
Self-Aligned Video Deraining with Transmission-Depth Consistency

Wending Yan1, Robby T. Tan1,2, Wenhan Yang3 and Dengxin Dai4

1National University of Singapore, 2Yale-NUS College, 3City University of Hong Kong ,4ETH Zurich

eleyanw@nus.edu.sg, robby.tan@{nus,yale-nus}.edu.sg, wyang34@cityu.edu.hk, dai@vision.ee.ethz.ch

Abstract

In this paper, we address the problem of rain streaks

and rain accumulation removal in video, by developing

a self-alignment network with transmission-depth consis-

tency. Existing video based deraining methods focus only

on rain streak removal, and commonly use optical flow to

align the rain video frames. However, besides rain streaks,

rain accummulation can considerably degrade visibility;

and, optical flow estimation in a rain video is still erro-

neous, making the deraining performance tend to be inac-

curate. Our method employs deformable convolution lay-

ers in our encoder to achieve feature-level frame alignment,

and hence avoids using optical flow. For rain streaks, our

method predicts the current frame from its adjacent frames,

such that rain streaks that appear randomly in the tempo-

ral domain can be removed. For rain accumulation, our

method employs a transmission-depth consistency loss to

resolve the ambiguity between the depth and water-droplet

density. Our network estimates the depth from consecu-

tive rain-accumulation-removal outputs, and calculates the

transmission map using a commonly used physics model.

To ensure photometric-temporal and depth-temporal con-

sistencies, our method estimates the camera poses, so that

it can warp one frame to its adjacent frames. Experimental

results show that our method is effective in removing both

rain streaks and rain accumulation, outperforming those of

state-of-the-art methods quantitatively and qualitatively.

1. Introduction

Rain is a common outdoor weather condition, and de-

grades visibility in video. The degradation are mainly

caused by: rain streaks and rain accumulation (or rain veil-

ing effect). Rain streaks partially occlude a background

scene, change image appearance, cause the scene to look

blurred. Rain accumulation, which is like fog or mist,

washes out the scene colors, reduces the overall contrast

and generates a veiling effect. Both rain streaks and accu-
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Figure 1: Top left: Input image. Top right: Our result. Bot-

tom left: Li et al.’s result [30]. Bottom right: Yang et al.’s

result [51]. Zoom-in for better visualization.

mulation are visibly present and thus degrades the visibility

of a scene. Hence, to obtain better background scene visual

information, we need to remove both rain streaks and rain

accumulation in videos.

A series of rain removal methods for videos have been

proposed [45, 39, 52, 53, 49, 18, 30, 33, 48, 51]. Most

of them focus on rain streaks alone, and thus cannot deal

with rain accumulation, which is unfortunately commonly

present in any rainy situations, particularly in heavy rain.

Many of these methods, e.g., [25, 33, 48, 51] rely on op-

tical flow for aligning adjacent frames. Yet, optical flow

estimation in rainy conditions is still unstable and challeng-

ing, since its main constraint (the brightness constancy con-
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straint) generally does not hold.

For rain accumulation, to our knowledge, there is no

video-based method dealing with the problem. There are

rain-accumulation removal methods for single images, e.g.

[49, 30, 18]. Unfortunately, they suffer from the ambigu-

ity between depth and water-droplet density, i.e.: a thick

veiling effect can be triggered either by a relatively sparse

droplet density but a distant scene, or by a relatively dense

droplet but a nearby scene. This ambiguity applies to all

surfaces, yet particularly to achromatic surfaces (i.e., white,

gray), causing the over-saturation or under-saturation effect

in the rain removal results.

In this paper, we address the problem of daytime rain

removal from video by focusing on both rain streaks and

rain accumulation. To accomplish this task, first, we align

a few consecutive input frames using a feature-based align-

ment network; and thus unlike many existing methods, we

do not rely on optical flow. Second, our network removes

rain-steaks in every frame based on the aligned features of

its adjacent frames, as most likely rain streaks randomly ap-

pear along the temporal domain. We train our network with

both synthetic rain videos with ground-truths and real rain

videos without ground-truths. Third, to deal with rain ac-

cumulation, we exploit the depth cues that can be obtained

from the input video. Given the estimated rainstreak-free

images from the previous step, our accumulationNet gen-

erates a rain-accumulation free images, which is our final

output. To train the accumulationNet, we employ a few

losses: depth-transmission consistency loss, depth-temporal

consistency loss, and photo-temporal consistency loss.

As a summary, our contributions are as follows:

• We introduce a video deraining method that can re-

move both rain streaks and rain accumulation in one

end-to-end framework. To our knowledge, this is the

first attempt in video deraining dealing with both rain

streaks and rain accumulation.

• We provide a video-based deraining method with

feature-level alignment. Many existing deraining

methods use optical flow, which brings many issues

due to the degradation in the input video. By using de-

formable convolution layers in encoder, we avoid us-

ing optical flow in our method.

• We propose a few losses that combines depth, trans-

mission map, and camera pose to deal with rain accu-

mulation. The use of depth and camera pose enable

our method to handle the depth and water-droplet am-

biguity problem, and thus improving our results.

Using these novel ideas, our experimental results show the

effectiveness of our method compared to the-state-of-the-art

methods qualitatively and quantitatively.

2. Related Works

Recently, many methods have been proposed for rain re-

moval in images. Many of them try to capture the pattern

signal differences between rain streaks and background tex-

ture, and then remove all detected rain streaks[7, 23, 37,

24, 32, 4, 57]. More recently, deep learning methods be-

come the main trend for rain streak removal. Many of them

remove rain streaks from single image by developing ad-

vanced networks [28, 45, 39, 52, 31, 43, 11] or by utilizing

more effective priors [4, 60, 53, 9, 36, 44].

Some methods deal with rain streak and accumulation

issues together. Yang et al. embed wavelet tranform to re-

move multiscale rain streaks, and further enhance visibility

for rain accumulation and darkness [49]. Hu et al. designed

a depth-guided attention network to remove rain accumula-

tion [18]. Li et al. proposed a two-stage method that has

a physical-model deraining first and follows a GAN refine-

ment stage [30]. Wang et al. reformulated rain streaks as

transmission medium together with vapors for rain imaging

modeling, and an encoder-decoder CNN is used to learn the

transmission map of rain streaks [46]. Yasarla employed the

Gaussian prcesses to predict pseudo-GT of real rainy im-

ages at the latent space by jointly modeling the labeled and

unlabeled latent space vectors [54]. Yan et al. [50] provides

a comprehensive survey on single image deraining methods.

Usually, a video contains more information and temporal

correlation than a single image, so many methods process

deraining on video. Unlike in a single image method, the

video-based methods attempt to exploit the temporal do-

main. This temporal domain can be useful, since due to

the dynamic of rain streaks, there is different information in

different frames. Garg and Nayar firstly propose the video

a rain model [14] and rain streak removal methods [12, 13,

15]. Later, more methods are proposed with more intrinsic

priors on difference between rain streak and normal back-

ground signals [35, 58, 2, 3, 1, 7, 21, 5, 42, 41, 25, 47, 40].

Many deep learning methods are also proposed for video

rain streak removal. Li et al. proposed a multiscale method

with multiscale convolutional spares coding [29].

Chen et al. applied segment superpixels on video frames

and predicted clean background through aligned superpix-

els [6]. Liu et al. proposed a recurrent neural network con-

tains rain level classification [34]. Liu et al. combined the

motion segmentation context information into a dynamic

routing residue recurrent network, to solve the rain streaks

and occlusions together [33]. Yang et al. proposed a two-

stage recurrent network with dual-level regularization and

physical model [48]. Yang et al. introduce a self-learning

method with temporal correspondence, which is free from

supervised training data [51]. While this method is elegant

and provides good results, it relies on optical flow, which

can be vulnerable in heavy rain videos.
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Figure 2: The pipeline of our framework that consists of two main components: Rain Streaks Removal Component (left) and

Rain Accumulation Removal Component (right). For the images, zoom-in for better visualization.

3. Proposed Method

Figure 2 shows the pipeline of our method, which con-

sists of two parts: rain streak removal and rain accumulation

removal. Our input is a video, which we process in batches.

Each batch consist of N consecutive frames, which in our

experiments N = 7: (It−3, It−2, It−1, It, It+1, It+2, It+3),
where It indicates the current frame (or central frame). Our

output for each batch is Jt, which is the derained result of

the current frame. Jt is free from both rain streaks and rain

accumulation.

3.1. Rain Streaks Removal

In a rain video, most likely rain streaks appear in adja-

cent video frames randomly, since rain streaks move inde-

pendently from the camera. It means that the locations of

a rain streak will be different from frame to frame. It fur-

ther implies that, in a set of frames, we can obtain a back-

ground scene/area that are occluded by rain streaks in some

frames, but not in other frames. For adjacent frames, we

can also assume that the images of the background scene

are highly correlated. Meaning, the background scene in a

few consecutive frame largely overlap. Thus, if we have in-

puts: (It−3, It−2, It−1, It+1, It+2, It+3), which exclude the

current frame It, we can have the information of the rain-

streak-free background scene for It. The following para-

graphs discuss the details on how we can exploit the adja-

cent frames to remove rain streaks.

Feature-Alignment Encoder Our method takes a few ad-

jacent frames as input, and our first step is to align them.

Many video deraining methods (e.g., [25, 33, 48, 51]) em-

ploy optical flow to obtain the correlations between frames.

Unfortunately, in rain conditions, estimating optical flow is

problematic, since the main assumption, which is the bright-

ness constancy, is largely violated. Thus, enforcing the as-

sumption likely causes the estimation to be erroneous.

To address the issue, our method align the features of

the input images, instead of aligning the input image di-

rectly. The key idea of the feature-level alignment is the

deformable convolution layers [8]. Unlike the common

convolutional layers with fixed kernel configuration, in the

deformable convolution layers, the grid is deformable, sim-

ilar to dilated convolution layers [55]. Unlike the offsets in

the dilated convolution layers, which are fixed, the offsets

in the deformable convolution layers are learnable. With

proper training on these learnable offsets, the deformable

convolution layers can align features in the feature domain.

More specifically, our initial encoder Einit extracts fea-

ture maps from the central frame It and all adjacent frames

(It−3, It−2, It−1, It+1, It+2, It+3).

Fi = Einit(Ii), (1)

where i ∈ {t − 3, t − 2, t − 1, t, t + 1, t +
2, t + 3}. Note that those extracted feature maps

(Ft−3, Ft−2, Ft−1, Ft+1, Ft+2, Ft+3) are not yet aligned to

the central frame’s feature map Ft.

We predict the offsets θi from each unaligned feature

map. All offsets are predicted with respect to the the central

feature map Ft. For each convoluted feature map, the num-

ber of offsets is the same as the number of sampled pixels

in this feature map. The function for offsets prediction O
contains a few convolutional layers:

θi = O(Fi, Ft). (2)
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Once we obtain (θt−3, θt−2, θt−1, θt+1, θt+2, θt+3),
we extract the aligned feature maps

(F align
t−3 , F align

t−2 , F align
t−1 , F align

t+1 , F align
t+2 , F align

t+3 ) from

the unaligned feature maps using the deformation convolu-

tion layers, G:

F align
i = G(Fi, θi). (3)

Note that, the central image It and its features Fi are merely

used as the reference for calculating the offset θi. Thus, all

the aligned adjacent features do not receive any information

from the central feature map, Ft.

Rainstreak Removal Decoder Since adjacent video

frames are correlated, their aligned features should con-

tain the same texture information except the random rain

streaks. We use 3D convolution layers, D3D, to decode a

rainstreek-free output St from a set of the aligned feature

maps (F align
t−3 , F align

t−2 , F align
t−1 , F align

t+1 , F align
t+2 , F align

t+3 ):

St = D3D(F align
t−3 , F align

t−2 , F align
t−1

, F align
t+1 , F align

t+2 , F align
t+3 ).

(4)

If in a feature map, one location is covered by a rain streak,

the same location is likely to have background information

in any of the other feature maps. Inspired by [51] , we em-

ploy 3D convolutional layers, where our decoder has an ex-

tra temporal dimension. Once trained with proper losses,

our decoder can ignore the rain streak features in the tem-

poral dimension. It can output rain-streak-free images by

choosing frames’ features that represent clean background

features.

In summary, the whole network of our rain streaks re-

moval StreakNet(.) is expressed as:

St = StreakNet((It−3, It−2, It−1,

It+1, It+2, It+3), It),
(5)

where StreakNet consists of D3D, G,O, and Einit oper-

ations. To train the whole networks require a few losses,

which in our case include supervised and unsupervised

losses (semi-supervised learning). We discuss the details

of the losses in the following section.

3.1.1 Rain-Streak Removal Loss Functions

To train the networks in rain-streak removal module, we ap-

ply semi-supervised learning by combining synthetic rain-

streak images with ground-truths and real rain-streak im-

ages without ground-truths.

Clean L1 Loss Using paired clean synthetic data, we train

our initial encoder Einit in Eq. (1) and deformable convolu-

tion layers O in Eq. (2) and G in Eq. (3) using the following

loss:

LL1 clean =
∥

∥

∥
Ĵsynt
t , Jsynt−gt

t

∥

∥

∥

1

, (6)

where Ĵsynt
t = StreakNet((Jsynt−gt

t−3 , Jsynt−gt
t−2 , Jsynt−gt

t−1 ,

Jsynt−gt
t+1 , Jsynt−gt

t+2 , Jsynt−gt
t+3 ), Jsynt−gt

t ). Once trained,

we freeze our 3 networks: Einit, O,G; and, we further

train the 3D-conv decoder D3D using the following

semi-supervised training strategy.

Rain-Streak L1 Loss For paired synthetic data with

rain-streak-free ground-truths, we apply L1 loss between

the output Ssynt
t and the corresponding rain-streak-free

ground-truth Ssynt gt
t :

LL1 streak =
∥

∥Ssynt
t , Ssynt gt

t

∥

∥

1
. (7)

where Ssynt
t = StreakNet([Isyntt−3 , Isyntt−2 , Isyntt−1 , Isyntt+1 ,

Isyntt+2 , Isyntt+3 ], Isyntt ) using Eq. (5). Isyntt is the synthetic

image at frame i. This loss is a supervised loss.

Self-Learned Consistency Loss As for real rain-streak im-

ages without ground-truths, we design a self-learned con-

sistency loss:

Lself consis = ‖St, It‖1 (8)

where St = StreakNet((It−3, It−2, It−1, It+1, It+2,
It+3), It). In this loss, we basically enforce St to be con-

sistent with It. Note that, St is generated by the adjacent

frames of It, but not directly from It itself. Moreover, the

loss tries to ensure that St to be consistent with the clean

background of It. While this loss cannot fully ensure this,

since It contains rain-streaks, we rely on the other losses to

handle the rain streaks regions.

Once our whole rain-streaks removal network

StreakNet is properly trained, we freeze the whole

network, and begin to train our rain accumulation removal

network.

3.2. Rain Accumulation Removal

Once rain streaks are removed, we turn our attention to

the rain accumulation removal module. In this module, our

inputs are (St−3, St−2, St−1, St, St+1, St+2, St+3), which

are the adjacent frames which are free from rain-streaks.

Our output is Jt, which is the estimated clean background,

free from both rain streaks and rain accumulation. To obtain

this output, we employ a deep network we call AccumNet,
which takes a single image as input, and output Jt:

Jt = AccumNet(St). (9)

To train this network we apply a few losses: transmission-

depth consistency loss, photo temporal consistency loss and

depth-temporal consistency loss, as shown in Figure 3.
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Figure 3: The flow of our loss functions. For the images, zoom-in for better visualization.

3.2.1 Transmission-Depth Consistency Loss

A rain image suffering only from the rain accumulation

looks similar to fog or mist. Hence, we can apply the

Koschmieder law:

St(x) = αt(x)Jt(x) + (1− αt(x))At, (10)

where Jt is the derained image, free from rain-streak and

rain accumulation. αt is the transmission map and At is

the atmospheric light. x is the pixel spatial location. To

estimate the transmission map, we need to estimate the at-

mospheric light At from St(x). In our implementation, we

utilize the commonly used technique of the brightest region

[16]. Given St, Jt and the estimated At, we can calcu-

late the transmission map, αt. From the physics model, the

transmission map αt is defined as:

αt(x) = exp(−βdt(x)), (11)

where dt is the depth (the distance between the camera and

the scene). β is the water particle attenuation factor.

Hence, based on the physics model, we can enforce the

consistency loss between the transmission map and depth

map:

Ltrans−depth = ‖Norm(−log(αt)), Norm(dt)‖1 , (12)

where Norm(.) is the normalization function that normal-

ize map value to be [0, 1], defined as Norm(u) = (umax−
u)/(umax − umin). u is the normalized input, umax and

umin are the maximal and minimum values of u. By em-

ploying this normalization function, we cancel out the pres-

ence of the attenuation factor, β.

Depth Estimation To compute the depth map, dt, we cre-

ate a network DepthNet adopted from [38], which is pre-

trained using clear monocular videos. DepthNet estimates

the depth map for every input frame Jt:

dt = DepthNet(Jt). (13)

We do not freeze DepthNet, instead we further train this

network and AccumNet in Eq. (9) together using the

transmission-depth consistency loss in Eq. (12) and other

losses, as shown in Figure 3. To our knowledge, this is a

first method that integrate depth estimation and deraining

jointly. Here, AccumNet not only gets benefit from the

depth information, but also DepthNet can learn sharper

depth map from the transmission map, αt, which is com-

puted from Jt, the output of AccumNet . In other words,

the transmission map and the depth map support each other

to have better performance.

3.2.2 Temporal Consistency Losses

While we consider that the extra depth information can ben-

efit our rain accumulation removal, all the information we

use so far is only from one single frame. In this section,

since our method is a video-based method, we exploit the

availability of adjacent frames by designing temporal con-

sistency losses.

Although our features from different frames are aligned

as discussed in Section 3.1, our image frames themselves

are not. Thus, we employ a camera-pose estimation net-

work, PoseNet [56], to estimate the camera pose from ad-

jacent frames to the central frame:

{R, t}i→t = PoseNet(Ji, Jt), (14)

where t is the index of the central frame, and i are index of

the adjacent frames. As defined before, i ∈ {t−3, t−2, t−
1, t+ 1, t+ 2, t+ 3}.

Given the depth map, dt, and the camera pose {R, t}i→t,

we can obtain a projection function that warps frame i to

frame t: Ĵt = πi→t(Ji). Using this projection function, we

can form two temporal consistency losses: photo-temporal

consistency and depth-temporal consistency.

Photo-Temporal Consistency Loss We define the loss as:

Lphoto−temp =
∑

i

‖Jt, πi→t(Ji)‖1 , (15)
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where i ∈ {t − 3, t − 2, t − 1, t, t + 1, t + 2, t + 3}. Jt
is the derained central frame, and Ji is one of the derained

adjacent frames. Here, we enforce photo consistency for

every pixels along the temporal domain after warping.

Depth-Temporal Consistency Loss Similarly, we apply

the temporal consistency for our depth estimations:

Ldepth−temp =
∑

i

‖dt, πi→t(di)‖1 , (16)

where dt is the depth map for the central frame, and di is

the depth map from an adjacent frame.

3.2.3 Other Losses in Rain Accumulation Network

Besides the 3 losses in in Eqs. (12,15,16), we also train

AccumNet using the following losses:

Rain-Accumulation L1 Loss We apply the L1 loss on

paired rain-accumulation synthetic data Isyntt with the clean

ground-truth Jsynt gt
t :

LL1 accum =
∥

∥AccumNet(Isyntt ), Jsynt−gt
t

∥

∥

1
. (17)

Discriminative Loss As for real rain-accumulation data

without ground-truths, we apply a discriminative loss:

Ldis = − log(D(Jref )− log(1−D(Jt))), (18)

where Jref as an unpaired clean reference image.

4. Experimental Results

In section, we discuss the details of our implementation,

and evaluate our method by comparing them with those of

the existing methods quantitatively and qualitatively.

4.1. Implementation Details

In our feature-alignment encoder, the initial encoder is

based on the ResNet architecture [17], which has five resnet

blocks. Our rainstreak removal decoder is formed by 19

layers of 3D convolution layers. In our rain accumulation

removal module, our accumulation network is ResNet too,

but with nine resnet blocks. The discriminator is a multi-

layer network consists of three stride layers[19, 27].

In our method, we need a set of synthetic data to train

the networks. We estimate the depth maps of clear video

frames using a single image depth estimation method [38,

59]. Then we render both rain streaks and accumulation

on clear frames based on estimated depth maps. To render

rain accumulation, we set the range of β = [4.6, 6.6], and

we choose atmospheric light values randomly between A =
[178, 255]. Note that, β and atmospheric light are constant

in one continuous frames sequence. During the training,

the network is optimized using the Adam method [26] with

learning rate 2× 10−4 and β1 = 0.9.

Table 1: Quantitative results on our synthetic rainy data.

PSNR SSIM

Input Image 14.51 0.5189

HRRestorer [30] 16.57 0.7033

DualFlow [48] 15.13 0.6755

Syn2Real [54] 14.94 0.5274

FastDeRain+MSBDN [22] 14.65 0.6206

MSPFN+MSBDN [20] 14.54 0.5499

SLDNet+MSBDN [51] 14.63 0.5411

Without Temporal Consistency 14.56 0.5387

Without DepthNet 16.15 0.6408

With Frozen DepthNet 16.43 0.6874

Without PoseNet 17.28 0.7071

Our Result 17.52 0.7284

4.2. Comparison Results

We evaluate our method against the state-of-the-art de-

raining methods: HRRestorer [30], DualFlow [48] and

Syn2Real [54]. All above methods consider both rain streak

and rain accumulation effects. For the state-of-the-art de-

raining methods which only consider rain streak removal:

FastDeRain [22], MSPFN [20] and SLDNet [51], we apply

the state-of-the-art dehazing method MSBDN [10] on the

outputs from them.

Fig. 5 shows the qualitative evaluation results on real

rainy images with only rain streaks. As one can notice that

our method qualitatively provides clear results compared

with the results of other baseline methods. Not only rain

streaks, but also splashes on the ground are removed. Fig. 4

shows the qualitative evaluation results on real rainy im-

ages with both rain streaks and accumulation. Results of

some baseline methods still has residual rain streaks, and

all baseline methods suffer from the rain accumulation. Our

method gives more clear streak-removal results. Also, our

method recovers background trees well with extra depth in-

formation. For the quantitative evaluation, we use 420 pairs

of synthetic data. The quantitative evaluation is shown in

Table 1, where our method shows better performance on

both PSNR and SSIM compared to all the baseline meth-

ods.

5. Ablation Studies

To show the effectiveness of our DepthNet, we remove

DepthNet from the rain accumulation removal module. The

first column and second row of Fig. 6 shows the results

trained without transmission-depth consistency loss. As can

be seen, the rain accumulation effect is still considerably

noticeable, particularly trees on the background. To prove

that our DepthNet also learns from the transmission-depth

consistency loss, we freeze DepthMap during training and

show the depth map and the derained output in the second

column of Fig. 6. Obviously, a learnable DepthNet provides
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Figure 4: Qualitative comparisons with the state of the art methods on real rainy images. Zoom-in for better visualization.

a better depth map. This better depth map helps our method

repress the ambiguity between depth and water-droplet den-

sity.

The third column of Fig. 6 shows results without

PoseNet (hence there is no temporal consistency), and

DepthNet only learns from single frame. From the results,

DepthNet is benefited from the extra information of video.

With the temporal consistency, the depth map has shaper

edges on the yellow car and motocycle. As a result, the

rained output has more natural colors.

6. Conclusion

We have introduced a video deraining method with

feature-level alignment . To our knowledge, this is the first

time, a video-based method is dedicated to handle both rain

streaks and accumulation problems. Due to the instability of
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Syn2Real FastDeRain MSPFN SLDNet

Figure 5: Qualitative comparisons with the state of the art methods on real rainstreak images. Zoom-in for better visualization.

Input Image Depth Map With Frozen DepthNet Depth Map Without Temporal Con-

sistency

Depth Map With Full Module

Output Without DepthNet Output With Frozen DepthNet Output Without Temporal Consis-

tency

Output With Full Module

Figure 6: Ablation studies on DepthNet, frozen DepthNet, and temporal consistency.

optical flow in rain videos, our method use deformable con-

volution layers to achieve alignment in the feature domain.

To solve the depth and water-droplet ambiguity problem, we

employ DepthNet and PoseNet to provide few novel losses

to improve our results. Experimental results and evalua-

tions, both quantitative and qualitative, show the effective-

ness of our method.
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