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Abstract

3D object detection is an important module in au-

tonomous driving and robotics. However, many existing

methods focus on using single frames to perform 3D de-

tection, and do not fully utilize information from multi-

ple frames. In this paper, we present 3D-MAN: a 3D

multi-frame attention network that effectively aggregates

features from multiple perspectives and achieves state-of-

the-art performance on Waymo Open Dataset. 3D-MAN

first uses a novel fast single-frame detector to produce box

proposals. The box proposals and their corresponding fea-

ture maps are then stored in a memory bank. We design a

multi-view alignment and aggregation module, using atten-

tion networks, to extract and aggregate the temporal fea-

tures stored in the memory bank. This effectively combines

the features coming from different perspectives of the scene.

We demonstrate the effectiveness of our approach on the

large-scale complex Waymo Open Dataset, achieving state-

of-the-art results compared to published single-frame and

multi-frame methods.

1. Introduction

3D object detection is an important problem in com-

puter vision as it is widely used in applications, such as au-

tonomous driving and robotics. Autonomous driving plat-

forms require precise 3D detection to build an accurate rep-

resentation of the world, which is in turn used in down-

stream models that make critical driving decisions.

LiDAR provides a high-resolution accurate 3D view of

the world. However, at any point of time, the LiDAR sensor

collects only a single perspective of the scene. It is often the

case that the LiDAR points detected on an observed object

correspond to only a partial view of it. Detecting these par-

tially visible instances is an ill-posed problem because there

exist multiple reasonable predictions (shown as red and blue

boxes in the upper row of Figure 1). These potential am-

biguous scenarios can be a bottleneck for single-frame 3D

detectors (Table 1).

∗Work done during an internship at Google Brain.
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Figure 1. Upper row: Potential detections given LiDAR from a

single frame demonstrating ambiguity between many reasonable

predictions. Lower row: After merging the points aligned across 4

frames, there is more certainty for the correct box prediction.

IoU threshold 0.3 0.5 0.7

AP (%) 94.72 88.97 63.27

Table 1. We vary the intersection-over-union (IoU) threshold for

considering a predicted box correctly matched to a ground-truth

box, and measure the performance of the PointPillars model on the

Waymo Open Dataset’s validation set. A lower IoU threshold cor-

responds to allowing less accurate boxes to match. This shows that

improving the box localization could significantly improve model

performance.

In the autonomous driving scenario, as the vehicle pro-

gresses, the sensors pick up multiple views of the world,

making it possible to resolve the aforementioned localiza-

tion ambiguity. Multiple frames across time can provide

different perspectives of an observed object instance. An

effective multi-frame detection method should be able to ex-

tract relevant features from each frame and aggregate them,

so as to obtain a representation that combines multiple per-

spectives (Figure 1). Research in 3D multi-frame detec-

tion has been limited due to a lack of available datasets

with well-calibrated multi-frame data. Fortunately, recently

released large-scale 3D sequence datasets (NuScenes [2],

Waymo Open Dataset [23]) have made such data available.

A straight-forward approach to fusing multi-frame point
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Model Stationary (%) Slow (%) Medium (%) Fast (%)

1-frame 60.01 66.64 65.02 71.90

4-frames 62.4 67.39 66.68 77.99

8-frames 63.7 67.98 66.29 72.30

Table 2. Velocity breakdowns of vehicle AP metrics for PointPil-

lars models using point concatenation. For the 8-frame model,

we find that its benefits come from slow-moving vehicles. Fast-

moving objects no longer benefit from a large number of frames

since the LiDAR points are no longer aligned across the frames.

clouds is to use point concatenation, which simply com-

bines points across different frames together [2]. The com-

bined point cloud is then used as input to a single-frame de-

tector. This approach works well for static and slow-moving

objects since the limited movement implies that the LiDAR

points will be mostly aligned across the frames. However,

when objects are fast-moving or when longer time horizons

are considered, this approach may not be as effective since

the LiDAR points are no longer aligned (Table 2).

As an alternative to point concatenation, Fast-and-

furious [14] attempts to fuse information across frames by

concatenating at a feature map level. However, this still

runs into the same challenge with misaligned feature maps

for fast-moving objects and longer time horizons. Recent

approaches [10, 34] propose using recurrent layers such as

Conv-LSTM or Conv-GRU to aggregate the information

across frames. It turns out that these recurrent approaches

are often computationally expensive.

Our Approach. We propose 3D-MAN: a 3D multi-frame

attention network that is able to extract relevant features

from past frames and aggregate them effectively. 3D-MAN

has three components: (i) a fast single-frame detector, (ii) a

memory bank, and (iii) a multi-view alignment and aggre-

gation module.

The fast single-frame detector (FSD) is an anchor-free

one-stage detector with a novel learning strategy. We

show that a max-pooling based non-maximum suppres-

sion (NMS) algorithm together with a novel Hungarian-

matching based loss is an effective method to generate high-

quality proposals at real-time speeds. These proposals and

the last feature map from FSD are then fed into a memory

bank. The memory bank stores both predicted proposals

and feature maps in previous frames so as to maintain dif-

ferent perspectives for each instance across frames.

The stored proposals and features in the memory bank

are finally fused together through the multi-view alignment

and aggregation module (MVAA), which produces fused

multi-view features for target proposals that are used to

regress bounding boxes for final predictions. MVAA has

two stages: a multi-view alignment stage followed by a

multi-view aggregation stage. The alignment stage works

on each stored frame independently; it uses target propos-

als as queries into a stored frame to extract relevant fea-

tures. The aggregation stage then merges across frames for

each target proposal independently. This can be viewed as

a form of factorization over the attention across proposals

and frames.

We evaluate our model on large-scale Waymo Open

Dataset [23]. Experimental results demonstrate that our

method outperforms published state-of-the-art single-frame

methods and multi-frame methods. Our primary contribu-

tions are listed below.

Key Contributions.

• We propose 3D-MAN: a 3D multi-frame attention net-

work for object detection. We demonstrate that our

method achieves state-of-the-art performance on the

Waymo Open Dataset [23] and provide thorough ab-

lation studies.

• We introduce a novel training strategy for a fast single-

frame detector method that uses max-pooling to per-

form non-maximum suppression and a variant of Hun-

garian matching to compute a detection loss.

• We design an efficient multi-view alignment and ag-

gregation module to extract and aggregate relevant fea-

tures from multiple frames in a memory bank. This

module produces features containing information from

multiple perspectives that perform well for classifica-

tion and bounding box regression.

2. Related Work

3D Single-frame Object Detection. Current 3D object de-

tectors can be categorized into three approaches: voxel-

based methods, point-based methods, and their combina-

tion. First, voxel-based methods transform via voxelization

a set of unordered points into a fixed-size 2D feature map,

on which convolutional neural networks (CNN) can be ap-

plied to generate detection results. Traditional approaches

for voxel feature extraction rely on hand-crafted statistical

quantities or binary encoding [25, 29], while recent works

show that machine-learned features demonstrate favorable

performance [37, 12, 28, 36, 20, 26]. Second, point-based

methods [32, 19, 31, 15, 33] address detection problems by

directly extracting features based on the point cloud, with-

out an explicit discretization step. Finally, recent works

have combined methods from both voxel-based and point-

based feature representations [18] by using the voxel-based

methods to generate proposals and the point-based methods

to refine them.

2D Multi-frame Object Detection. 2D multi-frame object

detection has been widely explored compared to 3D coun-

terparts. 2D detection methods primarily focus on align-

ing objects in a target frame using motion and appearance
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Figure 2. Framework for 3D-MAN: 3D multi-frame attention network. Given the point cloud for a target frame t, a fast single-frame

detector first generates box proposals. These proposals (box parameters) with the feature map (last layer of the backbone network) are

inserted into a memory bank that stores proposals and features for the last n frames. We use a proposal feature generation module to

extract proposal features for each stored frame. Each small rectangle box denotes a proposal and its associated features extracted in

different frames. The multi-view alignment and aggregation module performs attention across proposal features from the memory bank,

using the target frame as queries to extract features for classification and regression. “MP-NMS” and “CA” represent MaxPoolNMS and

cross-attention respectively. During training, we use classification and regression losses applied to the FSD proposals (Lfsd), the final

outputs of the MVAA network (Lmvaa), and the outputs of the alignment stage (Lcv , an auxiliary cross-view loss).

features from previous frames. Relational modules with

self-attention layers [9] are prevalent among these methods

[6, 4, 27, 5, 21]. They usually take as input a target frame

and multiple reference frames, from which proposals are

generated per frame. Relation modules are applied to ag-

gregate temporal features for more robust object detection.

Most approaches use self-attention across all proposals in

all previous frames. In contrast, our method factorizes the

attention layer to first operate independently across frames

(alignment stage), and then independently across proposals

(aggregation stage).

3D Multi-frame Object Detection. A straight-forward ap-

proach to multi-frame detection is to concatenate the points

from different frames together [2]. This has been demon-

strated on the NuScenes dataset (improvement of 21.9%
to 28.8% mAP [2]), and we also observe improvements in

our experiments (Table 2). However, as we increase the

number of frames concatenated, the improvement dimin-

ishes since the LiDAR points are less likely to be aligned

across longer time horizons (Table 2). Fast-and-furious

[14] side steps aligning the points by instead concatenat-

ing the intermediate features maps. However, this approach

may still result in misalignment across the feature maps for

fast-moving objects and longer time horizons. Recent ap-

proaches [10, 34] show further performance improvement

by applying Conv-LSTM or Conv-GRU to fuse multi-frame

information. However, the use of a single memory state that

gets updated creates a potential bottleneck, and the high res-

olution of the feature maps make these methods computa-

tionally expensive.

3. 3D-MAN Framework

The 3D-MAN framework (Figure 2) consists of 3 com-

ponents: (i) a fast single-frame detector (FSD) for produc-

ing proposals given input point clouds, (ii) a memory bank

to store features from different frames and (iii) a multi-view

alignment and aggregation module (MVAA) for combining

information across frames to generate final predictions.

3.1. Fast Single­frame Detector

Anchor-free Point Pillars. We base our single-frame de-

tector on the PointPillars architecture [12] with dynamic

voxelization [36]. We start by dividing the 3D space

into equally distributed pillars which are voxels of infinite

height. Each point in the point cloud is assigned to a single

pillar. Each pillar is then featurized using a PointNet [17]

producing a 2D feature representation for the entire scene,

which is subsequently processed through a CNN backbone.

Each location of the final layer of the network produces a

prediction for a bounding box relative to the corresponding

pillar center. We regress the location residuals, bounding

box sizes, and orientation. A binning approach is used for

predicting orientation which first classifies the orientation

into one bin followed by regression of the residual from the

corresponding bin center [16, 19].

Non-maximum suppression (NMS) is often used to post-

process the detections produced by the last layer of the net-
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work for redundancy removal. It first outputs the highest

scoring box and then suppresses all overlapping boxes with

that box, repeating this process until all boxes are processed.

However, the sequential nature of this algorithm makes it

slow to run in practice when there is a large number of

predictions. We use a variant of NMS that leverages max-

pooling to speed up this process. MaxPoolNMS [35] uses

the max pooling operation to find local peaks on the object-

ness score map. The local peaks are kept as predictions,

while all other locations are suppressed. This process is fast

and highly parallelizable. We find that this approach can be

up to 6× faster1 than regular NMS when dealing with about

200k predictions.

Hungarian Matching. MaxPoolNMS is usually performed

using the classification score as the ranking signal to indi-

cate that one box is better than another. However, the classi-

fication score is a proxy metric: ideally, we want to have the

highest scoring box to be the best localized box. The ideal

score map should have a single peak which corresponds to

the best localized box. We propose using the Hungarian

matching algorithm [3, 22] to produce such a score map.

Given a set of bounding box predictions and a set of

ground-truth boxes, we compute the IoU score for each pair

of them. By applying the Hungarian matching algorithm

to this matrix2 of pair-wise scores, we can obtain a single

match for each ground-truth box to a predicted box that

maximizes the overall matching score. For each ground-

truth box, we treat the matched predicted box as positive,

and all unmatched boxes as negative. In this way, the model

is encouraged to predict only one positive box per ground-

truth box such that the box predicted corresponds to the

highest IoU-scoring box.

It turns out that there are two challenges when using the

Hungarian matching algorithm. First, the Hungarian match-

ing algorithm is of order O(n3) and can be slow if there

are a large number of predictions. Therefore, we choose to

perform the Hungarian matching based-loss only after the

MaxPoolNMS step. This ensures that only a few predic-

tions remain, and enables the matching algorithm to com-

plete quickly.

Second, the model can end up in a bad local minima by

only predicting boxes which are far away from any ground-

truth box (e.g., predicting boxes in locations where there are

no points in the input point clouds). Consequently, these

ground-truth boxes do not overlap at all with their matched

prediction boxes. As a result, the model does not get any

meaningful learning signals from these matches and is not

able to converge to a good solution. To address this issue,

1Execution time for regular NMS depends on the number of output

boxes desired, while MaxPoolNMS’s speed is invariant the number of out-

put boxes.
2In practice, we add dummy boxes to the ground-truth boxes so that a

one-to-one match is always produced.
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Figure 3. Illustration of rotated ROI feature extraction [13]. We

first identify key points in each proposal box and then extract fea-

tures using bilinear interpolation. Averaging pooling is further

used to summarize each box into a single feature vector. Note

that while the figure denotes key points over 3 × 2 locations, we

use 7× 7 for vehicles and 3× 3 for pedestrians.

we post-process the matches to reassign ground-truth boxes

that have no overlap with their matched prediction box. We

assign them instead to their closest pillar in the feature map,

which may not be one retained by MaxPoolNMS. This en-

courages the model to avoid invalid assignments and con-

verge well.

3.2. Memory Bank

Memory Bank. We use a memory bank to store the pro-

posals and feature maps extracted by the FSD for the last

n frames. When proposals and features from a new frame

are added to the bank, those from the oldest frame are dis-

carded.

Proposal Feature Generation. To obtain features from

multiple perspectives, we propose to generate proposal fea-

tures for each stored frame in the memory bank as well as

the target frame. We find that it is useful to use all stored

proposals regardless of which frame the proposal comes

from to extract features from every stored frame. This al-

lows the model to increase its recall since an object may be

missed by FSD in a single frame because of occlusion or

partial observation.

For each proposal, we extract its features using a rotated

ROI feature extraction approach (Figure 3) [13]. Given a

proposal, we identify K × K × 1 equally distributed key

points with respect to the proposal box3. For each key point,

we compute a feature by bilinear interpolation of its value

in the feature map. Finally, we use average pooling across

all the K×K×1 key points to obtain a single feature vector

for the proposal. It is worth noting that this feature extrac-

tion method can be performed without correcting the entire

LiDAR point cloud for ego-motion of the autonomous vehi-

cle. This facilitates deployment in a production autonomous

driving system.

3We use 7× 7× 1 for vehicles and 3× 3× 1 for pedestrians.
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Figure 4. Cross-attention network in the multi-view alignment

module. Fs and Bs represent features and box parameters of pro-

posals in a stored frame while Ft and Bt are those for the tar-

get frame. We use s and t to denote the indices of the stored

frame and target frame respectively. N and C stand for the num-

ber of proposals and channels. “Box residuals” produces a pair-

wise N ×N × 7 tensor that encodes the differences in all pairs of

boxes, using the same approach that is used to compute residuals

for ground-truth boxes from anchor boxes [12]. Vs is the output

of the cross-attention network, such that each input target box has

one associated output feature vector with the corresponding stored

frame.

The proposal features generated for the target frame will

be used next in the MVAA module as the query features

for the cross-attention networks, while proposal features for

stored frames will be treated as keys and values.

3.3. Multi­view Alignment and Aggregation

These proposal features are then sent to the multi-view

alignment and aggregation module (MVAA) to be extracted

and aggregated. The alignment module is applied indepen-

dently for each stored frame (attention is across boxes, per-

formed separately for each frame), while the aggregation

module is applied independently for each box (attention is

across time). One can view this as a factorized form of at-

tention.

Multi-view Alignment. Given a new frame’s proposal, the

multi-view alignment module is responsible for extracting

its relevant information in each previous frame separately

(Figure 2, MVAA-Alignment). To achieve this goal, the

alignment stage has to figure out how to relate the iden-

tities of the proposals in the new frame to those in the

stored frames. A naive approach could use nearest neigh-

bor matching or maximum IoU overlap. However, when an

instance is fast-moving or close to any other instance, there

will often be ambiguity in the appropriate assignment. Fur-

thermore, the naive approach does not learn interactions be-

tween the new proposal and other objects in previous frames

that could provide contextual information.

We propose using a cross-attention network (Figure 4)

to learn how to relate the new frame proposals to those of

stored frames. This network could potentially learn to align

the proposal identities and also model interactions across

objects. Specifically, we apply projection layers to encode

the new frame proposal features Ft as well as stored pro-

posal features Fs so as to compute projected queries Fq ,

keys Fk and values Fv . These are used to compute an atten-

tion matrix. We further provide temporal and spatial infor-

mation to the attention matrix through encoding the relative

frame index and box residuals between all pairs of the query

and stored boxes. The cross-attention network is applied be-

tween the target frame and each stored frame independently

with shared parameters, generating a feature vector for each

target proposal (Vs) from each stored frame.

Cross-view Loss. The alignment stage of MVAA is de-

signed to extract features from each stored frame that are

most relevant to each target proposal. To encourage the ex-

tracted features to be a relevant representation, we employ

an auxiliary loss that encourages the extracted features to

contain sufficient information to predict the corresponding

ground-truth bounding box associated with the target pro-

posal. Concretely, we add separate classification and re-

gression heads that use each extracted feature vector of the

alignment stage to predict the box residuals between target

proposal and its corresponding ground-truth box.

Multi-view Aggregation. After the alignment module,

each proposal in the target frame will have an associated

feature for each stored frame. The multi-view aggrega-

tion layer (Figure 2, MVAA-Aggregation) is responsible

for combining these features from different perspectives to-

gether to form a single feature for each proposal. Con-

cretely, we use the new frame’s proposal features as the

attention query inputs, and its corresponding extracted fea-

tures in previous frames as the keys and values.

We note that the aggregation module can enable the net-

work to be robust to newly appearing objects. If an object

appears for the first time in a new frame, the model can

compute an attention matrix that will only focus on the new

frame and ignore the past frames since they are not relevant.

Box Prediction Head. After MVAA, we have an updated

feature for each proposal in the new frame. We regress ob-

jectness scores and box parameters from this feature repre-

sentation. For the objectness score, we follow [18] and treat

the IoU between proposals and their corresponding ground-

truth bounding boxes as the classification target, with the

sigmoid cross-entropy loss. The box parameter targets are

encoded as residuals [12, 37] and trained with a smooth-

L1 loss. The same formulations are used for the cross-view
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loss.

3.4. Losses

We minimize the total loss consisting of a fast single-

frame detector (FSD) loss Lfsd, a multi-view prediction

loss Lmvaa, and a cross-view loss Lcv with equal loss

weights.

Ltotal = Lfsd + Lmvaa + Lcv (1)

The same formulation for detection loss Ldet is used in

these three losses. This includes a objectness loss Lobj and

a regression loss Lreg .

Ldet =
1

|C|

∑

i∈C

Lobj +
1

|R|

∑

i∈R

Lreg (2)

C represents the set of locations where we predict an ob-

jectness score. For Lfsd, this corresponds to the remaining

pillars after MaxPoolNMS, while for Lmvaa and Lcv , this

corresponds to the proposals after FSD (specifically, those

that remain after MaxPoolNMS). For the objectness loss in

Lmvaa and Lcv , we use the IoU overlap between the pro-

posal and its assigned ground-truth as the target. For Lfsd,

the output of the Hungarian matching is used to determine

positive and negative assignments for the objectness loss.

R represents the set of locations which are associated

with a ground-truth box. For all losses (Lfsd, Lmvaa, and

Lcv), these are the matched boxes from Hungarian match-

ing. For the regression losses, we use a smooth-L1 loss

as the supervision of regressing the x, y, z center location

residuals, and their corresponding dimensions. For orienta-

tion, we use a binning orientation loss [16, 19]. The model

is expected to predict an angle bin first, followed by a resid-

ual from the bin center. We use 12 bins for Lfsd and 1 bin

for Lmvaa and Lcv .

The cross-view identity loss Lcv is computed across all

the outputs of the multi-view alignment stage, and averaged

across all instances.

4. Experiments

We evaluate our method on Waymo Open Dataset [23],

a large scale 3D object detection dataset. There are a to-

tal of 1150 sequences divided into 798 training, 202 vali-

dation, and 150 testing examples. Each sequence consists

of about 200 frames at a frame rate of 10 Hz, where each

frame includes a LiDAR point cloud and labeled 3D bound-

ing boxes for vehicles, pedestrians, cyclists and signs. We

evaluate our model and compare it with other methods us-

ing average precision (AP) and Average Precision Weighted

by Heading (APH).

4.1. Implementation Details

Hyperparameters. Given the input point cloud in a target

frame, we first set the detection range as [−76.8m, 76.8m]
for x and y axes and [−2m, 4m] for the z-axis. We equally

split this 3D range into [512, 512] pillars among x and y axes

respectively, following PointPillars [12]. For the MaxPool-

NMS applied in FSD, we use a max-pooling kernel size of

[7, 7] for vehicles and [3, 3] for pedestrians, with a stride of

[1, 1]. After MaxPoolNMS, a set of 128 proposals per frame

are passed to the memory bank.

Network Architectures. In our proposed FSD, we use the

same backbone network illustrated in PointPillars [12]. The

channel dimension C of the last feature map and proposal

features is 384. For encoding the frame index and rela-

tive box residuals, we apply a 2-layer perceptron (MLP)

networks with C output channels for the first layer, and 1
output for the second layer. These are used in the cross-

attention layers of the MVAA module. In the predic-

tion head, we first apply a 2-layer MLP network with C

output channels to embed the aggregated multi-view fea-

tures. These embeddings are transformed with two predic-

tion branches for classification and regression.

Training Parameters. Our network is trained end-to-end

using the ADAM [11] optimizer for a total number of 50

epochs with an initial learning rate of 0.0016 and a batch

size of 32. We apply exponential decay to anneal the learn-

ing rate, starting at 5 epochs until 45 epochs. During train-

ing, we apply random flip and random rotation as our only

data augmentation methods.

Utilizing a large number of frames. We enable 3D-MAN

to exploit a large number of frames by combining it with

point concatenation. Our best model uses 16 frames split

into 4 windows of 4 frames. The point clouds in each win-

dow are concatenated together and used as input to the FSD.

Each window thus becomes an entry in the memory bank,

and the model is expected to produce predictions for only

the last frame. This utilizes point concatenation for when

movement is small with nearby frames and MVAA for large

movement across a longer time range. We provide further

ablation studies with varying sizes of input frames in Sec-

tion 4.3.

4.2. Main Results

Waymo Validation Set. We compare our method with pub-

lished state-of-the-art single-frame and multi-frame meth-

ods on the Waymo validation set on class Vehicle (Table

3) and class Pedestrian (Table 4). We first compare the

performance between our model with and without multi-

frame inputs (Table 3). When the model has access to 16

stored frames, the overall 3D AP (LEVEL 1) is improved

by 5.50% on vehicles labeled as LEVEL 1 difficulty, illus-
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Difficulty Method
3D AP (IoU=0.7) 3D APH (IoU=0.7)

Overall 0-30m 30-50m 50m-Inf Overall 0-30m 30-50m 50m-Inf

LEVEL 1

StarNet [15] 55.11 80.48 48.61 27.74 54.64 79.92 48.10 27.29

PointPillars [12] 63.27 84.90 59.18 35.79 62.72 84.35 58.57 35.16

MVF [36] 62.93 86.30 60.02 36.02 - - - -

AFDet [7] 63.69 87.38 62.19 29.27 - - - -

RCD [1] 68.95 87.22 66.53 44.53 68.52 86.82 66.07 43.97

PV-RCNN [18] 70.30 91.92 69.21 42.17 69.49 91.34 68.53 41.31

3D-MAN (Ours) 69.03 87.99 66.55 43.15 68.52 87.57 65.92 42.37

PointPillars∗ [12] 65.41 85.58 61.51 39.51 64.88 85.02 60.95 38.91

ConvLSTM∗ [10] 63.6 - - - - - - -

3D-MAN∗ (Ours) 74.53 92.19 72.77 51.66 74.03 91.76 72.15 51.02

LEVEL 2

StarNet [15] 48.69 79.67 43.57 20.53 48.26 79.11 43.11 20.19

PointPillars [12] 55.18 83.61 53.01 26.73 54.69 83.08 52.46 26.24

PV-RCNN [18] 65.36 91.58 65.13 36.46 64.79 91.00 64.49 35.70

3D-MAN (Ours) 60.16 87.10 59.27 32.69 59.71 86.68 58.71 32.08

PointPillars∗ [12] 57.28 84.31 55.41 29.71 56.81 83.79 54.90 29.24

3D-MAN∗ (Ours) 67.61 92.00 67.20 41.38 67.14 91.57 66.62 40.84

Table 3. 3D AP and APH Results on Waymo Open Dataset validation set for class Vehicle. ∗Methods utilize multi-frame point clouds

for detection. We report PointPillars [12] based on our own implementation, with and without point concatenation. Difficulty levels are

defined in the original dataset[23].

Method
LEVEL 1 LEVEL 2

3D AP 3D APH 3D AP 3D APH

StarNet [15] 68.32 60.89 59.32 52.76

PointPillars [12] 68.88 56.57 59.98 49.14

MVF [36] 65.33 - - -

3D-MAN (Ours) 71.71 67.74 62.58 59.04

Table 4. 3D AP and APH Results on Waymo Open Dataset vali-

dation set for class Pedestrian.

trating the effectiveness of our approach.

3D-MAN outperforms the current best published method

(PV-RCNN [18]) by 3.56% (30-50m range) and 9.49%
(>50m range) AP (LEVEL 1) on vehicles. At these fur-

ther ranges, objects are often partially visible, where having

more information from different perspectives could help.

These improvements show that our model is able to ef-

fectively combine the information across multiple views to

generate more accurate 3D predictions. Moreover, com-

pared to existing multi-frame models, 3D-MAN also out-

performs them by a large margin. Our method achieves

a better 3D AP than the recently published Conv-LSTM

method [10] by 10.93% on vehicle detection. For pedestrian

detection, 3D-MAN also achieves the best performance (Ta-

ble 4).

Waymo Testing Set. We also evaluate our model on

Waymo testing set through a test server submission. For

vehicle detection (Table 5), 3D-MAN achieves 78.71% AP

and 78.28 APH, outperforming RCD [1] by 6.74% and

6.69% respectively, which is currently the best published

method among results generated by a single model (not us-

ing any ensemble methods).

Method
Vehicle Pedestrians

3D AP 3D APH 3D AP 3D APH

SECOND [28] 50.11 49.63 - -

StarNet [15] 63.51 63.03 67.78 60.10

PointPillars [12] 68.62 68.08 67.96 55.53

SA-SSD [8] 70.24 69.54 57.14 48.82

RCD [1] 71.97 71.59 - -

3D-MAN (Ours) 78.71 78.28 69.97 65.98

Table 5. 3D AP and APH Results on Waymo Open Dataset testing

set for class Vehicle and Pedestrain among LEVEL 1 difficulty ob-

jects. Metric breakdowns for our model is available on the Waymo

challenge leaderboard.

Mask Centeredness Hungarian Matching

Ped. (%) 64.7 67.1 70.2

Veh. (%) 44.5 63.7 64.8

Table 6. Mini-validation AP comparison among different ground-

truth assignment strategies using FSD for both Pedestrian and Ve-

hicle classes.

4.3. Ablation Studies

We conduct all our ablation studies only for the vehicle

class, and report LEVEL 1 difficulty results based on a sub-

set of the full validation set. We created a mini-validation

set by uniformly sampling 10% of the full validation set.

This results in a dataset that allows us to experiment sig-

nificantly faster. We note that there is a negligible perfor-

mance gap between the mini-validation and full validation

set: for example, our best model obtains 74.3% on the mini-

validation set versus 74.5% on the full validation set.

Hungarian Matching. We compare the performance of

using different assignment strategies in FSD, including the

mask strategy, centeredness strategy and Hungarian match-

ing strategy (Table 6). The mask strategy [24, 30] as-
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Method Baseline Concat Relation MVAA

AP (%) 68.2 70.5 70.1 72.5

Table 7. Mini-validation AP comparison on class Vehicle among

different multi-frame fusion approaches.

Supervision Method None Correspondence Loss CV Loss

AP (%) 70.7 71.4 72.5

Table 8. Mini-validation AP comparison on class Vehicle using

different auxiliary losses with the MVAA alignment stage.

signs interior pillars of any valid object positive and all

other pillars negative. However, this can lead to a discrep-

ancy between classification score and localization accuracy.

Our experiments show that this performs the least well.

Centeredness strategy [31, 24, 35] encourages pillars with

closer distance to the instance center to have a higher clas-

sification score. However, the pillar in the center may not

always draw the best localization prediction in point clouds:

the LiDAR points often are on the surface of the vehicle and

not in the interior. We find centeredness to perform better

than mask, but worse than our proposed Hungarian match-

ing approach. FSD achieves the highest AP with the Hun-

garian matching strategy, which validates our approach.

Multi-frame Approaches. We compare our method to

other multi-frame approaches (Table 7), including the point

concatenation approach and a self-attention approach across

all previously detected boxes. Multi-frame models in the

comparison have 4 frames as input and are expected to pre-

dict bounding boxes for only the last frame. We also per-

form ego-motion pose correction to map points from the

earlier frames to the pose of the last frame.

The Baseline model is our single-frame two-stage model,

which applies FSD to generate proposals with features and

deploys box prediction head with an MLP network to refine

these proposals. It achieves 68.2% AP on Vehicle and pro-

vides a baseline to compare the multi-frame models against.

In the Concat approach, points across all frames are

combined together, and the merged point cloud is used as in-

put to the Baseline model. This improves upon the baseline

by 2.3% AP. The Relation approach first extracts box pro-

posals from multiple frames and then uses a self-attention

network on all past proposals directly to produce a predic-

tion. This performs better than the Baseline but worse than

the Concat model.

Our approach (MVAA) performs the best, outperforming

the Concat approach and Relation approach by 2.0% and

2.4% respectively.

Cross-view loss. We find it useful to have an auxiliary

cross-view loss to encourage the model to propagate rele-

vant features in the alignment stage of MVAA. To evaluate

the effectiveness of the cross-view loss, we compare it to

not having an auxiliary loss and also an alternative auxiliary

Frames 1 4 7 10 13 16

AP (%) 68.2 72.5 73.4 73.5 73.8 74.3

Table 9. Mini-validation AP comparison for different number of

input frames to the 3D-MAN model. All models are expected to

predict only the last frame. Models with 7, 10, 13, and 16 frames

use concatenated points (over windows of 4 frames) as input, with

different amount of overlaps between adjacent windows.

Model Stationary (%) Slow (%) Medium (%) Fast (%)

4-frames 69.5 68.6 67.1 78.3

16-frames 73.2 70.4 68.9 79.2

Table 10. Velocity breakdowns of vehicle AP metrics for 3D-MAN

with varying number of input frames.

correspondence loss. The correspondence loss encourages

elements of the attention matrix (of the alignment stage in

MVAA) to be close to 1 if the query proposal matches the

instance of the corresponding stored proposal, and zero oth-

erwise. We compare these approaches for the auxiliary loss

(Table 8), and find that using the cross-view loss outper-

forms having no auxiliary loss by 1.8% and using the cor-

respondence loss by 1.1%.

Varying number of input frames. We further compare

our model’s performance on different number of available

frames (Table 9). In order to draw a fair comparison be-

tween models with 7 through 16 frames, we fix the com-

putation by using point concatenation over windows of 4

frames, with different degrees of overlaps between windows

(similar to strides in convolution windows). We find that

our model steadily improves as it has access to more input

frames corresponding to longer time horizons.

Velocity breakdowns. We also compare our model’s per-

formance across different velocity breakdowns. Recall that

the baseline multi-frame PointPillars model performance

degrades when using 8-frames versus 4-frames (Table 2).

Conversely, our model demonstrates an improvement when

we increase the number of frames from 4 to 16 (Table 10).

This shows that our approach is able to benefit fast-moving

vehicles.

5. Conclusion

In this paper, we present a novel 3D object detection

method, 3D-MAN, which utilizes attention networks to ex-

tract and aggregate features across multiple frames. We in-

troduce a fast single-frame detector that utilizes a Hungar-

ian matching strategy to align the objectness score with the

best localized box. We show how the outputs of the single-

frame detector can be used with a memory bank and a novel

multi-view alignment and aggregation module to fuse the

information from multiple frames together. Our method is

effective across long time horizons and obtains state-of-the-

art performance on a challenging large scale dataset.
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jects as points. CoRR, 2019. 4, 8

[36] Yin Zhou, Pei Sun, Yu Zhang, Dragomir Anguelov, Jiyang

Gao, Tom Ouyang, James Guo, Jiquan Ngiam, and Vijay Va-

sudevan. End-to-end multi-view fusion for 3d object detec-

tion in lidar point clouds. In CoRL, 2019. 2, 3, 7

[37] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning

for point cloud based 3d object detection. CVPR, 2018. 2, 5

1872


