Unsupervised Hyperbolic Metric Learning

Jiexi Yan¹, Lei Luo³, Cheng Deng¹*, Heng Huang²,³
¹School of Electronic Engineering, Xidian University, Xi’an 710071, China
²Department of Electrical and Computer Engineering, University of Pittsburgh, PA 15260, USA
³JD Finance America Corporation, Mountain View, CA 94043, USA
{jxyan1995,luoleipitt, chdeng.xd}@gmail.com, heng.huang@pitt.edu

Abstract

Learning feature embedding directly from images without any human supervision is a very challenging and essential task in the field of computer vision and machine learning. Following the paradigm in supervised manner, most existing unsupervised metric learning approaches mainly focus on binary similarity in Euclidean space. However, these methods cannot achieve promising performance in many practical applications, where the manual information is lacking and data exhibits non-Euclidean latent anatomy. To address this limitation, we propose an Unsupervised Hyperbolic Metric Learning method with Hierarchical Similarity. It considers the natural hierarchies of data by taking advantage of Hyperbolic metric learning and hierarchical clustering, which can effectively excavate richer similarity information beyond binary in modeling. More importantly, we design a new loss function to capture the hierarchical similarity among samples to enhance the stability of the proposed method. Extensive experimental results on benchmark datasets demonstrate that our method achieves state-of-the-art performance compared with current unsupervised deep metric learning approaches.

1. Introduction

Learning a precise distance metric for similarity measurement is a key ingredient of various computer vision tasks, such as face recognition [13, 50], image classification [5, 53, 6], and person re-identification [52]. Therefore, metric learning has aroused much attention and many classical methods have been proposed in the past decades [6, 45, 13].

With the resurgence of deep neural networks, Deep Metric Learning (DML) has emerged as a powerful tool in many practical applications [34, 30, 2, 29, 44]. It targets at seeking a reliable embedding space by virtue of nonlinear deep neural networks, where a well-designed metric loss function brings positive samples closer to anchors, but pushes negative samples far away from the anchors.

Most of the existing DML methods usually use large-scale data for training. They can be roughly divided into two categories: structure-learning methods and hard mining methods. For the former, the crucial point is to construct a proper loss function that plays a key role in many well-known DML methods. To this end, numbers of objectives [5, 34, 30, 40, 35, 29, 32, 20], including commonly-used contrastive loss [5], triplet loss [34] and lifted structure loss [30], have been reported to mine underlying similarity relationships among training data in the literature. While the second category, i.e., hard mining approaches, intends to enhance the discriminative ability of the learned embedding by sampling meaningful hard examples. Since training with numerous easy examples may suffer from inefficiency and poor performance, hard sample mining has become a prevalent technique in DML [30, 15, 12, 10, 9, 36].

However, in real-world tasks, supervised DML methods are often inapplicable since the labeled data is not available. To address this issue, many unsupervised deep learning algorithms have been introduced [48, 51, 17, 49], which attempt to learn the inherent structure of training data without using explicitly-provided labels. A common unsupervised DML manner mines potential sample relationship by an auxiliary algorithm such as clustering, and then utilizes the learned pair-wise information as input to perform the DML task. For example, MOM [18] exploits a random walk process to discover the neighborhood of unlabeled data in the manifold space and the Euclidean space to excavate the pairwise information. Compared with the ground truth, the learned pairwise information usually contains label noise, which makes the DML stage unstable. Therefore, how to discover more semantic information as supervision is still a big challenge. Moreover, inspired by self-supervised learning [17, 49], TAC-CCL [24] integrates self-supervised module into the common unsupervised DML framework to boost the performance. Nonetheless, this algorithm ignores the latent metric information of unlabeled data. It is not
so much an unsupervised DML method as a plug-and-play self-supervised module extended to DML.

To the best of our knowledge, as shown in Figure 1, images often contain representatives of multiple classes in real-world applications. For example, suppose an anchor in Green Jay, instance in Florida Jay and Ovenbird are both negative samples, but the anchor is more similar to the point of Florida Jay than one of Ovenbird. Because all samples in Florida Jay and Green Jay belong to the same second class Jay. Previous approaches typically relying on binary labels indicating whether the image pairs are similar or not only address a small subset of similarity relations [21]. Due to the powerful performance of deep learning with labeled data, such supervised DML methods can sometimes obtain good enough results. However, lacking explicitly-provided labels, the performance of these unsupervised DML methods with binary supervision is severely degraded in facing some specific scenarios. On the other hand, most existing DML methods prefer to use Euclidean embeddings to facilitate calculation. However, recent research has proven that many types of data from a multitude of fields (e.g. Network Science and Computer Vision) exhibit a highly non-Euclidean latent anatomy [1]. In such cases, these DML methods based on Euclidean space obviously do not provide the most powerful or meaningful geometrical representations of data. As a result, to improve the model performance, it is extremely important and challenging to capture the complicated structure that implicitly exists in real data.

In this work, we propose a novel unsupervised DML method, dubbed Unsupervised Hyperbolic Metric Learning with Hierarchical Similarity, which can effectively excavate the inherent semantic information from unlabeled data. Considering the hierarchical relations between images shown in Figure 1, we first embed the data points from original Euclidean space into Hyperbolic space, which induces a new Hyperbolic DML framework. Specifically, we use hierarchical clustering to generate pseudo hierarchical labels rather than binary labels as supervision for DML task as illustrated in Figure 1. And then, we design a novel loss function to enhance the stability of the model using the inherent richer similarity information discovered by hierarchical clustering. It should be noted that the proposed loss takes the similarity degrees of data pairs into account. Thus, it can well characterize the multi-level relations in the learned hyperbolic embedding space, which is suitable for dealing with triplet supervision task. Our contributions can be summarized as follows:

• We propose the first hyperbolic unsupervised deep metric learning framework, which can well capture the hierarchical structure of data by conducting hierarchical clustering in Hyperbolic embedding space.

• We design a new metric loss function for hierarchical relations. Unlike existing metric losses which are only interested in binary similarity, our loss aims to discover richer similarity information in unsupervised manner by taking full advantages of the learned hierarchical labels.

• Our proposed model achieves the state-of-the-art performances on clustering and retrieval tasks over three benchmark datasets, including CARS196, CUB-200-2011 and Stanford Online Products.

2. Related Work

In this section, we review the basic facts about deep metric learning and hyperbolic geometry.
2.1. Deep Metric Learning

With the significant progress of deep learning, a number of deep metric learning approaches have been proposed to learn non-linear mappings of input images [5, 34, 46, 37]. Many recent deep metric learning methods are built on pairwise [14, 40, 30, 42], optimized by computing the pairwise similarities between instances in the embedding space, and Proxy-based [27, 32, 20], guided by comparing each sample with proxies. Generally, pair-based methods can be cast into a unified weighting formulation through General Pair Weighting (GPW) framework [42]. Hard example mining is another often-used technique to speed up convergence and enhance the discriminative power of feature embeddings in deep metric learning [6, 15, 12, 36]. In addition, considering the limitation of mini-batch training, where only a mini-batch of instances is accessible at each iteration, Cross-batch memory (XBM) [43] provides a memory bank for the feature embeddings of past iterations. To this end, the informative pairs can be identified across the dataset instead of a mini-batch. However, most of the mentioned methods can only deal with binary similarity.

2.2. Hyperbolic Geometry

Hyperbolic geometry is a non-Euclidean geometry, which drops the parallel line postulate while keeping the remaining four of the five of the postulates of Euclidean geometry. In contrast with the hypersphere S^d and the Euclidean space \mathbb{R}^d, the hyperbolic space \mathbb{H}^d can be constructed using various isomorphic models such as the Poincaré half-plane model and the Poincaré ball. The d-dimensional Poincaré ball D^d_2 is a model of the hyperbolic space \mathbb{H}^d with curvature τ. Intuitively, hyperbolic spaces can be thought of as continuous versions of trees, which makes it suitable for constructing hierarchical structure information as shown in Figure 2. Hence, trees can be embedded with arbitrarily low error into the Poincaré model of hyperbolic geometry.

Recently, there has been significant research interest on hyperbolic geometry. For example, hyperbolic embeddings have become a popular technique to model real data with tree structure from network science [28]. In order to capture the natural hierarchies of data, hyperbolic embeddings have been successfully integrated into neural networks in the field of computer vision [25, 26, 19] and natural language processing [39]. In particular, hyperbolic (Graph Convolutional) neural networks [4, 11] have been proposed to lead to more faithful embeddings and accurate models. These developments construct the analogs of familiar layers in hyperbolic spaces, i.e., the core neural network operations are conducted in a model of hyperbolic space.

3. Methodology

3.1. Overview

We present a novel hyperbolic deep metric learning method named Unsupervised Hyperbolic Deep Metric Learning with Hierarchical Similarity which provides a hyperbolic DML model towards unlabeled data by mining and using hierarchical similarity information. Our network structure is shown in Figure 3. The model can be divided into two modules, the hyperbolic metric learning module and the hierarchical clustering module.

Given a training set $D = \{x_1, x_2, \cdots, x_n\}$ without explicitly-provided labels, we first extract image features to build a hyperbolic metric space $Z = \{z_i = f(x_i|\theta)\}_{i=1}^n$ through the hyperbolic metric learning module initialized by pre-train model. And then, we conduct hierarchical clustering on the learned hyperbolic metric space. According to the hierarchical clustering result H, similarity degree $S = \{s_{ij}\}_{i,j=1}^n$ of sample pairs will be calculated. Using similarity S as supervision, we can fine-tune the hyperbolic metric learning module guided by our proposed new loss with hierarchical similarity. Throughout this paper, $\| \cdot \|$ denotes the l_2-norm of a vector.

3.2. Hyperbolic Metric Learning

In many real-world applications, only raw data without any extra supervised information (e.g., explicitly-provided labels) can be available. In this scenario, how to discover richer similarity from data itself becomes important. Considering the intrinsic semantic structure of data described in Figure 1, we hope to derive a new metric learning framework to capture such hierarchical similarity. The negative curvature of the hyperbolic space is widely known to accurately capture parent-child relationships [28, 11, 7]. Inspired by this principle, hierarchical relations between training samples call for the use of hyperbolic geometry in our method. Therefore, we introduce a hyperbolic metric learn-
Figure 3. The hyperbolic unsupervised deep metric learning framework of our proposed method. As the figure shows, our network consists of two modules, hierarchical clustering module and hyperbolic metric module, which can be trained simultaneously. In each iteration, the hierarchical clustering module conducts hierarchical clustering over the learned metric space, and then the metric module is trained with the supervision of the pseudo hierarchical labels yielded by the clustering process. For the initialization, we use the pre-trained model to extract feature vectors for clustering.

The framework that benefits from the expressiveness of both metric neural networks and hyperbolic embeddings.

There are several well-studied models of hyperbolic geometry, which endow Euclidean space with a hyperbolic metric. Following the majority of existing works, we consider the Poincaré ball model of hyperbolic space, which corresponds to a Riemannian manifold with a particular metric tensor. The Poincaré ball model is defined by the manifold $D^d_\tau = \{ x \in \mathbb{R}^d : \tau \| x \| < 1, \tau \geq 0 \}$, where additional hyperparameter τ denotes the curvature of Poincaré ball. In this model, the induced distance between any two points $z_i, z_j \in D^d_\tau$ is given by the following expression [28]:

$$d_D(z_i, z_j) = \cosh^{-1} \left(1 + \frac{\| z_i - z_j \|^2}{(1 - \| z_i \|^2)(1 - \| z_j \|^2)} \right).$$

(1)

Then, we add the hyperbolic network layer at the end of the original deep metric learning model (i.e. convolutional neural network with a full connected layer) to map the input features from \mathbb{R}^n to the hyperbolic manifold D^d_τ via the "exp" mapping, which is given by:

$$z = \exp^\tau(x) := \tanh \left(\sqrt{\tau} \| x \| \right) \frac{x}{\sqrt{\tau} \| x \|}.$$
(2)

In this module, we use Euclidean operations in most layers (i.e. convolutional neural network with a full connected layer), and utilize the "exp" map to move from the Euclidean to hyperbolic space at the end of the network.

3.3. Hierarchical Similarity Generation

For better guiding the hyperbolic metric learning module, we hope to discover richer relation information rather than binary similarity. Hierarchical clustering is an effective and often-used tool for discovering meaningful representations of data. As shown in Figure 4, in hierarchical clustering, data points are arranged as the leaves of a multi-layered tree structure with internal nodes representing meaningful and potentially overlapping sub-clusters of the data. To this end, we conduct hierarchical clustering in the learned hyperbolic space.

In each merging step of hierarchical clustering, we calculate the distance between any two sub-clusters as:

$$d_{ab} = \frac{1}{n_a n_b} \sum_{x^a_i \in C_a, x^b_j \in C_b} \| z^a_i - z^b_j \|,$$
(3)

where z^a_i, z^b_j are samples in the sub-cluster C_a, C_b respectively, and n_a, n_b represent the number of samples in C_a, C_b respectively. The closest two sub-clusters will be aggregated. For example, in Figure 4, we set distance threshold $\{5, 10, 15\}$, and obtain three similarity levels. Under different similarity levels, data is divided into different sub-clusters, e.g., data is composed of
two sub-clusters in the similarity level 3. To this end, we define similarity degree s_{ij} to measure the similarity between two samples z_i and z_j as:

$$s_{ij} = L_k,$$

where $L_k \in \{1, 2, \ldots, K\}$ represents the similarity level, in which z_i and z_j are merged into the same sub-cluster.

3.4. Loss Function

Loss function plays a key role in many deep learning methods. However, most existing metric loss can only deal with binary supervision. By taking full advantage of the learned hierarchical labels in the previous subsection, we design a new log-ratio loss that aims to approximate the ratio of similarity degrees by the ratio of distances in the learned hyperbolic embedding space. Given triplet sample $\{z_i, z_j, z_l\} \in S$, the log-ratio loss can be defined as:

$$L(i, j, l) = \left(\log \frac{\|z_i - z_j\|}{\|z_i - z_l\|} - \log \Omega^{s_{ij} - s_{il}} \right)^2,$$

where $\Omega > 0$ is the hyperparameter to trade off the similarity degree. The loss function (5) contains two items: the first item is the log ratio of distance between sample pairs and the second item is the log ratio of corresponding similarity degree. The similarity between z_i and z_j is represented by $\Omega^{s_{ij}}$, where Ω denotes the base of similarity set manually. Through this new loss, the distance of sample pairs in hyperbolic embedding space will approximately equal to the ratio between their similarity distance. As shown in Figure 5, our proposed loss function can assign different distance thresholds to negative samples to make full use of richer similarity information. Algorithm 1 details the iterating procedure of our proposed method.

3.5. Supervised extension of our method

Our method can be easily extended to supervised version. For better scalability, we define new adaptive hierarchical margin which can be integrated into any metric loss function. Given a training data $\mathcal{D} = \{x_1, x_2, \ldots, x_n\}$ with labels $Y = \{y_1, y_2, \ldots, y_n\}$, we first extract image features
to form a hyperbolic metric space $Z = \{z_i = f(x_i; \theta)\}_{i=1}^n$ through the hyperbolic metric learning module with binary similarity. Within labels, we can calculate the similarity distance between a-th class and b-th class

$$d_{ab} = \frac{1}{n_an_b} \sum_{z_i^a \in C_a, z_j^b \in C_b} \|z_i^a - z_j^b\|,$$

and average inner similarity distance of a-th class

$$d_a = \frac{1}{n_a^2 - n_a} \sum_{z_i^a, z_j^a \in C_a} \|z_i^a - z_j^a\|,$$

where z_i^a, z_j^b are samples in the cluster C_a, C_b respectively, and n_a, n_b represent the number of samples in C_a, C_b respectively.

Given an anchor z_a, the positive margin with positive sample z_j is defined as

$$M_p = d_a + \gamma,$$

and the negative margin with negative sample z_l is represented as

$$M_n = d_{ab} - d_a + \gamma,$$

where γ is a constant parameter following [12].

4. Experiments

This section describes our setting for the experiment and reports the performance of our algorithm compared to existing methods. More experimental results on the supervised version of our method are given in supplementary materials.

4.1. Datasets

The proposed approach is tested on the following standard benchmark datasets for image retrieval. For the retrieval task, we use the standard performance metric Recall@K, i.e. computing the percentage of testing samples which have at least one example from the same category in K nearest neighbors. We do not use ground-truth labels in all experiments.

- **CARS196** [23] includes 16,185 images of 196 car types. 8,054 images in the first 98 classes are used for training, and 8,131 images in the remaining 98 classes are used for testing.

- **CUB-200-2011** [41] contains 11,788 images of 200 bird species. We use the first 100 classes (5,864 images) for training and the other 100 classes (5,924 images) for testing.

- **Stanford Online Products (SOP)** [30]: is composed of 12,053 images of 22,634 products from eBay.com. We use the first 11,318 products with 59,551 images and the other 11,316 products with 60,502 images for training and testing, respectively.

4.2. Implementation Details

We utilized the Pytorch deep learning package [31] in all experiments. Following the standard data pre-processing paradigm, we normalized the input images into 256×256 at first, and then cropped them to 227×227. For data augmentation, random cropping and random horizontal mirroring were performed before training. For the metric network, the GoogLeNet [38] pre-trained on ILSVRC 2012-CLS [33] was adopted as a backbone network for fair comparison. Moreover, on top of the network following the global pooling layer, a fully-connected layer was added with random initialization. We fixed the feature embedding size to 512 and set the batch size to 80. Adam optimizer [22] is used in all experiments and the weigh decay is set to $1e^{-5}$. We set the curvature of Poincaré ball $\tau = 1$.

4.3. Performance Comparisons with State-of-the-art Methods

To evaluate the performance of our proposed method, we compare it with the state-of-the-art unsupervised methods on image retrieval tasks. Self-supervised transformed attention consistency method (denoted by TAC-CCL) [24], the invariant and spreading instance feature method (denoted by Instance) [49] and the mining on manifolds (MOM) [18] are current state-of-the-art methods for unsupervised metric learning. In addition three other methods introduced in Instance can be adopted for unsupervised DML task: Deep-Cluster [3], NCE (Noise-Contrastive Estimation) [47] and Examplar [8]. All of these methods use the GoogLeNet [38] as the backbone encoder. We include the results of these methods for comparisons.

Following the conventional paradigm of unsupervised DML, we adapt some classical DML methods such as Contrastive loss [5], Triplet loss [16] and Lifted Structure loss [30] from supervised metric learning to unsupervised metric learning using k-means clustering to assign pseudo labels. These methods can be regarded as baseline.

Table 1 and Table 3 present the experimental results of our proposed method and compared methods on the CUB, Cars, and SOP datasets. Note that bold numbers represent the results of our proposed method. It is obvious that our method significantly outperforms state-of-the-art unsupervised DML methods on all the datasets, which demonstrates the effectiveness of our proposed approach. Considering that TAC-CCL is a plug-and-play self-supervised module for DML that can be easily combined with our method, it is fairer to compare our method with TAC-CCL (baseline). On the Cars196 dataset, our method outperforms the current state-of-the-art TAC-CCL (baseline) method by 4.7% and even improves the Recall@8 by 3.6% compared with TAC-CCL. On the CUB dataset, our method improves the Recall@1 by 5.0% and is even competitive to some supervised metric learning methods. Compared with these meth-
4.4. Ablation Studies

In this section, we conduct several ablation studies to demonstrate the effectiveness of different components in our proposed method.

4.4.1 Impact of different similarity levels

The proposed log-ratio loss is based on hierarchical clustering in the hyperbolic metric space. How to construct appropriate hierarchical similarity according to the results of hierarchical clustering is essential. Therefore, the number of similarity level K is a critical parameter for the proposed method. We conduct the following ablation experiment on the CUB data to study the impact of K. We select different K to derive corresponding hierarchical clusters as shown in Table 2. The results for Recall@1, 2, 4, 8 are presented in Figure 6. We can see that unsupervised metric learning performance increases with the number of similarity degree since it contains richer similarity with enhanced discriminative power. However, excessive hierarchical information may degrade the performance because the intrinsic structure of data is not so complicated.

4.4.2 Impact of different hyperparameter Ω

In our proposed log-ratio metric loss, we hope to make the ratio between the distance of sample pairs approximately equal to the ratio between their similarity distance. Therefore, assigning appropriate similarity distance to sample pairs guided by similarity degree is also very important in our method. In this ablation study, we discuss the impact of different Ω (i.e. the preset base of similarity) to model performance. For example, the hyperparameter Ω ranges from 2, 10, 100 to 1000. The results for Recall@1, 2, 4, 8 are presented in Figure 7. We can see that when $\Omega = 10$, our method achieves the best performance. It is shown that the distance ratio of sample pairs in adjacent similarity degree is approximate to 10 on CUB dataset.

5. Conclusion

We have proposed an Unsupervised Deep Hyperbolic Metric Learning method. Unlike existing works, our new method takes account into the hierarchical similarity among samples in modeling by virtue of Hyperbolic embedding and hierarchical clustering. In addition, we also presented a novel log-ratio loss function to utilize the hierarchical similarity supervision. We demonstrated that our method outperforms several state-of-the-art methods by a great margin on several standard benchmark datasets.

Acknowledgment

J.Y. and C.D. were supported in part by the National Natural Science Foundation of China under Grant 62071361, and the National Key R&D Program of China under Grant 2017YFE0104100.
Figure 6. Recall@$k(\%)$ performance on CUB dataset in comparison with different number of similarity degree K.

Figure 7. Recall@$k(\%)$ performance on CUB dataset in comparison with different number of Ω.

<table>
<thead>
<tr>
<th>Method</th>
<th>CARS196</th>
<th>CUB-200-2011</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R@1</td>
<td>R@2</td>
</tr>
<tr>
<td>Baseline with Contrastive Loss [5]</td>
<td>33.3</td>
<td>44.2</td>
</tr>
<tr>
<td>Baseline with Triplet Loss [16]</td>
<td>37.9</td>
<td>49.3</td>
</tr>
<tr>
<td>Baseline with LiftedStructure Loss [30]</td>
<td>42.4</td>
<td>53.9</td>
</tr>
<tr>
<td>Exampler</td>
<td>36.5</td>
<td>48.1</td>
</tr>
<tr>
<td>NCE</td>
<td>37.5</td>
<td>48.7</td>
</tr>
<tr>
<td>DeepCluster</td>
<td>32.6</td>
<td>43.8</td>
</tr>
<tr>
<td>MOM</td>
<td>35.5</td>
<td>48.2</td>
</tr>
<tr>
<td>Instance</td>
<td>41.3</td>
<td>52.3</td>
</tr>
<tr>
<td>TAC-CCL(Baseline)</td>
<td>43.0</td>
<td>53.8</td>
</tr>
<tr>
<td>TAC-CCL</td>
<td>46.1</td>
<td>56.9</td>
</tr>
<tr>
<td>Ours</td>
<td>47.7</td>
<td>58.9</td>
</tr>
</tbody>
</table>

Table 3. Recall@k performance on CARS and CUB datasets in comparison with other methods.

<table>
<thead>
<tr>
<th>Method</th>
<th>CARS196</th>
<th>CUB-200-2011</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R@1</td>
<td>R@2</td>
</tr>
<tr>
<td>Baseline with Contrastive Loss [5] + Hyperbolic Layer</td>
<td>33.3</td>
<td>44.2</td>
</tr>
<tr>
<td>Baseline with Triplet Loss [16] + Hyperbolic Layer</td>
<td>37.9</td>
<td>49.3</td>
</tr>
<tr>
<td>Baseline with LiftedStructure Loss [30] + Hyperbolic Layer</td>
<td>42.4</td>
<td>53.9</td>
</tr>
<tr>
<td>Ours</td>
<td>47.7</td>
<td>58.9</td>
</tr>
</tbody>
</table>

Table 4. The performance of different components from our method on cars and CUB datasets.
References

[33] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

