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Abstract

Scene text recognition is a challenging task due to di-

verse variations of text instances in natural scene im-

ages. Conventional methods based on CNN-RNN-CTC or

encoder-decoder with attention mechanism may not fully

investigate stable and efficient feature representations for

multi-oriented scene texts. In this paper, we propose a prim-

itive representation learning method that aims to exploit

intrinsic representations of scene text images. We model

elements in feature maps as the nodes of an undirected

graph. A pooling aggregator and a weighted aggregator

are proposed to learn primitive representations, which are

transformed into high-level visual text representations by

graph convolutional networks. A Primitive REpresentation

learning Network (PREN) is constructed to use the visual

text representations for parallel decoding. Furthermore,

by integrating visual text representations into an encoder-

decoder model with the 2D attention mechanism, we pro-

pose a framework called PREN2D to alleviate the misalign-

ment problem in attention-based methods. Experimental re-

sults on both English and Chinese scene text recognition

tasks demonstrate that PREN keeps a balance between ac-

curacy and efficiency, while PREN2D achieves state-of-the-

art performance.

1. Introduction

In recent years, there have been increasing demands for

scene text recognition in various real-world applications,

such as image search, instant translation, and robot navi-

gation. With the emergence of deep learning, there are two

main scene text recognition frameworks. One is the CRNN

framework [48, 14, 15, 44, 31, 17] that encodes images into

hidden representations by CNNs and RNNs, and uses the

connectionist temporal classification (CTC) [10] for decod-

ing, as shown in Fig. 1 (a). The other is the attention-based

encoder-decoder framework [2, 44, 24, 7, 3, 32, 43, 54, 60,

29, 40] that can learn to align output texts with feature maps,

as shown in Fig. 1 (b).

Figure 1. Illustrations of different scene text recognition frame-

works. (a) CTC-based methods, where “ ” denotes the blank sym-

bol; (b) attention-based methods; (c) the proposed PREN.

However, the above methods still have room for im-

provement. On the one hand, for CTC-based methods, the

extracted feature sequences contain redundant information

that may degrade the performance on irregular text images.

On the other hand, attention-based encoder-decoder meth-

ods usually suffer from the misalignment problem [7, 54],

because the alignment between feature maps and texts is

highly sensitive to previous decoded results, which lack

global visual information. Therefore, to handle the diversity

of texts in natural scenes, it is important to exploit intrinsic

representations of scene text images.

In this paper, we propose a novel scene text recog-

nition framework that learns primitive representations of

scene text images. Inspired by graph representation learn-

ing methods [22, 12, 38], we model the elements in feature

maps as nodes of an undirected graph. Primitive represen-

tations are learned by globally aggregating features over the

coordinate space and are then projected into the visual text

representation space, as shown in Fig. 1 (c).

The “primitive” representations refer to a set of base

vectors that can be transformed into character-by-character

vector representations in the so-called visual text represen-

tation space. The visual text representations are generated
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from original feature maps, which are different from char-

acter embeddings generated from ground truth or predicted

texts used in an encoder-decoder model.

For the global feature aggregation, a pooling aggregator

and a weighted aggregator are proposed. For the pooling ag-

gregator, each primitive representation is learned from input

feature maps through two convolutions followed by a global

average pooling layer. In this way, aggregating weights are

shared by all samples to learn intrinsic structural informa-

tion from various scene text instances. For the weighted

aggregator, input feature maps are transformed into sample-

specific heatmaps, which are used as aggregating weights.

Visual text representations are generated from prim-

itive representations by graph convolutional networks

(GCNs) [22, 6]. Each visual text representation is used to

represent a character to be recognized.

A primitive representation learning network (PREN) is

constructed. PREN consists of a feature extraction mod-

ule that extracts multiscale feature maps from input images

and a primitive representation learning module that learns

primitive representations and generates visual text represen-

tations. Texts are generated from visual text representations

with parallel decoding.

Moreover, since visual text representations are purely

learned from visual features, they can mitigate the misalign-

ment problem [7, 54] of attention-based methods. We fur-

ther construct a framework called PREN2D by integrating

PREN into a 2D-attention-based encoder-decoder model

with a modified self-attention network.

We conduct experiments on seven public English scene

text recognition datasets (IIIT5k, SVT, IC03, IC13, IC15,

SVTP, and CUTE) and a subset of the RCTW Chinese scene

text dataset. Experimental results show that PREN keeps

a balance between accuracy and speed, while PREN2D

achieves state-of-the-art model performance.

In summary, the main contributions of the paper are as

follows.

• Different from commonly used CTC-based and

attention-based methods, we provide a novel scene text

recognition framework by learning primitive represen-

tations and forming visual text representations that can

be used for parallel decoding.

• We propose a pooling aggregator and a weighted ag-

gregator to learn primitive representations from fea-

ture maps output by a CNN, and use GCNs to trans-

form primitive representations into visual text repre-

sentations.

• The proposed primitive representation learning

method can be integrated into attention-based frame-

works. Experimental results on both English and

Chinese scene text recognition tasks demonstrate the

effectiveness and efficiency of our method.

2. Related Work

2.1. Scene text recognition

Scene text recognition methods can be generally di-

vided into segmentation-based methods and sequence-

based methods. For segmentation-based methods [52, 53,

37, 58, 57, 23, 19, 64, 27], individual characters are seg-

mented or localized before recognition, and character-level

annotations are often required to train these models. For

sequence-based methods, CTC-based methods [10, 48, 14,

44, 31, 17] and encoder-decoder frameworks with attention

mechanisms [2, 44, 24, 7, 3, 32, 43, 54, 60, 29, 40] are two

major techniques to recognize scene text images.

In contrast to CTC-based methods, attention-based

encoder-decoder methods can learn the dependencies

among the output characters, which can be regarded as us-

ing an implicit language model. However, the efficiency of

attention-based methods is usually limited by the recursive

decoding process. To increase the decoding speed while

maintaining high recognition performance, Hu et al. [17]

proposed training a CTC-based model with the guidance of

an attention branch. Lyu et al. [35] developed a two-stage

decoder with a relation attention module. Yu et al. [59] pro-

posed a parallel visual attention module followed by a self-

attention network with multi-way parallel transmission to

learn semantic information explicitly. Different from these

methods, we propose a novel scene text recognition frame-

work with parallel decoding based on primitive representa-

tion learning.

Recently, the recognition of irregular scene texts has at-

tracted a lot of research interests. The solutions include text

rectification [45, 46, 34, 30, 56, 62], hierarchical attention

mechanism [30], and multidirectional feature extraction [8].

Models with the 2D attention mechanism [55, 25, 35] have

also shown strong effectiveness on irregular text recogni-

tion by retaining 2D spatial information in features. Our

proposed primitive representation learning method can be

integrated into 2D-attention-based frameworks to improve

recognition performance.

2.2. Representation learning by feature aggregation

Representation learning has become the basis of most

deep-learning methods due to its ability to learn data repre-

sentations that make it easier to extract useful information

when building classifiers or other predictors [4]. Feature

aggregation is a commonly used method in graph represen-

tation learning tasks. GCNs [22, 6] aggregate neighboring

vertex features by exploiting the graph topology. Instead

of using all neighboring nodes, GraphSAGE [12] uses ran-

dom walk [5] to sample several neighboring nodes, and the

feature aggregation can be accomplished by a mean aggre-

gator, a pooling aggregator, or an LSTM aggregator. Petar

et al. [38] proposed the graph attention network (GAT) that
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Figure 2. Two primitive representation learning methods. (a) Pooling aggregator. Two convolutional layers followed by a global average

pooling layer aggregates input feature maps into a primitive representation. #k denotes the number of kernels of the convolutional layer.

(b) Weighted aggregator. Input feature maps are transformed into n heatmaps. Each heatmap is used as aggregating weights of a primitive

representation. σ(·) is the sigmoid activation function, and Σ· refers to scaled-dot product and summation.

learns to assign different aggregating weights to different

nodes by leveraging the self-attention mechanism. Inspired

by the above progress, we propose to learn primitive rep-

resentations by global feature aggregations and use GCNs

to transform primitive representations into visual text repre-

sentations.

3. Methodology

In this section, we first describe methods for learning

primitive representations and visual text representations,

and then provide detailed structures of PREN and PREN2D.

3.1. Primitive representation learning

We propose learning primitive representations by using

global feature aggregations over the coordinate space. In

this way, primitive representations contain global informa-

tion of the input image that is beneficial for the subsequent

recognition process. Let F ∈ R
d0×h×w be feature maps ex-

tracted by a CNN, where h, w, and d0 are the height, width,

and number of channels of F , respectively. The elements in

feature maps are taken as the nodes of an undirected graph,

i.e., we convert F to a feature matrix X ∈ R
m0×d0 , where

m0 = h × w. Let n be the number of primitive repre-

sentations to learn, the feature aggregation process can be

formulated as

Zi = f (i)(X), i = 1, 2, ..., n (1)

pi = ai · Zi, i = 1, 2, ..., n (2)

where pi ∈ R
1×d is the i-th primitive representation.

f (i)(·) is the mapping function of a sub-network that trans-

forms X ∈ R
m0×d0 into a hidden representation Zi ∈

R
m×d. ai ∈ R

1×m is the aggregating weights of the i-
th primitive representation. The n primitive representations

are concatenated as P = [p1;p2; ...;pn] ∈ R
n×d.

We propose two kinds of aggregation methods with dif-

ferent aggregating weights ai (i = 1, 2, ..., n), i.e., a pool-

ing aggregator and a weighted aggregator.

3.1.1 Pooling aggregator

As shown in Fig. 2 (a), a global average pooling layer is

used for feature aggregation, which is equivalent to setting

aij = 1
m
, ∀j = 1, 2, ...,m in Equ. (2). The global average

pooling has been proven effective for learning global infor-

mation [28, 16]. In this way, the aggregating weights are

shared by all samples to exploit intrinsic structural informa-

tion from various scene text instances.

The function f (i)(·) in Equ. (1) is implemented as two

convolultions that conduct on the original feature maps F .

Each convolution has kernel size = 3 and stride = 2. The

calculation of primitive representations can be formulated

as

pi = Pool(conv
(i)
2 (φ(conv

(i)
1 (F )))) (3)

where φ(·) denotes an activation function. Different

from the pooling aggregator used in GraphSAGE [12], we

use additional convolutional layers before the pooling layer

to better learn spatial information of scene text images.

3.1.2 Weighted aggregator

Due to the diversity of text instances in natural scene im-

ages, it is also important to learn sample-specific informa-

tion. Therefore, we propose learning aggregating weights

from input features dynamically.

As shown in Fig. 2 (b), a hidden representation Z ∈
R

d×h×w is obtained by a 3×3 convolutional layer conv3(·).
Another 3 × 3 convolutional layer conv4(·) followed by a

sigmoid activation function is used to convert input feature

maps F to n heatmaps H ∈ R
n×h×w. Aggregating weights

ai can be obtained by flattening the i-th heatmap Hi. Primi-

tive representations can be calculated by a scale-dot product

and summation operation, i.e., we have
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Figure 3. The system framework of PREN that consists of a feature extraction module and a primitive representation learning module. Both

pooling aggregators and weighted aggregators learn primitive representations P1 and P2 from feature maps. Visual text representations Y1

and Y2 are obtained from primitive representations P1 and P2 by two GCNs, and are summed into fused visual text representations for

parallel decoding.

Z = φ(conv3(F )) (4)

H = σ(conv4(F )) (5)

pi =

h∑

x=1

w∑

y=1

Hi,x,yZx,y (6)

3.2. Visual text representation generation

Since primitive representations contain global informa-

tion of the input image, textual information can be extracted

from primitive representations. We propose to generate

visual text representations through a linear combination

of primitive representations followed by a fully-connected

layer, which can be formulated as

Y = φ(BPW ) (7)

where P ∈ R
n×d denotes primitive representations.

B ∈ R
L×n is a coefficient matrix of the linear combina-

tion, and L is a maximum decoding length. W ∈ R
d×d is a

weight matrix, and φ(·) is an activation function.

Equ. (7) can be implemented by using a GCN [22],

where the coefficient matrix B plays a similar role to an

adjacency matrix. Since there is no explicit graph topology

for primitive representations, B is randomly initialized and

learned in the training stage.

Each visual text representation yi (i = 1, 2, ..., L) is

used to represent a character to be recognized. For text

string shorter than L, the excess part of Y corresponds to

padding symbols.

3.3. Primitive representation learning network

3.3.1 Overview of PREN

As shown in Fig. 3, PREN consists of a feature extrac-

tion module and a primitive representation learning module.

Three pooling aggregators and three weighted aggregators

are used to learn primitive representations from multiscale

feature maps. Let P1 and P2 denote primitive representa-

tions learned by pooling aggregators and weighted aggre-

gators, respectively. Visual text representations Y1 and Y2

are obtained by two GCNs and are summed into fused vi-

sual text representations Y . A fully-connected layer is used

to convert Y into logits for parallel decoding.

3.3.2 Feature extraction module

We use EfficientNet-B3 [50] as the feature extraction mod-

ule, which consists of seven mobile inverted bottlenecks

(MBConv blocks) [42, 49], as marked by “Conv Block #1”

to “Conv Block #7” in Fig. 3.

We denote the feature maps output by the i-th convolu-

tional block by Fi. To take advantage of multiscale features,

feature maps F3, F5, and F7, which are 1/8, 1/16, and 1/32
the input image scale, are used as inputs for the primitive

representation learning module.

3.3.3 Primitive representation learning module

For feature maps output by each selected convolutional

block, both a pooling aggregator and a weighted aggregator

are used to learn primitive representations. Let d denote the

number of channels of F7 and n be the number of primitive

representations to learn. The output of each feature aggre-

gator has the dimension of Rn× d

3 . As shown in Fig. 3, the

outputs of the three pooling aggregators are concatenated as

P1 ∈ R
n×d, and the outputs of the three weighted aggrega-

tors are concatenated as P2 ∈ R
n×d.

Two GCNs are used to generate visual text representa-

tions Y1 and Y2 from primitive representations P1 and P2 re-

spectively. Y1 and Y2 are summed into fused visual text rep-

resentations Y . The probability of each character is com-

puted from Y through a fully-connected layer followed by
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softmax. Therefore, the decoding process of PREN is fully

parallel and efficient.

3.4. Incorporating the 2D attention mechanism

The visual text representations output by PREN are also

flexible to integrate into attention-based encoder-decoder

models to alleviate the misalignment problem [7, 54]. For

attention-based methods, the alignment between texts and

feature maps relies on previous decoded results. Since vi-

sual text representations are purely learned from visual fea-

tures, they can provide global visual information that helps

learn stable and accurate alignments.

Based on the above analysis, we construct PREN2D by

combining PREN and a baseline model with the 2D atten-

tion mechanism. As shown in Fig. 4, the feature extraction

module is shared by both PREN and the encoder-decoder

module based on a modified Transformer model [51]. Vi-

sual text representations output by PREN are used to aug-

ment character embeddings of ground truth texts in the

training stage or previous decoded texts in the inference

stage, which can provide global guidance in the encoder-

decoder attention calculation in the modified Transformer

model.

For the feature extraction module, the outputs of the fi-

nal convolutional block F7 are upsampled and added to F5,

and the results are unsampled again and added to F3. The

obtained 2D feature maps F ∈ R
d×h×w have the same res-

olution as F3 and the same number of channels as F7.

In the original Transformer model, the encoder and de-

coder have N = 6 identical blocks. In our model, the en-

coder and decoder are simplified to have N = 2 identi-

cal blocks. For the encoder, we propose a modified self-

attention mechanism that can be formulated as

qi = f(N (fi)) ·WQ (8)

kj = g(N (fj)) ·WK (9)

αij = softmax(
1√
d
qik

T
j ) (10)

vi =

m∑

j=1

αijxjWV (11)

where fi ∈ R
1×d (i = 1, 2, ...,m) is the i-th element in

feature maps F , and m = h × w. WQ,WK ,WV ∈ R
d×d

are three learnable matrices with respect to queries, keys

and values. N (fi) denotes spatially adjacent elements of

i. f(N (fi)) and g(N (fj)) are implemented as two 3 × 3
convolutional layers. In this way, the encoder can better

model local spatial relationships during the computation of

the attention weight αij .

A Transformer decoder [51] is used for text transcrip-

tion. We use a gated unit to combine visual text representa-

tions and character embeddings. Let Y and E denote visual

Figure 4. Illustration of PREN2D. At each decoding step t, the t-th

character embedding is combined with the t-th visual text repre-

sentation by a gated unit.

text representations and character embeddings, respectively.

V and O are encoder outputs and decoder outputs, respec-

tively. Formally, the calculation process of the decoder is

z = σ([Y,E] ·Wz) (12)

E′ = z ⊙ Y + (1− z)⊙ E (13)

O = fdec(E
′, V ) (14)

where [·] refers to concatenation, Wz is a learnable

weight matrix, ⊙ denotes element-wise product, and fdec(·)
is the mapping function of the decoder.

3.5. Training and inference

Both PREN and PREN2D can be trained end-to-end with

cross-entropy between the prediction and ground truth. The

ground truth is generated by adding an ending symbol 〈eos〉
after the last character and expanded to a maximum decod-

ing length with padding symbols 〈pad〉. Let l denote the

length of the original text, and the loss is calculated accord-

ing to

L = −
l+1∑

t=1

logp(gt|I) (15)

where I refers to the input image, gt (t = 1, 2, ..., l)
is the t-th character, and gl+1 is the ending symbol 〈eos〉.
Padding symbols 〈pad〉 are ignored during the loss compu-

tation.

In the inference stage, PREN predicts the whole text at

one step, while PREN2D recognizes characters recursively.

The presence of the first ending symbol 〈eos〉 in the decod-

ing results indicates the end of decoding.

4. Experiments

We conduct both English and Chinese scene text recog-

nition experiments. For English scene text recognition, we

compare our method with previous state-of-the-art methods

and conduct a series of ablation studies to explore the effect

of each part of our models. For Chinese scene text recogni-

tion, we evaluate the performance of our method on a multi-

oriented text recognition task.
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Table 1. Word recognition accuracy (%) across methods and datasets. MJ, ST, Char, and Add denote MJSynth [18], SynthText [11],

character bounding boxes, and additional training data, respectively. The method with the * symbol had its results reported in Baek et

al. [1], where a reimplemented model is trained on MJ+ST. The best results of models trained on MJ+ST are marked in bold.

Model Training data
Regular Test Datasets Irregular Test Datasets

IIIT5k SVT IC03 IC13 IC15 SVTP CUTE

Mask TextSpotter (Liao et al.) [26] MJ+ST+Char 95.3 91.8 95.0 95.3 78.2 83.6 88.5

SAR (Li et al.) [25] MJ+ST+Add 95.0 91.2 - 94.0 78.8 86.4 89.6

SCATTER (Litman et al.) [29] MJ+ST+Add 93.7 92.7 96.3 93.9 82.2 86.9 87.5

CRNN (Shi et al.) [44, 1]* MJ+ST 82.9 81.6 93.1 89.2 64.2 70.0 65.5

AON (Cheng et al.) [8] MJ+ST 87.0 82.8 91.5 - 68.2 73.0 76.8

DAN (Wang et al.) [54] MJ+ST 94.3 89.2 95.0 93.9 74.5 80.0 84.4

ASTER (Shi et al.) [46] MJ+ST 93.4 89.5 94.5 91.8 76.1 78.5 79.5

SE-ASTER (Qiao et al.) [40] MJ+ST 93.8 89.6 - 92.8 80.0 81.4 83.6

AutoSTR (Zhang et al.) [63] MJ+ST 94.7 90.9 93.3 94.2 81.8 81.7 -

RobustScanner (Yue et al.) [60] MJ+ST 95.3 88.1 - 94.8 77.1 79.5 90.3

SRN (Yu et al.) [59] MJ+ST 94.8 91.5 - 95.5 82.7 85.1 87.8

CNN-LSTM-CTC MJ+ST 92.0 89.8 93.1 93.9 76.7 80.6 80.9

PREN MJ+ST 92.1 92.0 94.9 94.7 79.2 83.9 81.3

Baseline2D MJ+ST 95.4 93.4 95.4 95.9 81.9 86.0 89.9

PREN2D MJ+ST 95.6 94.0 95.8 96.4 83.0 87.6 91.7

4.1. English scene text recognition

4.1.1 Experimental setup

For English scene text recognition, our models are trained

on two commonly used public synthetic scene text datasets,

i.e., MJSynth (MJ) [18] and SynthText (ST) [11]. The

model performance is tested on seven public real scene

text datasets: IIIT5k-Words (IIIT5k) [36], Street View

Text (SVT) [52], ICDAR 2003 (IC03) [33], ICDAR 2013

(IC13) [21], ICDAR 2015 (IC15) [20], SVT-Perspective

(SVTP) [39], and CUTE80 (CUTE) [41]. There are vari-

ous divisions for test sets of IC13 and IC15. We follow the

protocol of Yu et al. [59] where the IC13 test set consists of

857 images and the IC15 test set contains 1811 images.

For ablation studies, all models are trained for three

epochs. The learning rate of the first two epochs is set to

0.5 and decreased to 0.1 at the third epoch. When com-

pared with other state-of-the-art methods, we continue to

train the models for another five epochs. The learning rate

is initialized to 0.1 and decreased to 0.01 and 0.001 at the

third epoch and the fifth epoch, respectively. The training

batch size is set to 128, and ADADELTA [61] is adopted as

the optimizer. Input images are normalized into 64 × 256
pixels. The alphabet includes all case-insensitive alphanu-

merics. The number of primitive representations is 5. The

maximum decoding length is set to 25 since the lengths of

most common English words are less than 25. Word accu-

racy is used as the performance evaluation index.

4.1.2 Comparison with state-of-the-art methods

The comparison of our models with previous state-of-the-

art methods is shown in Table 1. To better observe the per-

formance gain of primitive representation learning, we also

train a CTC-based model (CNN-LSTM-CTC) by replacing

the CNN in the CRNN [44] with an EfficientNet-B3 [50],

and train a baseline model with 2D attention mechanism

(Baseline2D). Baseline2D has the same feature extraction

module, encoder-decoder module, and training configura-

tions as used in PREN2D.

PREN achieves better recognition accuracy on all test

sets than CNN-LSTM-CTC. By exploiting visual text rep-

resentations, PREN2D outperforms Baseline2D on all test

sets. In particular, accuracy gains of 1.1%, 1.6%, and 1.8%

are obtained on irregular text datasets IC15, SVTP, and

CUTE, respectively. PREN2D also achieves higher accu-

racy than previous state-of-the-art models that are trained on

the MJSynth [18] and SynthText [11] datasets. The recog-

nition performance on both regular and irregular scene text

image datasets shows the effectiveness of our method.

4.1.3 Comparison of computation cost

Table 2. Comparison of the recognition speeds of various models.

DL. Framework refers to deep-learning framework.

Model DL. Framework NVIDIA GPU Time

CNN-LSTM-CTC

PyTorch Tesla V100

23.6ms

PREN 22.7ms

Baseline2D 61.6ms

PREN2D 67.4ms
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Table 2 shows the average recognition speeds of vari-

ous models on a single image. PREN has a slightly higher

recognition speed than CNN-LSTM-CTC. Compared with

Baseline2D, the extra time consumption of PREN2D is only

5.8ms on average.

4.1.4 Comparison of feature aggregation methods

Table 3. Word accuracy (%) of PRENs with various feature aggre-

gation methods.

Aggregator IIIT5k IC03 IC13 SVTP CUTE

Pooling 91.1 93.5 94.7 79.2 77.4

Weighted 90.0 92.0 93.2 79.5 77.4

Pooling + Weighted 91.8 93.9 94.7 81.7 81.3

In this experiment, we study the effect of various fea-

ture aggregation methods. We compare PRENs with only

pooling aggregators or only weighted aggregators, as well

as with both pooling aggregators and weighted aggregators.

Table 3 lists the comparison results. Two phenomena can

be observed. (1) The model with weighted aggregators has

lower recognition accuracy than the model with pooling ag-

gregators on regular text datasets (IIIT5k, IC03, and IC13),

but achieves equal or higher recognition accuracy on irregu-

lar text datasets (SVTP and CUTE). (2) Combining the two

aggregation methods can significantly improve recognition

performance, especially on irregular text datasets.

4.1.5 Comparison of various numbers of primitive rep-

resentations

Figure 5. Comparison of PRENs with various numbers of primitive

representations n.

Fig. 5 shows the comparison results of PRENs with

various numbers of primitive representations. Too few

or too many primitive representations will cause perfor-

mance degradation. Learning five primitive representations

achieves the best recognition performance on the IIIT5k,

IC13, SVTP, and CUTE test sets.

4.2. Chinese scene text recognition

We further conduct a Chinese scene text recognition ex-

periment. There are thousands of commonly used Chinese

characters, and multi-oriented texts are common in Chinese

scene images. Therefore, Chinese scene text recognition is

a challenging task that can evaluate the robustness of scene

text recognizers.

4.2.1 Experimental setup

For Chinese scene text recognition, our models are first

trained on a self-built synthetic dataset, and then fine-tuned

and tested on real samples. For the synthetic dataset, 1 mil-

lion images are synthesized by following Gupta et al. [11]

with the corpus collected from THUOCL [13]. The real

samples with multiple orientations including horizontal,

vertical, and skewed texts are selected from the RCTW [47]

dataset. The training set for fine-tuning consists of 6000

images, and the test set includes 1000 images.

Since CTC-based models encode input images into fea-

ture sequences, a fixed normalized height is required for all

images [9]. As a result, for CNN-LSTM-CTC, vertical text

images are rotated 90 degrees first, and all images are nor-

malized to 64×256 pixels. In contrast, PREN, Baseline2D,

and PREN2D can handle input images with multiple orien-

tations. We divide the whole samples into horizontal and

vertical subsets according to aspect ratios of original im-

ages. Horizontal and vertical text images are normalized

into 64 × 256 pixels and 256 × 64 pixels, respectively. In

the training stage, data of each training iteration is randomly

taken from the horizontal subset or the vertical subset.

All models are trained on synthetic samples for 6 epochs

and fine-tuned on real samples for 20 epochs. The learning

rate is initialized to 0.5 and decreased to 0.1 at the sixth

epoch. The character set contains 5658 characters.

4.2.2 Comparison of different models

Table 4. Word accuracy (%) of different models for multi-oriented

Chinese scene text recognition.

Model Horizontal Vertical Average

CNN-LSTM-CTC 53.4 64.8 59.1

PREN 73.8 79.2 76.5

Baseline2D 82.2 86.8 84.5

PREN2D 82.6 87.4 85.0

Table 4 shows the comparison results of different mod-

els. For CNN-LSTM-CTC, the rotation of vertical text

images doubles the patterns to learn, while PREN can

avoid this problem and achieve significantly higher accu-

racy. Baseline2D and PREN2D have better performance.

One possible reason is that Chinese texts contain a lot of
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similar characters, thus the implicit language model learned

by the encoder-decoder architecture is important for ac-

curate recognition. Compared with Baseline2D, PREN2D

achieves higher recognition accuracy on both horizontal and

vertical test sets, which demonstrates the effectiveness of

the proposed primitive representation learning method.

4.3. Visualization and analysis

Qualitative comparison of different models. Table 5

shows the qualitative comparison of different models. Irreg-

ular text images are challenging for CNN-LSTM-CTC. For

PREN, errors are mainly caused by similar characters such

as “O” and “D”. Baseline2D suffers from the misalignment

problem, e.g., the last character is repeatedly recognized

twice for the third sample. PREN2D shows better robust-

ness than the other three models.

Table 5. Qualitative comparison of different models. For Chinese

texts, characters in Unicode form are also listed. Wrongly recog-

nized characters are marked in red.

Figure 6. Visualization of heatmaps generated by the weighted ag-

gregator that learns n = 5 primitive representations.

Visualization of different aggregators. Fig. 6 shows

the heatmaps generated by the weighted aggregator. The

first heatmap has larger values in character boundary areas,

while the other heatmaps focus on character center areas.

For the pooling aggregator, the feature maps before pool-

ing (i.e., after conv2(·) and before Pool(·) in Eq. (3)) show

the contribution of each part of feature maps to primitive

representations. As shown in Fig. 7, for various input im-

ages, feature maps corresponding to the same primitive rep-

resentation are similar, e.g., the first feature map generally

has larger responses on the bottom parts and the second fea-

ture map focuses on the upper-left and lower-right parts.

The visualizations in Fig. 6 and Fig. 7 indicate that the

pooling aggregator can learn common structural informa-

Figure 7. Feature maps before global average pooling of the pool-

ing aggregator that learns n = 5 primitive representations. Values

are averaged in the channel dimension for visualization.

tion from various text instances, and the weighted aggrega-

tor has a better ability to distinguish foreground and back-

ground areas.

Visualization of PREN2D. Fig. 8 visualizes the at-

tention scores generated by Baseline2D and PREN2D for

an input image. By utilizing visual text representations,

PREN2D can generate more accurate attention areas and

alleviate incorrect alignments. For example, Baseline2D

wrongly aligns the right part of “N” in the image with the

character “I”. In contrast, the attention map of PREN2D

covers the central region of “N”, in which the alignment

is correct.

Figure 8. An example of attention scores generated by (a) the

baseline model and (b) PREN2D. Texts under the input images

are the ground truth, and the characters under attention maps are

recognized results. The baseline model incorrectly recognizes

“MICHELIN” as “MICHELINI”, while PREN2D outputs correct

results.

5. Conclusion

In this paper, we propose a primitive representation

learning method for scene text recognition. Visual text rep-

resentations generated from primitive representations can

be either directly used for parallel decoding, or further in-

tegrated into a 2D-attention-based encoder-decoder frame-

work to improve recognition performance. In future work,

we will investigate more possible ways of learning primitive

representations.
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