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Abstract

Learning feature embedding directly from images with-

out any human supervision is a very challenging and essen-

tial task in the field of computer vision and machine learn-

ing. Following the paradigm in supervised manner, most

existing unsupervised metric learning approaches mainly

focus on binary similarity in Euclidean space. However,

these methods cannot achieve promising performance in

many practical applications, where the manual information

is lacking and data exhibits non-Euclidean latent anatomy.

To address this limitation, we propose an Unsupervised Hy-

perbolic Metric Learning method with Hierarchical Simi-

larity. It considers the natural hierarchies of data by taking

advantage of Hyperbolic metric learning and hierarchical

clustering, which can effectively excavate richer similar-

ity information beyond binary in modeling. More impor-

tantly, we design a new loss function to capture the hier-

archical similarity among samples to enhance the stability

of the proposed method. Extensive experimental results on

benchmark datasets demonstrate that our method achieves

state-of-the-art performance compared with current unsu-

pervised deep metric learning approaches.

1. Introduction

Learning a precise distance metric for similarity mea-

surement is a key ingredient of various computer vision

tasks, such as face recognition [13, 50], image classification

[5, 53, 6], and person re-identification [52]. Therefore, met-

ric learning has aroused much attention and many classical

methods have been proposed in the past decades [6, 45, 13].

With the resurgence of deep neural networks, Deep Metric

Learning (DML) has emerged as a powerful tool in many

practical applications [34, 30, 2, 29, 44]. It targets at seek-

ing a reliable embedding space by virtue of nonlinear deep

neural networks, where a well-designed metric loss func-

*J.Y. and L.L. made equal contributions, C.D. is corresponding author.

tion brings positive samples closer to anchors, but pushes

negative samples far away from the anchors.

Most of the existing DML methods usually use large-

scale data for training. They can be roughly divided into

two categories: structure-learning methods and hard min-

ing methods. For the former, the crucial point is to con-

struct a proper loss function that plays a key role in many

well-known DML methods. To this end, numbers of objec-

tives [5, 34, 30, 40, 35, 29, 32, 20], including commonly-

used contrastive loss [5], triplet loss [34] and lifted structure

loss [30], have been reported to mine underlying similarity

relationships among training data in the literature. While

the second category, i.e., hard mining approaches, intends

to enhance the discriminative ability of the learned embed-

ding by sampling meaningful hard examples. Since training

with numerous easy examples may suffer from inefficiency

and poor performance, hard sample mining has become a

prevalent technique in DML [30, 15, 12, 10, 9, 36].

However, in real-world tasks, supervised DML methods

are often inapplicable since the labeled data is not avail-

able. To address this issue, many unsupervised deep learn-

ing algorithms have been introduced [48, 51, 17, 49], which

attempt to learn the inherent structure of training data with-

out using explicitly-provided labels. A common unsuper-

vised DML manner mines potential sample relationship by

an auxiliary algorithm such as clustering, and then utilizes

the learned pair-wise information as input to perform the

DML task. For example, MOM [18] exploits a random walk

process to discover the neighborhood of unlabeled data in

the manifold space and the Euclidean space to excavate the

pairwise information. Compared with the ground truth, the

learned pairwise information usually contains label noise,

which makes the DML stage unstable. Therefore, how

to discover more semantic information as supervision is

still a big challenge. Moreover, inspired by self-supervised

learning [17, 49], TAC-CCL [24] integrates self-supervised

module into the common unsupervised DML framework to

boost the performance. Nonetheless, this algorithm ignores

the latent metric information of unlabeled data. It is not
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Figure 1. The brief description of different ways to excavate and use similarity information in CUB dataset. In conventional deep metric

learning (bottom), given an anchor, we can only address positive pairs and negative pairs as supervision, and all negative pairs will get the

same similarity. In fact, due to the complicated hierarchy, negative samples of the same anchor have different similarity degrees. To tackle

this problem, our method (top) excavates this hierarchical information and give different negative pairs different similarity degrees.

so much an unsupervised DML method as a plug-and-play

self-supervised module extended to DML.

To the best of our knowledge, as shown in Figure 1,

images often contain representatives of multiple classes in

real-world applications. For example, suppose an anchor in

Green Jay, instance in Florida Jay and Ovenbird are both

negative samples, but the anchor is more similar to the point

of Florida Jay than one of Ovenbird. Because all samples

in Florida Jay and Green Jay belong to the same second

class Jay. Previous approaches typically relying on binary

labels indicating whether the image pairs are similar or not

only address a small subset of similarity relations [21]. Due

to the powerful performance of deep learning with labeled

data, such supervised DML methods can sometimes obtain

good enough results. However, lacking explicitly-provided

labels, the performance of these unsupervised DML meth-

ods with binary supervision is severely degraded in facing

some specific scenarios. On the other hand, most existing

DML methods prefer to use Euclidean embeddings to facil-

itate calculation. However, recent research has proven that

many types of data from a multitude of fields (e.g. Net-

work Science and Computer Vision) exhibit a highly non-

Euclidean latent anatomy [1]. In such cases, these DML

methods based on Euclidean space obviously do not pro-

vide the most powerful or meaningful geometrical repre-

sentations of data. As a result, to improve the model perfor-

mance, it is extremely important and challenging to capture

the complicated structure that implicitly exists in real data.

In this work, we propose a novel unsupervised DML

method, dubbed Unsupervised Hyperbolic Metric Learn-

ing with Hierarchical Similarity, which can effectively ex-

cavate the inherent semantic information from unlabeled

data. Considering the hierarchical relations between images

shown in Figure 1, we first embed the data points from orig-

inal Euclidean space into Hyperbolic space, which induces

a new Hyperbolic DML framework. Specifically, we use hi-

erarchical clustering to generate pseudo hierarchical labels

rather than binary labels as supervision for DML task as il-

lustrated in Figure 1. And then, we design a novel loss func-

tion to enhance the stability of the model using the inher-

ent richer similarity information discovered by hierarchical

clustering. It should be noted that the proposed loss takes

the similarity degrees of data pairs into account. Thus, it

can well characterize the multi-level relations in the learned

hyperbolic embedding space, which is suitable for dealing

with triplet supervision task. Our contributions can be sum-

marized as follows:

• We propose the first hyperbolic unsupervised deep

metric learning framework, which can well capture the

hierarchical structure of data by conducting hierarchi-

cal clustering in Hyperbolic embedding space.

• We design a new metric loss function for hierarchical

relations. Unlike existing metric losses which are only

interested in binary similarity, our loss aims to discover

richer similarity information in unsupervised manner

by taking full advantages of the learned hierarchical

labels.

• Our proposed model achieves the state-of-the-art per-

formances on clustering and retrieval tasks over three

benchmark datasets, including CARS196, CUB-200-

2011 and Stanford Online Products.

2. Related Work

In this section, we review the basic facts about deep met-

ric learning and hyperbolic geometry.
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2.1. Deep Metric Learning

With the significant progress of deep learning, a number

of deep metric learning approaches have been proposed to

learn non-linear mappings of input images [5, 34, 46, 37].

Many recent deep metric learning methods are built on pair-

based [14, 40, 30, 42], optimized by computing the pair-

wise similarities between instances in the embedding space,

and Proxy-based [27, 32, 20], guided by comparing each

sample with proxies. Generally, pair-based methods can

be cast into a unified weighting formulation through Gen-

eral Pair Weighting (GPW) framework [42]. Hard exam-

ple mining is another often-used technique to speed up con-

vergence and enhance the discriminative power of feature

embeddings in deep metric learning [6, 15, 12, 36]. In

addition, considering the limitation of mini-batch training,

where only a mini-batch of instances is accessible at each it-

eration, Cross-batch memory (XBM) [43] provides a mem-

ory bank for the feature embeddings of past iterations. To

this end, the informative pairs can be identified across the

dataset instead of a mini-batch. However, most of the men-

tioned methods can only deal with binary similarity.

2.2. Hyperbolic Geometry

Hyperbolic geometry is a non-Euclidean geometry,

which drops the parallel line postulate while keeping the

remaining four of the five of the postulates of Euclidean

geometry. In contrast with the hypersphere S
d and the

Euclidean space R
d, the hyperbolic space H

d can be

constructed using various isomorphic models such as the

Poincaré half-plane model and the Poincaré ball. The d-

dimensional Poincaré ball Dd
τ is a model of the hyperbolic

space H
d with curvature τ . Intuitively, hyperbolic spaces

can be thought of as continuous versions of trees, which

makes it suitable for constructing hierarchical structure in-

formation as shown in Figure 2. Hence, trees can be em-

bedded with arbitrarily low error into the Poincaré model of

hyperbolic geometry.

Recently, there has been significant research interest on

hyperbolic geometry. For example, hyperbolic embeddings

have become a popular technique to model real data with

tree structure from network science [28]. In order to cap-

ture the natural hierarchies of data, hyperbolic embeddings

have been successfully integrated into neural networks in

the field of computer vision [25, 26, 19] and natural lan-

guage processing [39]. In particular, hyperbolic (Graph

Convolutional) neural networks [4, 11] have been proposed

to lead to more faithful embeddings and accurate models.

These developments construct the analogs of familiar lay-

ers in hyperbolic spaces, i.e., the core neural network oper-

ations are conducted in a model of hyperbolic space.

Figure 2. The brief comparison between embedding of trees in

Euclidean space (left) and Poincaré Ball (Right). In Poincaré Ball,

purple curves are same length geodesics, i.e. ”straight lines”.

3. Methodology

3.1. Overview

We present a novel hyperbolic deep metric learning

method named Unsupervised Hyperbolic Deep Metric

Learning with Hierarchical Similarity which provides a hy-

perbolic DML model towards unlabeled data by mining

and using hierarchical similarity information. Our network

structure is shown in Figure 3. The model can be divided

into two modules, the hyperbolic metric learning module

and the hierarchical clustering module.

Given a training set D = {x1,x2, · · · ,xn} without

explicitly-provided labels, we first extract image features to

build a hyperbolic metric space Z = {zi = f(xi|θ)}ni=1

through the hyperbolic metric learning module initialized

by pre-train model. And then, we conduct hierarchical clus-

tering on the learned hyperbolic metric space. According

to the hierarchical clustering result H, similarity degree

S = {sij}ni,j=1
of sample pairs will be calculated. Using

similarity S as supervision, we can fine-tune the hyperbolic

metric learning module guided by our proposed new loss

with hierarchical similarity. Throughout this paper, ‖ · ‖
denotes the l2-norm of a vector.

3.2. Hyperbolic Metric Learning

In many real-world applications, only raw data without

any extra supervised information (e.g., explicitly-provided

labels) can be available. In this scenario, how to discover

richer similarity from data itself becomes important. Con-

sidering the intrinsic semantic structure of data described in

Figure 1, we hope to derive a new metric learning frame-

work to capture such hierarchical similarity. The negative

curvature of the hyperbolic space is widely known to ac-

curately capture parent-child relationships [28, 11, 7]. In-

spired by this principle, hierarchical relations between train-

ing samples call for the use of hyperbolic geometry in our

method. Therefore, we introduce a hyperbolic metric learn-
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Figure 3. The hyperbolic unsupervised deep metric learning framework of our proposed metehod. As the figure shows, our network consists

of two modules, hierarchical clustering module and hyperbolic metric module, which can be trained simultaneously. In each iteration, the

hierarchical clustering module conducts hierarchical clustering over the learned metric space, and then the metric module is trained with

the supervision of the pseudo hierarchical labels yielded by the clustering process. For the initialization, we use the pre-trained model to

extract feature vectors for clustering.

ing framework that benefits from the expressiveness of both

metric neural networks and hyperbolic embeddings.

There are several well-studied models of hyperbolic ge-

ometry, which endow Euclidean space with a hyperbolic

metric. Following the majority of existing works, we con-

sider the Poincaré ball model of hyperbolic space, which

corresponds to a Riemannian manifold with a particular

metric tensor. The Poincaré ball model is defined by the

manifold D
d
τ = {x ∈ R

d : τ‖x‖ < 1, τ ≥ 0}, where addi-

tional hyperparameter τ denotes the curvature of Poincaré

ball. In this model, the induced distance between any two

points zi, zj ∈ D
d
τ is given by the following expression

[28]:

dD(zi, zj) = cosh−1

(

1 + 2
‖zi − zj‖2

(1− ‖zi‖2)(1− ‖zj‖2)

)

.

(1)

Then, we add the hyperbolic network layer at the end of

the original deep metric learning model (i.e. convolutional

neural network with a full connected layer) to map the in-

put features from R
n to the hyperbolic manifold D

n
τ via the

“ exp ” mapping, which is given by:

z = expτ (x) := tanh
(√

τ‖x‖
) x√

τ‖x‖ . (2)

In this module, we use Euclidean operations in most lay-

ers (i.e. convolutional neural network with a full connected

layer), and utilize the “ exp ” map to move from the Eu-

clidean to hyperbolic space at the end of the network.

3.3. Hierarchical Similarity Generation

For better guiding the hyperbolic metric learning mod-

ule, we hope to discover richer relation information rather

than binary similarity. Hierarchical clustering is an effective

and often-used tool for discovering meaningful representa-

tions of data. As shown in Figure 4, in hierarchical cluster-

ing, data points are arranged as the leaves of a multi-layered

tree structure with internal nodes representing meaningful

and potentially overlapping sub-clusters of the data. To this

end, we conduct hierarchical clustering in the learned hy-

perbolic space.

In each merging step of hierarchical clustering, we cal-

culate the distance between any two sub-clusters as:

dab =
1

nanb

∑

za
i
∈Ca,z

b
j
∈Cb

‖zai − z
b
j‖, (3)

where z
a
i , zbj are samples in the sub-cluster Ca, Cb respec-

tively, and na, nb represent the number of samples in Ca, Cb

respectively. The closest two sub-clusters will be grouped

together and become a new sub-cluster.

After hierarchical clustering, we can get the distance re-

lationship between all sub-clusters. According to distance

calculated by Eq. (3), the similarity levels of these sub-

clusters will be derived through setting distance threshold

δ. With distance threshold δ, sub-clusters whose distance

is less than δ will be aggregated. For example, in Figure

4, we set distance threshold {5, 10, 15}, and obtain three

similarity levels. Under different similarity levels, data is

divided into different sub-clusters, e.g., data is composed of
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Figure 4. A sample index tree as result of hierarchical clustering

for illustration. In each merging step, two clusters will be merged

into a new cluster according to the distance between clusters.

Therefore, we can set different distance threshold to obtain sim-

ilarity level. For example, we set distance threshold {5, 10, 15},

and get three similarity levels. In similarity 3, the data is divided

into two big clusters G2

1, G2

2.

two sub-clusters in the similarity level 3. To this end, we de-

fine similarity degree sij to measure the similarity between

two samples zi and zj as:

sij = Lk, (4)

where Lk ∈ {1, 2, · · · ,K} represents the similarity level,

in which zi and zj are merged into the same sub-cluster.

3.4. Loss Function

Loss function plays a key role in many deep learning

methods. However, most existing metric loss can only deal

with binary supervision. By taking full advantage of the

learned hierarchical labels in the previous subsection, we

design a new log-ratio loss that aims to approximate the

ratio of similarity degrees by the ratio of distances in the

learned hyperbolic embedding space. Given triplet sample

{zi, zj , zl} ∈ S , the log-ratio loss can be defined as:

L(i, j, l) =
(

log
‖zi − zj‖
‖zi − zl‖

− log Ωsij−sil

)2

, (5)

where Ω > 0 is the hyperparameter to trade off the similar-

ity degree. The loss function (5) contains two items: the first

item is the log ratio of distance between sample pairs and

the second item is the log ratio of corresponding similar-

ity degree. The similarity between zi and zj is represented

by Ωsij , where Ω denotes the base of similarity set man-

ually. Through this new loss, the distance of sample pairs

in hyperbolic embedding space will approximately equal to

the ratio between their similarity distance. As shown in

Figure 5, our proposed loss function can assign different

distance thresholds to negative samples to make full use of

richer similarity information. Algorithm 1 details the iterat-

ing procedure of our proposed method.

Figure 5. The comparison of our proposed loss (bottom) with con-

ventional metric loss with binary similarity (top). Note that the

size of circle is determined by parameter margin in conventional

metric loss and hyperparameter Ω in our loss. Conventional met-

ric loss can only push negative samples equally far, but our loss is

able to push away negative samples with different margin guided

by the intrinsic similarity level.

Algorithm 1 Unsupervised Hyperbolic Deep Metric Learn-

ing Algorithm

Input:

Training dataset D = {x1,x2, · · · ,xn};

Hyperparameter Ω;

The number of similarity level K;

The number of epochs N .

Output:

Best hyperbolic metric model f(xi|θ).
1: Pre-train and initialize the parameters θ.

2: for epoch = 1, 2, · · · , N do

3: Conduct hierarchical clustering in the hyperbolic

metric space according to Eq. (3);

4: Produce triplet inputs with the learned hierarchical

similarity according to Eq. (4);

5: Optimize the parameters θ using Eq. (5) in the hy-

perbolic DML module;

6: end for

7: return θ.

3.5. Supervised extension of our method

Our method can be easily extended to supervised ver-

sion. For better scalability, we define new adaptive hierar-

chical margin which can be integrated into any metric loss

function. Given a training data D = {x1,x2, · · · ,xn} with

labels Y = {y1, y2, · · · , yn}, we first extract image features
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to form a hyperbolic metric space Z = {zi = f(xi|θ)}ni=1

through the hyperbolic metric learning module with binary

similarity. Within labels, we can calculate the similarity dis-

tance between a-th class and b-th class

dab =
1

nanb

∑

za
i
∈Ca,z

b
j
∈Cb

‖zai − z
b
j‖, (6)

and average inner similarity distance of a-th class

da =
1

n2
a − na

∑

za
i
,za

j
∈Ca

‖zai − z
a
j ‖, (7)

where z
a
i , zbj are samples in the cluster Ca, Cb respectively,

and na, nb represent the number of samples in Ca, Cb re-

spectively.

Given an anchor zi, the positive margin with positive

sample zj is defined as

Mp = da + γ, (8)

and the negative margin with negative sample zl is repre-

sented as

Mn = dab − da + γ, (9)

where γ is a constant parameter following [12].

4. Experiments

This section describes our setting for the experiment and

reports the performance of our algorithm compared to exist-

ing methods. More experimental results on the supervised

version of our method are given in supplementary materials.

4.1. Datasets

The proposed approach is tested on the following stan-

dard benchmark datasets for image retrieval. For the

retrieval task, we use the standard performance metric

Reall@K, i.e. computing the percentage of testing samples

which have at least one example from the same category in

K nearest neighbors. We do not use ground-truth labels in

all experiments.

• CARS196 [23] includes 16,185 images of 196 car

types. 8,054 images in the first 98 classes are used for

training, and 8,131 images in the remaining 98 classes

are used for testing.

• CUB-200-2011 [41] contains 11,788 images of 200

bird species. We use the first 100 classes (5,864 im-

ages) for training and the other 100 classes (5,924 im-

ages) for testing.

• Stanford Online Products (SOP) [30]: is composed

of 12,053 images of 22,634 products from eBay.com.

We use the first 11,318 products with 59,551 images

and the other 11,316 products with 60,502 images for

training and testing, respectively.

4.2. Implementation Details

We utilized the Pytorch deep learning package [31] in

all experiments. Following the standard data pre-processing

paradigm, we normalized the input images into 256×256 at

first, and then cropped them to 227×227. For data augmen-

tation, random cropping and random horizontal mirroring

were performed before training. For the metric network, the

GoogLeNet [38] pre-trained on ILSVRC 2012-CLS [33]

was adopted as a backbone network for fair comparison.

Moreover, on top of the network following the global pool-

ing layer, a fully-connected layer was added with random

initialization. We fixed the feature embedding size to 512
and and set the batch size to 80. Adam optimizer [22] is

used in all experiments and the weigh decay is set to 1e−5.

We set the curvature of Poincaré ball τ = 1.

4.3. Performance Comparisons with Stateofthe
art Methods

To evaluate the performance of our proposed method, we

compare it with the state-of-the-art unsupervised methods

on image retrieval tasks. Self-supervised transformed atten-

tion consistency method (denoted by TAC-CCL) [24], the

invariant and spreading instance feature method (denoted

by Instance) [49] and the mining on manifolds (MOM) [18]

are current state-of-the-art methods for unsupervised met-

ric learning. In addition three other methods introduced in

Instance can be adopted for unsupervised DML task: Deep-

Cluster [3], NCE (Noise-Contrastive Estimation) [47] and

Examplar [8]. All of these methods use the GoogLeNet

[38] as the backbone encoder. We include the results of

these methods for comparisons.

Following the conventional paradigm of unsupervised

DML, we adapt some classical DML methods such as Con-

trastive loss [5], Triplet loss [16] and Lifted Structure loss

[30] from supervised metric learning to unsupervised metric

learning using k-means clustering to assign pseudo labels.

These methods can be regarded as baseline.

Table 1 and Table 3 present the experimental results of

our proposed method and compared methods on the CUB,

Cars, and SOP datasets. Note that bold numbers represent

the results of our proposed method. It is obvious that our

method significantly outperforms state-of-the-art unsuper-

vised DML methods on all the datasets, which demonstrates

the effectiveness of our proposed approach. Considering

that TAC-CCL is a plug-and-play self-supervised module

for DML that can be easily combined with our method, it

is fairer to compare our method with TAC-CCL (baseline).

On the Cars196 dataset, our method outperforms the cur-

rent state-of-the-art TAC-CCL (baseline) method by 4.7%
and even improves the Recall@8 by 3.6% compared with

TAC-CCL. On the CUB dataset, our method improves the

Recall@1 by 5.0% and is even competitive to some super-

vised metric learning methods. Compared with these meth-
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Method
SOP

R@1 R@10 R@100

Baseline + CL [5] 58.6 74.3 86.7

Baseline + TL [16] 59.4 74.8 87.0

Baseline + LL [30] 60.3 74.2 86.9

Exampler 45.0 60.3 75.2

NCE 46.6 62.3 76.8

DeepCluster 34.6 53.6 66.8

MOM 43.3 57.2 73.2

Instance 48.9 64.0 78.0

TAC-CCL(Baseline) 62.5 76.5 87.2

TAC-CCL 63.9 77.6 87.8

Ours 65.1 78.2 88.3

Table 1. Recall@K performance on SOP in comparison with other

methods.

ods only using binary similarity, our method can capture

richer hierarchical similarity information, which boosts our

performance in an unsupervised manner.

4.4. Ablation Studies

In this section, we conduct several ablation studies to

demonstrate the effectiveness of different components in

our proposed method.

4.4.1 Impact of different similarity levels

The proposed log-ratio loss is based on hierarchical cluster-

ing in the hyperbolic metric space. How to construct ap-

propriate hierarchical similarity according to the results of

hierarchical clustering is essential. Therefore, the number

of similarity level K is a critical parameter for the proposed

method. We conduct the following ablation experiment on

the CUB data to study the impact of K. We select different

K to derive corresponding hierarchical clusters as shown in

Table 2. The results for Recall@1, 2, 4, 8 are presented

in Figure 6. We can see that unsupervised metric learning

performance increases with the number of similarity degree

since it contains richer similarity with enhanced discrimi-

native power. However, excessive hierarchical information

may degrade the performance because the intrinsic structure

of data is not so complicated.

4.4.2 Impact of different hyperparameter Ω

In our proposed log-ratio metric loss, we hope to make the

ratio between the distance of sample pairs approximately

equal to the ratio between their similarity distance. There-

fore, assigning appropriate similarity distance to sample

K hierarchical clusters

1 100

2 100 → 50

3 100 → 75 → 25

4 100 → 70 → 40 → 10
Table 2. The description of different K and corresponding hierar-

chical clusters.

pairs guided by similarity degree is also very important in

our method. In this ablation study, we discuss the impact of

different Ω (i.e. the preset base of similarity) to model per-

formance. For example, the hyperparameter Ω ranges from

2, 10, 100 to 1000. The results for Recall@1, 2, 4, 8 are

presented in Figure 7. We can see that when Ω = 10, our

method achieves the best performance. It is shown that the

distance ratio of sample pairs in adjacent similarity degree

is approximate to 10 on CUB dataset.

4.4.3 Performance contributions analysis

In this ablation study, we aim to identify the contribution of

each algorithm component on different datasets. Our pro-

posed method contains three major components: hyperbolic

layer for DML module, hierarchical clustering, and the new

log-ratio-based metric loss with hierarchical similarity. In

order to evaluate the effect of different components of the

proposed method, we conduct unsupervised DML task on

the CUB and CARS datasets using different method con-

figurations: (1) Baseline with classical metric losses; (2)

Baseline with classical metric losses + hyperbolic layer; (3)

Our method. The experimental results are summarized in

Table 4. It finds that both the hyperbolic geometry and the

proposed new metric loss with hierarchical similarity sig-

nificantly improve the performance of baseline.

5. Conclusion

We have proposed an Unsupervised Deep Hyperbolic

Metric Learning method. Unlike existing works, our new

method takes account into the hierarchical similarity among

samples in modeling by virtue of Hyperbolic embedding

and hierarchical clustering.In addition, we also presented a

novel log-ratio loss function to utilize the hierarchical sim-

ilarity supervision. We demonstrated that our method out-

performs several state-of-the-art methods by a great margin

on several standard benchmark datasets.
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Figure 6. Recall@k(%) performance on CUB dataset in comparison with different number of similarity degree K.

Figure 7. Recall@k(%) performance on CUB dataset in comparison with different number of Ω.

Method
CARS196 CUB-200-2011

R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8

Baseline with Contrastive Loss [5] 33.3 44.2 55.5 67.2 48.8 62.4 74.1 84.2

Baseline with Triplet Loss [16] 37.9 49.3 61.4 72.9 50.7 62.4 73.4 82.8

Baseline with LiftedStructure Loss [30] 42.4 53.9 65.5 76.5 53.1 66.1 76.8 85.6

Exampler 36.5 48.1 59.2 71.0 38.2 50.3 62.8 75.0

NCE 37.5 48.7 59.8 71.5 39.2 51.4 63.7 75.8

DeepCluster 32.6 43.8 57.0 69.5 42.9 54.1 65.6 76.2

MOM 35.5 48.2 60.6 72.4 45.3 57.8 68.6 78.4

Instance 41.3 52.3 63.6 74.9 46.2 59.0 70.1 80.2

TAC-CCL(Baseline) 43.0 53.8 65.3 76.0 53.9 66.2 76.9 85.8

TAC-CCL 46.1 56.9 67.5 76.7 57.5 68.8 78.8 87.2

Ours 47.7 58.9 70.3 80.3 58.9 70.6 80.4 87.7

Table 3. Recall@K performance on CARS and CUB datasets in comparison with other methods.

Method
CARS196 CUB-200-2011

R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8

Baseline with Contrastive Loss [5] 33.3 44.2 55.5 67.2 48.8 62.4 74.1 84.2

+ Hyperbolic Layer 43.7 55. 66.9 78.1 54.5 68.1 79.0 87.5

Baseline with Triplet Loss [16] 37.9 49.3 61.4 72.9 50.7 62.4 73.4 82.8

+ Hyperbolic Layer 44.7 56.4 67.6 78.3 55.1 67.9 78.3 86.5

Baseline with LiftedStructure Loss [30] 42.4 53.9 65.5 76.5 53.1 66.1 76.8 85.6

+ Hyperbolic Layer 44.3 55.5 66.4 77.5 55.1 66.9 78.0 86.1

Ours 47.7 58.9 70.3 80.3 58.9 70.6 80.4 87.7

Table 4. The performance of different components from our method on Cars and CUB datasets.
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