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Figure 1: We propose a continuous probability field that can be learned incrementally from streaming data. The proba-

bilistic formulation naturally incorporates both geometry and uncertainty information into a compact parameter space. The

generative characteristic allows convenient conversion to different kinds of scene representations.

Abstract

Constructing and maintaining a consistent scene model

on-the-fly is the core task for online spatial perception, in-

terpretation, and action. In this paper, we represent the

scene with a Bayesian nonparametric mixture model, seam-

lessly describing per-point occupancy status with a contin-

uous probability density function. Instead of following the

conventional data fusion paradigm, we address the problem

of online learning the process how sequential point cloud

data are generated from the scene geometry. An incremen-

tal and parallel inference is performed to update the pa-

rameter space in real-time. We experimentally show that

the proposed representation achieves state-of-the-art accu-

racy with promising efficiency. The consistent probabilistic

formulation assures a generative model that is adaptive to

different sensor characteristics, and the model complexity

can be dynamically adjusted on-the-fly according to differ-

ent data scales.

1. Introduction

Simultaneous Localization and Mapping (SLAM) has

been recently viewed as a potential perceptual tool towards

Spatial AI [9] as it allows a mobile device to perceive the

world and estimate the sensor state. Along with the evolu-

tion of SLAM systems towards spatial perception arises an

increasing demand for a more expressive map that can in-

crementally distill knowledge from different kinds of data

into a compact parameter space. Finding an appropriate

representation has been a central task of establishing such

a comprehensive map.

In this paper, we aim to maintain a continuous proba-

bility field that allows for storing data into a unified prob-

abilistic form. The probability field offers a generative ex-

tension to different spatial representations, e.g., point cloud,

occupancy grid, mesh at arbitrary resolution. Practically,

we propose a continuous probability density function as the

map representation using a Bayesian nonparametric mix-

ture model. When obtaining 3D point cloud data, the scene

geometry is depicted as a continuous probability field of

spatial occupancy status. This representation owns the fol-

lowing properties: 1) Probabilistic. The Bayesian fashion

not only quantifies uncertainties explicitly, but also allows

to incorporate all sorts of information from different sensor

inputs in a unified probabilistic manner; 2) Adaptive and dy-

namic. The nonparametric property offers an inherently in-

finite capacity [68] that guarantees an adaptive model com-
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plexity with respect to acquired data scale; 3) Compact and

expressive. The mixture model maintains a continuous and

dense probability field in a discrete and sparse parameter

space, where both geometry and uncertainty are kept within

Gaussian components.

Specifically, we formulate the mapping as an online

Bayesian learning problem: the map provides a generative

process of the observations, and we use acquired streaming

data to learn it incrementally. The incremental inference can

be viewed as a transition from geometry prior to posterior

given streaming data. As the posterior is intractable to com-

pute and represent, we resort to a parallel and incremental

approach. The global distribution is parallelly distributed

to local processing in an incremental fashion, guaranteeing

efficient inference for accurate scene geometry.

In summary, our major contributions include a novel

scene representation using the Bayesian nonparametric

mixture model and a principled way of online Bayesian

learning for efficient map updating. Our method obtains a

continuous high-quality scene representation incrementally,

and achieves state-of-the-art results as demonstrated in the

qualitative and quantitative experiments.

2. Related Work

In this paper, we introduce a novel scene representation

that is probabilistic, adaptive, and can be learned incremen-

tally from sequential data. Here we review the most closely

related scene representations and indicate the major differ-

ences between ours.

2.1. 3D Scene Representations

Commonly-used 3D scene representations can be

broadly categorized into three kinds: global function based,

local primitive based, and neural representations.

Global function based. Global function based approaches

represent the scene geometry as a continuous scalar field

and maintain a global function to map xyz coordinate to

the field. Signed distance function (SDF) is one commonly

used implicit function to represent zero level-set surfaces.

Prevalent approaches [7, 38] tend to discretize the space

into regularly-partitioned voxel grids and directly maintain

a discrete signed distance field. Though this volumetric rep-

resentation is easy to manage and allows convenient ren-

dering and data fusion, the signed distance function based

approaches rely highly on the voxelization as it contains

barely geometric property, hence struggling against scala-

bility and flexibility [6, 41, 64, 8]. Besides, the continuity

of the distance function is broken due to voxelization.

Another kind of approach represents the scene with a

continuous probability density function (PDF) to maintain

per-point occupancy probability, which is similar to our ap-

proach. Commonly used representations include Gaussian

mixture model (GMM) [59, 16, 29, 44, 61] and Gaussian

process (GP) [42, 43, 35, 62, 26]. GMM is commonly

used as a compact generative model for scene geometry.

The uncertainty-aware nature makes it appropriate for ro-

bust point cloud registration [15, 18, 17]. However, GMM

requires a pre-defined number of mixtures, which is non-

trivial to be applied for sequential data. On the other hand,

Gaussian process is a Bayesian nonparametric model that is

closely related to ours. Mapping with a Gaussian process is

cast as a surface function regression problem. A similar idea

is applied to Hilbert map [49, 20, 56] that projects observa-

tions into a reproducing kernel Hilbert space. However, on-

line operation with the Gaussian process representation is

restrained by the requirement to cache training data during

inference and the computationally-burdensome inversion of

covariance matrix [59]. In contrast, we achieve real-time

performance through incremental and parallel inference.

Local primitive based. Local primitive based approaches

represent a scene with a set of discrete geometric primitives.

Inference on this kind of representation is performed by fit-

ting local geometry, usually planar surfaces, with the primi-

tives. Commonly used primitives include surfel [65, 53, 28],

mesh triangle [10, 11], voxel grid [24], and 3D Gaussian

(ellipsoid) [12].

Surfel [47] represents local geometry as an oriented disk.

The unstructured nature makes it flexible for deformation

and adaptive to different geometric frequencies. However,

surfel is inherently sparse, thus leading to a discrete and in-

complete scene model. Mesh provides a watertight surface

model that is applicable for action and rendering. However,

the topology changes for mesh representation are compu-

tationally expensive. Incremental mesh extraction is usu-

ally derived from other representations such as volumetric

SDF [13] and surfel [54].

Another line of research maintains local occupancy sta-

tus within a sparsely partitioned area. Octomap [24] rep-

resents local geometry with uncertainty-aware voxel grids.

The uncertainty of occupied, free, or unknown status is as-

sumed to be consistent within a voxel. [12] further main-

tains a set of unstructured ellipsoids parametrized by 3D

Gaussians. Local geometry is assumed to share the same

spatial distribution, where each ellipsoid is a 3D probabilis-

tic extension of the surfel primitive. Normal distributions

transform (NDT) [2, 51, 52, 55] can be viewed as a com-

bination of voxel grid and 3D Gaussian. The occupancy

status within a voxel is no longer a single scalar value but

a more expressive Gaussian distribution. Though NDT is

usually defined as a continuous representation from a vox-

elized GMM perspective, the voxel-wise local processing

lacks a global constraint.

Neural representations. Neural representations learn to

parameterize the shape manifold with neural networks. The

insights behind neural representations usually derive from a

view synthesis perspective [37, 40, 58] or from conventional
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representations mentioned above, e.g., DeepSDF [45],

PointGMM [23], ONet [36], LDIF [19]. The network is ex-

pected to learn class-specific shape priors that allow shape

completion, interpolation, and generation. Though most

works in the area are restricted to an object-level reconstruc-

tion, progress has been made recently that achieves detailed

scene-level reconstruction [27, 46, 5]. However, these ap-

proaches are prevented from online operation with sequen-

tial data due to the batch-training fashion. Our method, on

the other hand, adopts an efficient and incremental infer-

ence that resorts to an uncertainty-aware and interpretable

Bayesian learning fashion [68].

2.2. Probabilistic 3D Data Fusion in Real­time

3D sequential data are usually redundant and noisy. To

ensure scalable exploration and real-time action capability

for geometry-dependent mobile devices, probabilistic fu-

sion is performed to compress observed noisy data into a

clean and compact form. Acquired data are usually as-

sumed as Gaussian-distributed noisy observations. Hence,

weighted averaging is required to incrementally update the

representation parameters according to the data. Voxel-

based representations, e.g., volumetric TSDF [7], NDT [2],

occupancy grid [24], assign each point to a voxel to update

the corresponding geometric property, while unstructured

representations such as surfel [65] and 3D Gaussian [12]

assign each point to a geometric primitive through projec-

tive association.

Follow-ups further improve the robustness against noise

and outliers by designing more reasonable weight calcula-

tions or introducing more complex distributions over the pa-

rameter space. Yan et al. [69] encode uncertainties into the

surfel map by maintaining a 3D positional covariance and a

1D illuminational covariance. Lee et al. [31] utilize a more

expressive Gaussian process over the SDF value to main-

tain a continuous implicit surface function. Dong et al. [14]

add additional uniform distribution to handle outliers and

explicitly model directional sensor noise. The literature in

sensor measurement model [39, 25, 30, 34] is also vast, but

the field is beyond our scope. Recently, RoutedFusion [63]

proposes a 2D depth routing network and a 3D depth fusion

network to learn non-linear TSDF updates in real-time and

achieves state-of-the-art performance.

We, on the other hand, share a similar idea with [67]

to learn a generative model of the observation process.

By directly modeling a continuous spatial distribution, the

uncertainty-aware characteristic is naturally incorporated in

a theoretically-principled way, and a probabilistic frame-

work is established systematically.

3. Overview

In this section, we introduce the general idea of how

the proposed representation is learned incrementally in real-
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Figure 2: The construction process of the proposed mix-

ture model. Arrows indicate the conditional dependence.

Hyper-parameters {α,H} enforce a globally-consistent

constraint. The measured probability field G
t progressively

evolves as new data streamed in.

time. The mathematical formulation from an online learn-

ing perspective is first presented, followed by a scene repre-

sentation definition. A parallel and incremental scheme for

efficient inference is then introduced.

3.1. Problem Formulation

We aim to maintain a spatial distribution G to represent

the scene geometry. Let X = {X1,X2, · · · ,Xt, · · · } be

the streaming observations, where each set Xt consists of

N t data points x
t
i ∈ X

t. We assume that observed data

are i.i.d. samples drawn from the global distribution. The

objectiveness is then to maintain and update a parameter

space θt
k ∈ Θ

t incrementally as the measurement of the

spatial distribution. Θt can be estimated by computing the

posterior through Bayesian theorem recursively as:

p(Θt|X1:t) =
p(Xt|Θt)p(Θt|X1:t−1)

p(Xt|X1:t−1)
. (1)

Under a Markov assumption, X
t is independent of

X
1:t−1. The posterior can then be transformed as:

p(Θt|X1:t) ∝
Nt

∏

i=1

p(xt
i|Θ

t)p(Θt). (2)

Through Eq. 2, online Bayesian learning can be un-

derstood as a gradual transition from the geometric prior

p(Θt) to the posterior p(Θt|X1:t). Knowledge is incre-

mentally learned from data, describing the generative pro-

cess of streaming observations X
1:t under the routine of

Bayesian theorem.
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3.2. Scene Representation

In this paper, we introduce a Dirichlet process (DP) mix-

ture model as the scene representation. As illustrated in

Fig. 2, the generative procedure of observations is well-

explained by the model construction as:

x
t
i ∼ θt

k,θ
t
k ∼ G

t,Gt ∼ DP(α,H), (3)

where θt
k ∈ Θ

t is the kth mixture component parameter-

ized by [ωt
k,µ

t
k,Σ

t
k]. G

t is the global distribution mea-

surement at time t. The concentration parameter α deter-

mines the sensitivity of component instantiation: the larger

α leads to an easier instantiation strategy. On the other

hand, the base distribution H determines the initialization

of the newly-instantiated component.

In the view of mixture construction, G
t is a distribu-

tion over sparse partitions [48] and can be discretized into

countably-infinite components. Hence, it is usually viewed

as an infinite-dimensional extension of the Gaussian mix-

ture model [50]. The model can be intuitively understood

using a Chinese restaurant process (CRP) metaphor: the ith

customer xt
i walks into a Chinese restaurant with an infinite

number of tables and choose to sit at an already occupied

table θt
k or a new table θt

Kt+1. For our case, the sequential

construction of the mixture model is handled with dynamic

components creation and deletion [33], thus leading to an

adaptive model complexity according to the data scale.

3.3. Online Bayesian Learning

One bottleneck for Bayesian nonparametric learning lies

in the fact that our objective posterior is intractable to com-

pute and represent. We here resort to a parallel and in-

cremental inference: the streaming data can be viewed

as a sequence of mini-batches that arrive at consecutive

epochs [3, 1]. Each subset of data is then assigned to a

thread-safe processing unit for local inference. Hence, the

Dirichlet process mixture model is re-parameterized as a

mixture of DPs, where inference on each DP is performed

in parallel with the associated mini-batch data stream.

Let πt
i = j be the processor indicator for each observa-

tion x
t
i and J t be the number of processors to be allocated at

time t. Assuming that data inside each epoch are exchange-

able [1] and thus conditionally independent, our objective

posterior in Eq. 1 can be decomposed into multiple local

DPs. Following AVparallel [66], the generative procedure

of the mixture model in Eq. 3 can be re-written as a mixture

of DPs:

G
t =

∑

φjG
t
j ∼ DP(

∑

αj ,

∑

αjHj)
∑

αj

, (4)

where the construction of each DP is formulated as:

x
t
i ∼ θt

jk,θ
t
jk ∼ G

t
j ,G

t
j ∼ DP[j](

α

J t
,H). (5)

In Sec. 4.2, we will explain the sequential inference con-

ducted within each processor that turns the problem into an

adaptive component assignment progress. New Gaussian

components will be instantiated on-the-fly with knowledge

learned from previous observations, guaranteeing an adap-

tive number of components locally under a globally consis-

tent constraint.

4. Implementation

Our pipeline is illustrated in Fig. 3. The obtained data

are first assigned to different processing units (Sec. 4.1).

Afterwards, local DP is inferred in parallel constrained by

hyper-priors. Learned parameters are then streamed to host,

reweighted and refined as the map measurement Θt.

4.1. Initialization

We specify the processor indicator πt
i that distributes

data mini-batches at each time to J t processors using spa-

tial hashing algorithm [41]. Spatial hashing guarantees an

O(1) indexing from the coordinate x
t
i = (x, y, z) to the

corresponding processor as:

H(x, y, z) = (x · p1 ⊕ y · p2 ⊕ z · p3) mod n. (6)

We follow VoxelHashing [41] to subdivide the space into

voxel blocks, where each block contains 83 voxels. New

blocks will be allocated once it falls into the footprint of

a new observation. We adopt a lock-based block alloca-

tion [13] to avoid thread conflicts. 3D data that are associ-

ated with the same mixture component share the same pro-

cessor indicator, where each processor maintains multiple

components θt
k that are corresponding to the same local DP.

4.2. Local Inference

The local inference is conducted in parallel between pro-

cessors. We here resort to a Chinese restaurant process

(CRP) implementation to incrementally update the local DP.

By marginalizing over the infinite length partitions for θt
k,

the parameter updating can be viewed as a procedure of

adding and refining mixture components on-the-fly when

needed, which resembles the fusion-based map updating in

a globally consistent manner.

Inference with CRP is trivial by first calculating the com-

ponent assignment zti ∈ Z
t and then updating the parame-

ters Θ
t. Component assignment is done parallelly within

the associated processor by assigning the point to an exist-

ing component k with the probability of:

p(zi = k|Z
−i, α) =

n
−i,k

n− 1 + α
Jt

, (7)

or instantiating a new component Kt + 1 with:

p(zi = Kt + 1|Z
−i, α) =

α
Jt

n− 1 + α
Jt

, (8)
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Figure 3: The proposed online Bayesian learning pipeline. The data are assigned to local processors for parallel updating,

where local mixtures are constrained by the global hyper-parameters {α,H}. The local mixtures are then reweighted and

refined as the updated global parameters.

where the subscript −i denotes all indices before ith point

arrives. n
−i,k denotes the number of data that are marginal-

ized out by all mixture components within the processor be-

fore ith point arrives.

After assigning the data to a specific component, the

component parameter can be incrementally updated follow-

ing [21] as:

ωi,nk+1 = ωi,nk
+ 1, (9)

µi,nk+1 =
ωi,nk

µi,nk
+ xi

ωi,nk
+ 1

, (10)

Σi,nk+1 = Σi,nk
+

ωi,nk

ωi,nk
+ 1

(xi − µi,nk
)2. (11)

4.3. Map Refinement

Though the hyper-priors for CRP enforce component in-

stantiation when needed, the inference within a processor is

conducted sequentially. Hence, a large amount of newly in-

stantiated components may make the system computation-

ally intractable even with a GPU acceleration. Practically,

we perform truncation and pruning to maintain a clean and

compact parameter space. Truncation is implemented by

setting an upper bound of the mixture number for each pro-

cessor as T . By enforcing p(zi = k) = 0 for k ≥ T , mem-

ory pre-allocation and fast indexing is guaranteed within

each processor.

On the other hand, it is still possible that some of the

components are redundant. We follow the Sequential Vari-

ational Approximation (SVA) [33] to explicitly maintain an

accumulated weight for each component and adopt a thresh-

olding pruning when necessary. The weight takes both

point-Gaussian distance and data fidelity into consideration.

An example of map updating from noisy RGB-D data is il-

lustrated in Fig. 4. Our strict component instantiation strat-

egy guarantees a clean and compact mixture of Gaussians.

To measure the data fidelity, we here view acquired 3D

data as Gaussian-distributed noisy observations from sam-

ples of the global distribution as x̂t
i ∼ N (xt

i,Σx
t

i
), which

can be optionally replaced by a specific model for a partic-

ular sensor input such as [39] and [25]. Following [4, 12],

the covariance is represented as:

Σx = Jx · diag(σ2
u, σ

2
v , σ

2
z) · J

T
x
, (12)

where σ2
uand σ2

v are pixel-positional variance set to be half-

pixel size 0.52. σ2
z is the depth variance obtained by [39].

Jx is the Jacobian matrix as:

Jx =





f−1
x 0 (u− cx)f

−1
x

0 f−1
y (v − cy)f

−1
y

0 0 1



. (13)

5. Experiments

In this section, we first present our experimental setup

and evaluation protocols. Afterwards, we compare our rep-

resentation against other related representations with state-

of-the-art performances in terms of accuracy and efficiency.

Qualitative results of the proposed representation on differ-

ent datasets are also presented.

(a) Samples from original map (b) Samples from pruned map

Figure 4: Map refinement from noisy RGB-D data stream.
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5.1. Experimental Setup

The experiments were conducted on a desktop PC with

an Intel Core i7-6700 (8 cores @ 4 GHz), 16GB of RAM,

and a single NVIDIA GeForce RTX 2080Ti with 11GB of

memory.

State-of-the-art methods. Due to our spatial hashing im-

plementation, we compare our method against state-of-the-

art voxel-based probabilistic representations that can be up-

dated in real-time. Default parameters are taken for each to

perform confidence reasoning and outlier rejection.

• MRFMap1 [57] maintains a forward ray sensor model

via a Markov random field. The experiments are con-

ducted on selected keyframes due to the increasing com-

putational cost along with the graph size.

• KD-NDT2 [55] maintains local Gaussian distribution

within overlapped grid cell indexed by multiple kd-trees

to mitigate the discretization error induced by voxeliza-

tion. The CPU implementation without parallelization

makes the method computationally intractable. The ex-

periments are conducted on selected keyframes with

downsampled depth data.

• PSDF3 [14] maintains a joint distribution of SDF value

and its inlier probability and outperforms traditional

TSDF-fusion methods with noise and outlier handling.

• RoutedFusion4 [63] trains a 2D depth routing network

and a 3D depth fusion network to handle anisotropically

distributed data fusion. We use the pre-trained model for

evaluation.

Metrics. We evaluate our representation quality by comput-

ing the mean and the standard deviation (std.) of the cloud-

mesh distance using CloudCompare5 software. Since out-

put formats vary between different representations, we ran-

domly sample 150,000 points from each representation for

quantitative evaluation. As KD-NDT only outputs means

of Gaussians, we directly take downsampled mean values

as sampled points. For our representation, samples are gen-

erated using importance sampling [16], which approximates

the global distribution and is noisier compared to the mean

value.

Datasets. We mainly evaluate quantitatively on the syn-

thetic ICL-NUIM livingroom dataset [22]. Additional eval-

uations are performed on TUM RGB-D Dataset (TUM) [60]

and 3D Scene Data (Zhou) [70] with real scans.

5.2. Representation Quality

We conduct qualitative and quantitative evaluation to

measure how well the proposed representation can describe

the generative process of a scene. The visualization of the

1https://github.com/mrfmap/mrfmap
2https://github.com/cogsys-tuebingen/cslibs_ndt
3https://github.com/theNded/MeshHashing
4https://github.com/weders/RoutedFusion
5http://www.danielgm.net/cc/

(a) Augmented ICL (b) Copyroom (c) Lounge

(d) fr1 xyz (e) fr2 xyz (f) fr3 long office

Figure 5: Visualization of the proposed scene representation

on various datasets. Color denotes the local accumulated

confidence (red→blue: high→low confidence).

proposed representation is illustrated in Fig. 5. We com-

pare against other representations on both clean and noisy

sequences of the ICL-NUIM dataset to further demonstrate

the noise-handling ability of each representation. As shown

in Tab. 1 and Fig. 6, our representation achieves a much

lower error compared to other baselines. We provide var-

ious voxel resolution configurations and obtain consistent

findings:

1) Descriptiveness: It is noteworthy that at a low voxel

resolution, Gaussian-based representations such as KD-

NDT and ours are more capable of modeling clean and

thin surfaces. As we maintain an adaptive number of Gaus-

sians within each voxel grid, the representation is more de-

scriptive compared to the NDT-based representations. Even

though our parameter space is sparse and discrete, the rep-

resentation itself is a continuous probability field. Hence,

the map serves as a generative model where we can sample

arbitrary number of points. Besides, the sampled density

reflects the local geometric confidence (Fig. 6e).

2) Noise-handling ability: It can also be noted that our

representation achieves the lowest error and deviation on

noisy sequences compared to other competitive representa-

tions. The systematically established probabilistic formula-

tion along with the truncation and pruning strategies guar-

antee a promising accuracy. We clarify that we do not train

networks provided by RoutedFusion as we target an online

learning fashion. Quantitative evaluation with re-trained

networks for RoutedFusion is demonstrated in the supple-

mentary materials.

5.3. Representation Efficiency

We measure the representation efficiency in terms of

accuracy vs. runtime/parameter number at different voxel
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(a) MRFMap (b) KD-NDT (c) PSDF (d) RoutedFusion (e) Ours

Figure 6: Qualitative comparisons of the representation quality. First two rows: visualization of each scene representation on

kt1 clean/noisy sequences. The voxel resolution is set as 4 cm. Last two rows: Error heatmap on kt2 clean/noisy sequences.

Color denotes the point-to-mesh distance (blue-red: 0-10cm). The voxel resolution is set as 2cm.

Table 1: Cloud-to-mesh statistics (cm) on the ICL-NUIM dataset. The voxel resolution is set as 5cm.

Method
kt1 (clean) kt1 (noisy) kt2 (clean) kt2 (noisy)

mean std. mean std. mean std. mean std.

MRFMap [24] 5.3759 3.3863 5.3028 4.9927 5.3979 3.3210 5.2735 4.4339

KD-NDT [55] 0.2675 0.4948 1.0688 1.2475 0.2492 0.4603 1.4877 1.8574

PSDF [14] 3.5104 3.4741 5.5026 9.9667 4.2282 3.6356 5.2325 6.1295

RoutedFusion [63] 6.5169 3.3753 20.3565 19.1897 5.0746 3.1432 23.7922 27.0850

Ours 0.0752 0.1321 0.8709 1.0549 0.0659 0.1195 1.0078 0.8658

resolution (2cm-5cm) configurations. All baselines except

KD-NDT are implemented in parallel on a single GPU.

As illustrated in Fig. 7a, the proposed method yields a

good trade-off between accuracy and computational effi-

ciency. Our spatial hashing scheme is similar to PSDF [14].

Though our local sequential inference leads to additional

computational cost compared to SDF updating, we achieve

efficient inference at a high voxel resolution. It can be ex-

plained twofold: Firstly, new components can hardly be in-

stantiated as high voxel resolution leads to a large J t and in

turn a small α
Jt . Secondly, the size of minibatch data within

each processor is small, thus leading to lower complexity

of local sequential inference. It should also be noted that

the computational and memory efficiency of RoutedFusion

is up to the defined volume size. For livingroom dataset at

the size of about 6m*3m*9m, the voxel grid is allocated to

be 2563 for 4cm and 5cm resolution and 5123 for 2cm and

3cm.

Furthermore, Fig. 7b depicts the trade-off between mem-

ory consumption and accuracy. It can be noticed that we

achieve high accuracy at a relatively low memory consump-

tion. The parameter size is calculated by multiplying the al-

located voxel number by the parameter number within each

voxel. It should be noted that we do not provide the param-
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Figure 7: Representation efficiency on ICL-NUIM kt1 sequence. For each method, we evaluate the trade-offs between

accuracy-time and accuracy-parameter number on clean and noisy [N] datasets. The voxel resolution is set to be 2cm-5cm,

where the lighter color denotes a higher resolution.

Figure 8: Online learning of the Bayesian nonparametric model. The confidence and the completeness are gradually increas-

ing by gaining knowledge from streaming data.

eter size of MRFMap. Keyframe sensor data are required

to be stored to construct the MRF graph. Hence, the mem-

ory consumption will increase monotonically when adding

more keyframes. Meanwhile, the implemented overlapping

grids for KD-NDT lead to an effective resolution of half the

resolution of the voxel grid, thus bringing more Gaussian

components compared against ours.

6. Conclusion and Future Work

In this paper, we introduce a Bayesian nonparametric

mixture model as the scene representation, depicting a con-

tinuous probability density function. Map updating given

streaming data is cast as an online Bayesian learning prob-

lem, as illustrated in Fig. 8. A gradual transition from ge-

ometry prior to posterior is conducted through parallel and

incremental inference in real-time. Experimental results

demonstrate that the proposed method achieves state-of-the-

art accuracy and efficiency.

We believe that the proposed approach establishes a sys-

tematical framework based on probabilistic formulation, re-

vealing potentials for multiple extensions. One interesting

direction lies in online learning of scene geometry with neu-

ral networks. The proposed approach models the transi-

tion from geometry prior to posterior and opens the gate to

enforce knowledge transfer [32] from pre-trained features.

Recent advances in learning local geometry primitives may

obtain a more expressive prior distribution compared to the

assumed Gaussian or other distributions. Another direc-

tion lies in the graphical applications derived from the pro-

posed representation. As stated in SurfelMeshing [54], on-

line meshing directly from point-wise data is susceptible to

noise. The parameter space of the proposed representation

can be directly utilized as a probabilistic surface element

that is robust to different sensor noise. The generative prop-

erty also allows the generation of different scene represen-

tations from the probability field. We believe that the pro-

posed representation will store and provide more informa-

tive cues for diverse kinds of applications.
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Izadi, and Christian Theobalt. Bundlefusion: Real-time

globally consistent 3d reconstruction using on-the-fly surface

reintegration. ACM Trans. Graphics, 36(3):24, 2017. 2

[9] Andrew J Davison. Futuremapping: The computa-

tional structure of spatial ai systems. arXiv preprint

arXiv:1803.11288, 2018. 1
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