Table 2: FBNetV2 and FP-NAS micro architectures. Ker-

nel size and nonlinearity type are always searched. The dif-

ference is, for FBNetV2, it only searches whether Squeeze-

Excite (SE) block is used. For FP-NAS, we search the num-

ber of splits in Split-Attention (SA) block. Choice 0 means

SA block is not used, choice 1 means SE block is used, while

choices 2 or 4 means SA block with 2 or 4 splits is used.

For kernel size, choice 0 means we use a skip connection to

bypass this layer to allow variable model depth.

Search space Input size # Blocks # Architectures Median FLOPS (G)

FP-NAS-L0 224 27 2× 1032 0.39

FP-NAS-L1 240 32 1× 1036 0.9

FP-NAS-L2 256 32 1× 1036 1.1

Table 3: FP-NAS spaces. We define 3 FP-NAS spaces to

search large models of different sizes.

ule generalizes SE module from one split to multiple splits.

However, in the original hand-crafted ResNeSt models [39],

a fixed number of splits (e.g. 2 or 4) is chosen, and SA

modules are used within all ResNeXt blocks. We hypothe-

size it is unnecessary to use SA module everywhere, which

will incur computational overhead. Therefore, we make SA

module fully searchable by extending the search variable

no. of splits to have extra choices {2, 4}, which means each

block group can independently choose whether SA mod-

ule is used and how many splits to use. Note we do not

share the model weights of MBConv block between choices

of no. of splits, which means the total model weights of

the supernet will double as extra choices {2, 4} are intro-

duced, and makes the search more challenging. We name

the space, which combines FPNetV2-F macro-architecture

and FP-NAS micro-architecture, as FBNetV2-F++ space,

which is 103× larger than FBNetV2-F space.

FP-NAS spaces. The largest model in FBNetV2-F++ space

only use 122M FLOPS when input size is 128. To demon-

strate the efficiency of our search method, we expand the

FBNetV2-F macro-architecture in the following aspects. We

increase the searchable channels in the block to make it

wider. We also increase the repeating times of the block in

the group to make it deeper. Last, we increase the input im-

age size to classify the images at higher resolution for better

accuracy. More details of the FP-NAS macro-architectures

can be seen in the supplement. By combining the expanded

macro-architectures and FP-NAS micro-architecture, we ob-

tain three giant FP-NAS spaces L0-L2 (Table 3), which

contain models of different size for us to search. We also use

FP-NAS-L to denote the searched models from these spaces.
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architectures on the ImageNet-100 validation set. Model weights are directly borrowed from the super-net. AS achieves high

accuracy with fewer total architecture samples. (d): Comparing the total sampled architectures and time cost of the search.

5. Experiments

5.1. Implementation Details

We implement FP-NAS in PyTorch, and search architec-

tures on 8 Nvidia V100 GPUs. We prepare the search dataset

by randomly choosing 100 classes from ImageNet, namely

ImageNet-100. We use half of the original training set as

training data to update model weights ω, and the other half

as the validation data to update model importance scores

{mk} as well as architecture parameters α. Our default

hyper-parameters are as follows. To optimize α, we use

Adam [17] with constant learning rate 0.016. To optimize ω,

we use SGD with initial learning rate 0.8 and follow a cosine

schedule. Batch size is 256 images per GPU. We search

architectures for 315 epochs, where the beginning 45 epochs

are used to warm-up the supernet and only model weights ω

are updated. The coefficient of cost penalty β is set to 0.3,

and the coefficient λ in adaptive sampling is set to 1
4 .

We search small models in FBNetV2-F, FBNetV2-F-Fine

and FBNetV2-F++ space. We also search large models in FP-

NAS spaces. After search, the final model is evaluated on the

full ImageNet dataset. We use 64 V100 GPUs to train it from

scratch for 420 epochs, using RMSProp with momentum

0.9. The initial learning rate is 0.2, and decays by 0.9875 per

epoch. We adopt Auto-Augment [6], label smoothing [30],

Exponential Model Averaging and stochastic depth [15] to

improve the training as in prior work [33, 32]. More de-

tailed comparisons on the training recipe can be found in the

supplement. Finally, we report the top-1 validation accuracy.

5.2. The Effectiveness of Adaptive Sampling

5.2.1 How Many Samples Should We Draw?

The original PARSEC [4] uses fixed sampling (FS), and

constantly draws K architectures (e.g. 8 or 16). Below we

conduct a study in the FPNetV2-F space to show the choice

of K has a significant impact on the search. For FS, in Fig 3a,

there is a strong correlation between K and the final archi-

tecture quality in terms of Accuracy-To-Complexity (ATC)

trade-off on ImageNet-1K validation set. In Fig 3b, a larger

K samples more architectures, and the distribution entropy is

reduced more substantially, which means learning of the ar-

chitecture distribution is more effective. In Fig 3c, we show

the ImageNet-100 validation accuracy of the most probable

architecture at the end of each search epoch. The joint op-

timization of architecture parameters and model weights is

more effective with a larger K. More samples help to better

estimate the gradients, and leads to a faster learning of the

distribution, which in turn samples promising architectures

more often, and focuses more on updating model weights as-

sociated with them. In Fig 3d, the total sampled architectures

and the search time by FS with K = 14 is 3.5× and 2.1×
more compared with those by FS with K = 4, indicting the

computational cost of the search with FS increases almost

linearly in K.

We also experiment adaptive sampling (AS) with different

λ ∈ { 1
16 ,

1
8 ,

1
4 ,

1
2}. AS adjusts the sample size on the fly.

For example, AS with λ = 1
4 draws 14 samples in the

beginning, on par with FS with K = 14. However, as

distribution entropy decreases, it will reduce the samples

to save computation, and only draw a single sample at the

end of search. In Fig 3a, AS with λ = 1
8 can search an

architecture with ATC trade-off similar to that of the one

from FS with K = 14 using much fewer GPU-days. A

larger choice of λ = 1
4 for AS further improves the the ATC

trade-off. A further larger choice of λ = 1
2 for AS does

not improve the ATC trade-off, but will increases the search

time. Therefore, we use λ = 1
4 in the following experiments.

In Fig 3b, AS with larger λ samples more architectures, and

reduces distribution entropy faster. Both λ = 1
4 and 1

2 can

reduce the entropy to a low level at the end. In Fig 3c, AS

with both λ = 1
4 and 1

2 can achieve the high final validation

accuracy on ImageNet-100 comparable to that of FS with

K = 14. In Fig 3d, AS with λ = 1
4 samples 60% fewer

architectures, and searches 1.8× faster compared with FS
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Search Space Sampling Model Top-1

Name # Architectures Method FLOPS (M) Acc (%)

FBNetV2-F 6× 1025
FS, K = 14 56 68.3

AS, λ = 0.25 58 68.6

FBNetV2-F-Fine 1× 1045
FS, K = 14 50 66.3

AS, λ = 0.25 51 67.2

Table 4: Comparison of models searched in small and

large space using two different sampling methods.

(a) (b)

Figure 4: Comparing joint-, factorized- and our pro-

posed mixed distributions. (a): The architecture distri-

bution entropy during the search. The beginning part of the

search, where the entropy of the factorized distribution is

reduced much faster than that of the joint distribution, is

highlighted by the dashed box. (b): Total architecture sam-

ples and overall search time, which are highly correlated, for

different choices of architecture distribution scheduling.

with K = 14.

5.2.2 FP-NAS Adapts to Search Space Size

In larger search spaces, there are much more architecture

choices which requires to draw more samples to explore

the space and learn the distribution. For FS, using a con-

stant sample size K will only discover sub-optimal mod-

els in larger search space. In contrast, AS with a constant

value of λ will adjust the sample size based on the distribu-

tion entropy, and does not require manual hyper-parameter

tuning. To see this, for FS with K = 14 and AS with

λ = 0.25, we compare the searched models from FBNetV2-

F and FBNetV2-F-Fine space, where the latter is 108× larger.

The results are shown in Table 4. In small FBNetV2-F space,

the models discovered by two sampling methods have com-

parable ATC trade-off. However, in larger FBNetV2-F-Fine

space, without changing the hyper-parameter of each sam-

pling method, the search with AS discovers a significantly

better model with 0.9% higher accuracy.

5.3. Fast CoarsetoFine Search

In Fig 4, we first compare the search with joint distribu-

tion (JD) only and factorized distribution (FD) only. The

search with FD can reduce the entropy much faster than

the search with the JD. The entropy at epoch 80 is quite

different (30.6 Vs. 54.4). But in the later stage of the search,

Distribution Architecture Search Cost Model

Schedule # Samples (K) (GPU days) Top-1 Acc (%)

Joint only 59.9 2.4 68.6

Factorized only 54.4 (-5.5) 2.2 (-0.2) 67.6 (-1.0)

Mixed, θ=80 54.3 (-5.6) 2.1 (-0.3) 68.6

Mixed, θ=150 51.8 (-8.1) 2.1 (-0.3) 68.2 (-0.4)

Table 5: Comparing the schedule of architecture distri-

bution and the accuracy of the searched models.. Adap-

tive sampling with λ = 1
4 is always used when different

distribution schedules are compared. We report the top-1

accuracy on ImageNet-1K validation set. The search space

FBNetV2-F is used. All models in the table use a comparable

amount of FLOPS between 58-60M FLOPS.

where the entropy is lower but not yet converged, the search

with FD reduces the entropy slower than that with the JD,

which means it struggles to distinguish architectures among

a smaller set of candidates at a finer granularity.

In our proposed coarse-to-fine search, we use a schedule

of mixed distributions (MD), by starting the search with FD,

and later convert it to the JD at search epoch θ. In Fig 4a, we

also show results of the search with MD using two different

θ ∈ {80, 150}, and also compare with the baseline search

using either JD only or FD only. The search with MD can

reduce the entropy almost as fast as that with FD at the begin-

ning of the search. After FD is converted into JD for more

fine-grained search, it can further reduce the entropy nearly

as low as that in the search with JD only. Since the number

of sampled architectures is proportional to the entropy of the

distribution in our adaptive sampling, the search, which has

faster reduction in the distribution entropy, samples fewer

architectures, executes fewer forward/backward passes for

sampled architectures, and eventually runs faster.

In Fig 4b and Table 5, we show the coarse-to-fine search

reduces architecture samples by 9%, runs 1.2× faster than

the search using JD only, and does not hurt ATC trade-off.

Compared with the original PARSEC, the FP-NAS search

with both adaptive sampling and the schedule of mixed dis-

tribution reduces samples by 64% and runs 2.1× faster.

5.4. Comparisons with FBNetV2

We search 4 small models in FBNetV2-F space using

target FLOPS 60M, 90M, 130MF, and 250MF, respectively,

and name them as FP-NAS-S models. We compare with 4

FBNetV2 models (i.e. from S1 to S4), which are searched in

the same space. Results are shown in Table 6. Our method

not only searches 1.9× to 3.6× faster, but also discovers

models with better ATC trade-off. This demonstrates the

superior search effectiveness and efficiency of our method.

Furthermore, we stress that FBNetV2 method can not be

used to search large models due to its excessively large

memory footprint which is required to cache all choices of

layer operation. In contrast, our FP-NAS method uses much
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Input size Model Search cost (GPU days) Top-1 Acc (%)

128
FBNetV2-F1 8.3 68.3

FP-NAS-S1 (ours) 2.4 (-5.9) 68.6 (+0.3)

160
FBNetV2-F2 8.3 71.1

FP-NAS-S2 (ours) 2.8 (-5.5) 71.3 (+0.2)

192
FBNetV2-F3 8.3 73.2

FP-NAS-S3 (ours) 3.3 (-5) 73.4 (+0.2)

256
FBNetV2-F4 8.3 75.9

FP-NAS-S4 (ours) 4.3 (-4) 76.2 (+0.3)

Table 6: Comparisons with FBNetV2 [33]. Given the same

input size, the FBNetV2 models and FP-NAS models here

use a similar amount of compute with difference less than

4M FLOPS.

Input
Model

Search Cost FLOPS Top-1

Size (GPU days) (M) Acc (%)

128

FP-NAS-S1 2.4 58 68.6

FP-NAS-S1, SA, uniform 2 splits 2.4 65 69.3

FP-NAS-S1, SA, uniform 4 splits 2.4 79 69.5

FP-NAS-S1++ 4.4 66 70.0

160

FP-NAS-S2 2.8 88 71.3

FP-NAS-S2, SA, uniform 2 splits 2.8 99 71.8

FP-NAS-S2, SA, uniform 4 splits 2.8 120 72.4

FP-NAS-S2++ 4.8 98 72.2

192

FP-NAS-S3 3.3 131 73.4

FP-NAS-S3, SA, uniform 2 splits 3.3 141 73.6

FP-NAS-S3, SA, uniform 4 splits 3.3 170 74.0

FP-NAS-S3++ 5.8 147 74.2

256

FP-NAS-S4 4.3 240 76.2

FP-NAS-S4, SA, uniform 2 splits 4.3 262 76.4

FP-NAS-S4, SA, uniform 4 splits 4.3 307 76.6

FP-NAS-S4++ 7.3 268 76.6

Table 7: Comparison of models searched in FBNetV2-F

and FBNetV2-F++ space.

smaller memory footprint and can be used to directly search

large models, as we will show later in Section 5.6.

5.5. Searchable SplitAttention Module

We search in FBNetV2-F++ space, which includes search-

able Split-Attention (SA) module in MBConv block, and

denote the searched models as FP-NAS-S++ models. In

Table 7, we compare them to FP-NAS-S models, which are

searched in FBNetV2-F space. We also prepare two variants

of FP-NAS-S models, by uniformly replacing the searched

SE module with SA module using 2 or 4 splits. The searched

FP-NAS-S++ models use a varying number of splits in dif-

ferent MBConv blocks (see model details in the supplement),

and achieve significantly better ATC trade-off than FP-NAS-

S models and their variants. This highlights the importance

of searching the places of inserting SA modules and the

number of splits for individual SA modules.

5.6. Searching For Large Models

To demonstrate the scalability of our method, we also

search large models in FP-NAS spaces. Specifically, we

search 3 models in FP-NAS spaces with different target

GFLOPS {0.4, 0.7, 1.0}, and the searched models are de-

noted as FP-NAS-L models. The results are shown in Table 8

and Fig 1, where we compare them with EfficientNet models

of similar FLOPS. While both EfficientNet-B0 and FP-NAS-

Model
Search Cost FLOPS Params

Distill
Top-1

(GPU days) (M) (M) Acc (%)

MobileNetV3-Small [12] >3,790‡ 66 2.9 × 67.4

FBNetV2-F1 [33] 8.3 56 6.1 × 68.3

FP-NAS-S1++ (ours) 6.7 66 5.9 × 70.0

MobileNeXt-1.0 [41] - 300 3.4 × 74.0

MobileNetV3-Large [12] >3,790‡ 219 5.4 × 75.2

MnasNet-A1 [31] 3,790† 312 3.9 × 75.2

FBNetV2-F4 [33] 8.3 242 7.1 × 75.8

BigNAS-S [38] - 242 4.5
× 75.3

X 76.5

FP-NAS-S4++ (ours) 7.6 268 6.4 × 76.6

ProxylessNAS [2] 8.3 465 - × 75.1

MobileNeXt-1.1 [41] - 420 4.28 × 76.7

EfficientNet-B0 [32] >3,790‡ 390 5.3 × 77.3

FBNetV2-L1 [33] 25 325 - × 77.2

AtomNas [22] 34 363 5.9 × 77.6

BigNAS-M [38] - 418 5.5
× 77.4

X 78.9

FP-NAS-L0 (ours) 28.7 399 11.3 × 78.0

EfficientNet-B1 [32] >3,790‡ 734 7.8 × 79.1

BigNAS-L [38] - 586 6.4
× 78.2

X 79.5

FP-NAS-L1 (ours) 58.6 728 15.8
× 80.0

X 80.9

EfficientNet-B2 [32] >3,790‡ 1,050 9.2 × 80.3

BigNAS-XL [38] - 1,040 9.5
× 79.3

X 80.9

FP-NAS-L2 (ours) 69.1 1,045 20.7
× 80.7

X 81.6

Table 8: Comparisons with other methods. †:search cost

is based on the experiments in MnasNet. ‡: MobileNetV3

and EfficientNet combines search methods from MnasNet

and NetAdapt [36]. Thus, MnasNet search time can be

viewed as a lower bound of their search time.

L0 models are searched from scratch, our search runs at

least 132× faster and FP-NAS-L0 achieve 0.7% higher top-

1 accuracy on ImageNet. Different from EfficientNet-B1/B2,

which are obtained by scaling up the EfficientNet-B0 models,

our FP-NAS-L1/L2 models are searched from scratch, and

improve the accuracy by 0.9% and 0.4%, while reducing the

search time by over an order of magnitude.

5.7. Comparisons with Other Methods

FP-NAS can natively search both small and large models.

We use simple distillation [11], where the large EfficientNet-

B4 model is used as the teacher model, to further improve

our L1 and L2 models. In Table 8 and Figure 1, we compare

FP-NAS models with others. Our models has shown signifi-

cantly better ATC trade-off than others. We also compare to

BigNAS [38] models with and without using inplace distilla-

tion [37] in Table 8. For small model, FP-NAS-S4++ without

distillation already works as well as the BigNAS-S model

with advanced inplace distillation. For large model, FP-NAS-

L2 with vanilla distillation can outperform BigNAS-XL with

inplace distillation by 0.7% using less FLOPS.

6. Conclusions
We presented a fast version of the probabilistic NAS. We

demonstrate its superior performance by directly searching

architectures, including both small and large ones, in large

spaces, and validate their high performance on ImageNet.
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