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Abstract

Garment transfer shows great potential in realistic ap-

plications with the goal of transfering outfits across dif-

ferent people images. However, garment transfer between

images with heavy misalignments or severe occlusions still

remains as a challenge. In this work, we propose Comple-

mentary Transfering Network (CT-Net) to adaptively model

different levels of geometric changes and transfer outfits

between different people. In specific, CT-Net consists of

three modules: i) A complementary warping module first

estimates two complementary warpings to transfer the de-

sired clothes in different granularities. ii) A layout predic-

tion module is proposed to predict the target layout, which

guides the preservation or generation of the body parts in

the synthesized images. iii) A dynamic fusion module adap-

tively combines the advantages of the complementary warp-

ings to render the garment transfer results. Extensive ex-

periments conducted on DeepFashion dataset demonstrate

that our network synthesizes high-quality garment transfer

images and significantly outperforms the state-of-art meth-

ods both qualitatively and quantitatively. Our source code

will be available online.

1. Introduction

Most existing virtual try-on methods are based on sim-

plifying assumptions: (i) Pure clothing images or 3D infor-

mation are available. (ii) Pose changes are simple without

heavy misalignments or severe occlusions. We argue that

these simplifying assumptions greatly limit the application

scope of these methods in the realistic virtual try-on sce-

narios. To address this issue, we propose Complementary

Transfering Network (CT-Net), a novel image-based gar-

ment transfer network that does not rely on pure clothing

images or 3D information while capable to adaptively deal

with different levels of geometric changes. As shown in

*Guosheng Lin is the corresponding author

Figure 1, given a target person image IT and a model image

IM , without any restriction to the poses or shapes of IT and

IM , our CT-Net synthesizes photo-realistic garment trans-

fer results, in which the person in IT wearing the clothes

depicted in IM with well-preserved details.

Figure 1. Garment transfer results generated by CT-Net. First

row: model images. First column: target person images. As

shown above, CT-Net naturally transfers clothes across differ-

ent people with arbitrary poses or shapes and synthesizes photo-

realistic images with well-preserved characteristics of the desired

clothes and distinct identities of humans. Please refer to supple-

mentary materials for more results.

Despite various methods have been proposed to realize
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virtual try-on in different settings [13, 34, 39, 38, 27, 6,

11, 37], there is still a gap between these methods and the

unlimited realistic scenarios. Some methods [10, 4, 26]

involve 3D information to deal with occlusions, but they

are greatly limited by expensive devices and high computa-

tional costs. Others [13, 34, 39, 38] may rely on stand-alone

clothing images, which are not easy to get timely online.

Moreover, most of them attempt to model the geometric

changes of the clothes utilizing a Thin Plate Spline (TPS)

warping. Because TPS warping is limited by a small num-

ber of parameters and only capable to shape simple defor-

mations, their methods fail to deal with complex cases with

heavy misalignments or severe occlusions. Garment trans-

fer methods aim to transfer outfits across different people.

Although prior arts [27, 11, 37] have achieved considerable

progress, none of them address the issue of large geometric

changes.

We aim to fulfill this gap by proposing a novel gar-

ment transfer network, Complementary Transfering Net-

work (CT-Net), which precisely transfers outfits across dif-

ferent people while tolerating different levels of geometric

changes. As shown in Figure 2, CT-Net has three modules:

First, a Complementary Warping Module (CWM) is in-

troduced to warp the desired clothes into the target region.

Specially, we simultaneously estimate two complementary

warpings with different levels of freedom: (a) Distance

fields guided (DF-guided) dense warping. (b) Thin Plate

Spline (TPS) warping. DF-guided dense warping has a high

degree of freedom and is utilized to warp the desired clothes

to be well-aligned with the target pose; while limited by a

small number of parameters, TPS warping roughly trans-

fers the desired clothes into the target region with well-

preserved textures.

Second, a Layout Prediction Module (LPM) is intro-

duced to predict the target layout, in which the target

person wearing the desired clothes. Compared to prior

works, which may suffer from the misalignments between

inputs [27, 11, 38], our Layout Prediction Module makes

more accurate predictions based on the aligned warping re-

sults from Complementary Warping Module. Leveraging

the predicted target layouts, our network dynamically de-

termines the non-target body areas and the occluded body

areas, which guides the adaptive preservation and genera-

tion. Benefited from joint training, Layout Prediction Mod-

ule also adds spatial constraints to the training of comple-

mentary warpings, encouraging the warping results to be

more coherent with the target person.

Third, a Dynamic Fusion Module (DFM) integrates all

the information provided by previous modules to render the

garment transfer results. Specifically, our Dynamic Fusion

Module adopts an attention mechanism to adaptively com-

bine the advantages of the two complementary warpings

and synthesizes photo-realistic garment transfer results with

well-preserved characteristics of the clothes.

Extensive experiments conducted on DeepFashion

dataset demonstrate the superiority of our method compared

to the state-of-art methods. Our main contributions can be

summarized as follows:

• We propose a novel image-based garment transfer net-

work, which adaptively combines two complementary

warpings to model different levels of geometric changes

and synthesizes photo-realistic garment transfer results

with well-preserved characteristics of the clothes and dis-

tinct human identities.

• A novel Layout Prediction Module makes precise predic-

tion on the target layout, which clearly shapes the synthe-

sized results, guides the adaptive preservation and gener-

ation of the body parts and adds spatial constraints to the

training of the complementary warpings.

• Evaluated on DeepFashion [21] dataset, CT-Net synthe-

sizes high-quality garment transfer results and outper-

forms all the state-of-art methods both qualitatively and

quantitatively.

2. Related Work

Generative Adversarial Networks. Generative Adver-

sarial Networks (GANs) [9] have been demonstrated very

effective in generating fake images, which are indistin-

guishable from the real ones in the original dataset. Con-

ditional GAN (cGAN) [24] adopts extra information to fur-

ther control the generation results, which promotes the de-

velopment of many applications [14, 35, 25, 1, 12]. Specif-

ically, Isola et al. [15] proposed an image-to-image transla-

tion network to transfer images from one domain to another,

which explores relationships across different domains. Sim-

ilarly, we also employ a cGAN to synthesize photo-realistic

garment transfer results conditioned on the desired clothes

and the target pose.

Pose-guided Human Image Generation. Ma et al. [22]

made an early attempt to generate human images condi-

tioned on pose with a two-stage network. Esser et al. [7]

proposed a conditional U-Net to disentangle the pose and

appearance. More recent methods [31, 5, 28, 11] propose

to solve this problem utilizing warp-based methods. Zhu

et al. [41] employs a sequence of pose-attentional trans-

fer blocks to progressively deal with large pose discrepan-

cies. Zhang et al. [40] for the first time introduces cross-

domain semantic matching, which learns dense correspon-

dence warping between cross-domain inputs. Inspired by

[40], we also employ the dense correspondence warping.

However, we focus on the exact problem of garment transfer

and estimate a distance fields guided dense warping. Bene-

fited from the joint training of all the modules, our distance

fields guided dense warping naturally warps the clothing

items to be well-aligned with the target pose and preserves
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Figure 2. The overall architecture of CT-Net: (i) Complementary Warping Module (CWM) estimates two complementary warpings to warp

the desired clothes IMc in two different granularities, where W {·} denotes the warping result of DF-guided dense warping and T {·} denotes

the warping result of TPS warping. (ii) Layout Prediction Module (LPM) predicts the target layout RT
g to guide the layout adaption, where

HT denotes the clothing-agnostic human representations. (iii) Dynamic Fusion Module (DFM) adaptively integrates all the information

with an attention mechanism MT
attn to render the photo-realistic garment transfer result Îfake. Note ŴC

= WC⊙Rlc
c , where Rlc

c denotes

the predicted clothing mask in Rlc, which is not shown in the figure for simplicity.

the clothing patterns well.

Virtual Try-on. Many conventional virtual try-on meth-

ods rely on 3D information [10, 4, 26]. Along with the ad-

vances of deep neural networks, more recent works attempt

to synthesize try-on results based on 2D images. Various

methods [13, 34, 39, 38, 11] have been proposed to transfer

clothes in a stand-alone clothing image onto a target per-

son. However, all of them rely on simplifying assumptions

that the clean clothing images are available and geometric

changes are simple enough to be modeled by a Thin Plate

Spline warping (TPS) with a small number of parameters

(e.g. 6 for affine and 2×5×5 for TPS as in [34]). These as-

sumptions greatly hinder the application of these methods in

the realistic virtual try-on scenarios. Wu et al. [37] proposed

to use densepose [2] descriptor to warp the desired clothes

onto the target person. But warping estimated by densepose

descriptor can be very sparse when there are large occlu-

sions, leading to unconvincing synthesized results. Methods

mentioned above only focus on the transfer of upper clothes.

SwapNet [27] employs a two-stage network to transfer the

entire outfits across people images. To deal with the mis-

alignments of features, they adopt ROI pooling and encode

each clothing regions into high-dimensional features. How-

ever, the encoded features are inadequate to preserve the lo-

cal textures, which leads to blurry synthesized results. Dif-

ferent from these methods, we explore a wilder application

scope by adaptively combining two complementary warp-

ings to model different levels of deformations and synthe-

sizing high-quality garment transfer results with arbitrary

geometric changes.

3. Complementary Transfering Network

Given the image IM depicting the model wearing de-

sired clothes, the image IT depicting the target person, as-

suming clothes, poses and shapes of IM and IT can be arbi-

trary, our goal is to synthesize high-quality garment transfer

results with well-preserved characteristics of the clothes and

distinct human identities. To achieve our goal, we present

Complementary Transfering Network (CT-Net). As shown

in Figure 2, CT-Net consists of three modules. First, we

introduce a Complementary Warping Module (CWM) to si-

multaneously estimate two complementary warpings to deal

with different levels of geometric changes (Section 3.1).

Second, we introduce a Layout Prediction Module (LPM),

in which we predict the target layouts to guide the preser-

vation or generation of body parts in the synthesized results

(Section 3.2). The third module is a Dynamic Fusion Mod-

ule (DFM), which adaptively combines the advantages of

the complementary warpings to render the garment transfer

results (Section 3.3).

3.1. Complementary Warping Module

To synthesize garment transfer results, one of the main

challenges is to combine the clothes of the model with the

misaligned target pose. A good practice to address this is-

sue is to estimate warpings between the clothes and the tar-

get pose [31, 11, 28, 19]. However, to our best knowl-

edge, there is no perfect warping that can shape any geo-

metric changes. Warpings with a high degree of freedom

are capable to shape large geometric changes, but they have

higher error rates and may fail to preserve complex visual
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patterns; warping methods with limited numbers of param-

eters can retain the textures of the desired clothes well, but

they can not deal with large geometric changes. Therefore,

we propose Complementary Warping Module to simultane-

ously estimate two complementary warpings with different

degrees of freedom to warp the inputs in two granularities,

which enables our network to deal with different levels of

geometric changes.

As shown in Figure 2, we first employ two separate fea-

ture extractors to extract high-level features. Then we match

the features to calculate the correspondence matrixs, Mdis

and Mtps, which are then used to estimate DF-guided dense

warping and TPS warping. Given a model image IM ,

we estimate the original layout MM and extract the cor-

responding clothes IMc . Denote the warping results of DF-

guided dense warping and TPS warping as W {·} and T {·}.

DF-guided dense warping is utilized to transfer IMc and

MM in a finer granularity to get WC and WM . TPS warp-

ing transfers IMc to TC , which is roughly aligned with the

target pose.

Pose Representations. We adopt the keypoint distance

fields as our pose representations. In detail, we apply the

state-of-art pose estimator [3] to estimate keypoint confi-

dence maps of the target person and the model image. Then

we convert the sparse joint maps into keypoint distance

fields by replacing each zero pixel with its distance to the

joint mask. Keypoint distance filed represents each pixel

with a unique distance vector, which greatly facilitates the

estimation of the correspondence matrixs. In this paper,

pose representations of the target person and the model are

denoted as pT and pM .

Correspondence Matrix. We adopt the keypoint dis-

tance fields to estimate dense correspondence matrixs. To

be specific, let FA, FB denote the separate feature extrac-

tors, we first extract high-level features mf ∈ R
H×W×C

and tf ∈ R
H×W×C as follows:

mf = FA(I
M , pM ), (1)

tf = FB(p
T ), (2)

where IM denotes the model image.

To estimate the correspondence matrixs, we aggregate

the features into different scales with different sliding win-

dows, which is illustrated in Figure 3. Specifically, we use

sliding window of size 3, with stride 1 and padding size 1

to estimate the correspondence matrix Mdis ∈ R
HW×HW

for DF-guided dense warping and we apply a sliding win-

dow of size 4, with stride 4 and padding size 0 to estimate

Mtps ∈ R
HW/16×HW/16 for TPS warping.

We employ the same correspondence layer as [40] to

match the aggregated features, which can be formulated as:

M(i, j) =
(m′

f (i)
T − um)(t′f (j)− ut)

‖m′
f (i)− um‖‖t′f (j)− ut‖

, (3)

where m′
f and t′f represent the aggregated features, um

and ut represent the mean vectors.

Figure 3. Illustration of the correspondence matching process with

sliding window of size 3, stride 1 and padding size 1. Sliding

blocks are first extracted from high-level features {xf , yf} ∈
R

H×W×C and then flattened into a column of the aggregated fea-

tures {x′
f , y

′
f} ∈ R

H×W×9C , which are utilized to estimate the

correspondence matrix M ∈ R
HW×HW .

Distance Fields guided (DF-guided) Dense Warping.

According to the dense correspondence matrix Mdis, We

calculate the weighted average to estimate the distance

fields guided (DF-guided) dense warping :

WX(u) =
∑

v

softmax
v

(αMdis(u, v)) ·X(v), (4)

where α is a hyper-parameter controlling the sharpness of

the softmax. We set it as 100 here. DF-guided dense warp-

ing learns a dense mapping between two images with a high

degree of freedom, which is capable to handle large geomet-

ric changes. We utilize it to transfer the clothes of the model

image to be well-aligned with the target person, which pro-

vides important guides for the generator to reconstruct the

local textures of the clothes in the synthesized results.

TPS Warping. Given the model clothes IMc , we warp it

with the deformation shaped by TPS to be roughly aligned

with the target person IT .

We estimate the TPS warping from Mtps. As shown in

Figure 2, we first employ a regression net to predict the cor-

responding control points and then calculate the parameters

θ. For training, we adopt the second-order constraint [38]

to restrict the TPS warping from generating unnatural de-

formations or mess textures, which is denoted as Lsc. The

total loss can be formulated as:

Ltps = λ1‖I
T
c − TC‖1 + λ2Lsc, (5)

where ITc represents the ground-truth clothes extracted from

the model image, λ1 and λ2 are the weights for the two

loss terms. Both of them are set to 10, respectively, in our

experiments.
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3.2. Layout Prediction Module

We propose Layout Prediction Module to predict tar-

get layouts, in which the target person wearing the desired

clothes depicted in the model image. Prior works [27, 5, 11]

mostly generate the target layouts conditioned on the orig-

inal layouts of the model and the target pose. However,

suffered from the limited receptive fields of CNNs, these

methods fail to understand the correlation between the orig-

inal layout and the pose representations while facing with

large geometric changes. Compared to these methods, we

explore a warping-based strategy to eliminate the misalign-

ments and facilitates the prediction.

As shown in Figure 2, we first align the original layout

with the target pose leveraging the DF-guided dense warp-

ing and then feed the warped layout WM with the clothing-

agnostic representations HT into the U-net [29] to predict

the target limb and clothing mask Rlc. Denote the head and

shoes mask of the target person as MT
u , the limb mask of

the predicted layout as Rlc
u , we merge MT

u with Rlc
u to form

the complete target layouts RT
g , which provides important

guides for the generator to adaptively determine the preser-

vation or generation of the body parts in the synthesized

results (Section 3.3).

We get the original layouts utilizing the state-of-art hu-

man parsing network [20] and adopt the segmentation of

densepose descriptor [2] as our extra clothing-agnostic rep-

resentations HT . Since head and shoes are not in the trans-

fer list of our model, we remove these areas in HT and the

model’s layout MM . For training this module, we adopt

the pixel-level cross-entropy loss, denoted as Llayout. Ben-

efited from joint training, Layout Prediction Module adds

extra spatial constraints to the training of Complementary

Warping Module, encouraging the warping results to be

more coherent with the target person.

3.3. Dynamic Fusion Module

Dynamic Fusion Module is proposed to adaptively com-

bine the advantages of the two complementary warpings

to render the garment transfer results with well-preserved

characteristics of the clothes and distinct identities of hu-

mans. As shown in Figure 2, we first utilize the merged tar-

get layout RT
g to extract the non-target body parts from the

non-clothing model image ITb . Leveraging the non-target

body parts and the target layout, the generator learns to pre-

serve the details in the non-target body parts and inpaint

occluded body parts according to the target layouts, leading

to well-preserved human identities and clear body bound-

aries in the synthesized results. We then adopt a cGAN

to integrate the non-target body parts ITu , the target layout

RT
g , complementary warping results ŴC , TC and target

pose representation pT to render the initial generation re-

sult Ifake. Note ŴC = WC ⊙Rlc
c , where Rlc

c denotes the

Target

Person

Model

Image

Initial

Generation

Result

TPS

Warping

Result

Attention

Mask

Final

Result

Figure 4. Examples of our attention mechanism. From left to right:

target person IT , model image IM , initial generation result Ifake,

TPS warping result TC , attention mask MT
attn, final result Îfake.

predicted clothing mask in Rlc, which is not shown in the

Figure 2 for simplicity.

An attention mechanism is employed to combine the ad-

vantages of the two complementary warpings, where an at-

tention mask MT
attn is estimated to compose the initial gen-

eration result Ifake with the warping result from TPS as our

final garment transfer result Îfake:

Îfake = TC ⊙MT
attn + Ifake ⊙ (1−MT

attn). (6)

As shown in Figure 4, our attention mechanism adap-

tively selects different regions from the initial generation

result Ifake and the warping result of TPS according to

different levels of geometric changes. For example, when

the geometric change is simple and can be shaped by the

TPS warping, as the first two rows in Figure 4, the atten-

tion mechanism selects more regions on the warping result

from TPS to refine the initial generation result; while as the

third row, when there are heavy misalignments or severe oc-

clusions, the attention mechanism tends to retain the initial

generation result and ignore the large logos or unreasonable

textures in the warping result of TPS. In this way, we adap-

tively combines the two complementary warpings to deal

with different levels of geometric changes and expand the

application scope of our model to wilder scenarios.

3.4. Loss Functions

To encourage the training of different modules benefit

each other, we train our model in a joint style. We com-

bine several different losses to produce high-quality gar-

ment transfer results:

Perceptual Loss. Based on the difference between high-

level features, perceptual loss has been proved efficient in
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the image generation tasks [17]. To pose perceptual con-

straints on the synthesized results, we adopt a pre-trained

VGG network [32] to extract multi-level features φj and

compute the perceptual loss as:

Lperceptual =
N∑

j=1

λj‖φj(x̂t)− φj(x)‖2. (7)

Style Loss. We further apply the style loss [8] to penalize

the statistic error between high-level features, which can be

formulated as:

Lstyle =
N∑

j=1

‖Gφ
j (x̂t)−G

φ
j (xt)‖2, (8)

where G
φ
j denotes the Gram matrix estimated from φj .

Contextual Loss. To encourage our network to preserve

more details from the desired clothes IMc , we employ the

contextual loss proposed in [23], which can be formulated

as:

Lcontextual =

∑

l=1

λl

[
− log

(
1

nl

∑

i

max
j

Al(φl
i(x̂B), φ

l
j(yB))

)]
,

(9)

where Al denotes the pairwise affinities between features.

Adversarial Loss. To force the generator to learn the

real distributions of the dataset and generate realistic hu-

man images, we deploy a discriminator to discriminate the

generated fake images from the real samples in the dataset.

The loss can be formulated as:

Ladv = Ex,y[log(D(x, y))] + Ex[log(1−D(x,G(x)))],
(10)

where x represents the inputs and y is the ground-truth.

Objective Function. Besides the losses above, we apply

a L1 regularization Lreg = ‖1−M‖1 on MT
attn to prevent

the network from overfitting to the initial synthesized result

Ifake. We also take a L1 loss to stabilize our training pro-

cess, which can be defined as Ll1 = ‖x̂−x‖1. Our objective

function is a weighted sum of above terms:

Ltotal = α1Ll1 + α2Ltps + α3Llayout + α4Lperceptual+

α5Lstyle + α6Lcontextual + α7Ladv + α8Lreg,

(11)

where αi,(i = 1, . . . , 8) are hyper-parameters controlling

the weights of each loss.

4. Experiments

4.1. Dataset

We evaluate our model on the In-shop Clothes Retrieval

Benchmark of DeepFashion dataset [21], which contains

52,712 fashion images of resolution 256 × 256. For train-

ing, we select 37,836 pairs of images depicting the same

person wearing the same outfit with different poses. At test

stage, we select 4,932 pairs of images which are not over-

lapped with the training set. As the realistic virtual try-on

scenarios, each testing pair contains two different people

with different clothes and poses.

4.2. Implementation Details

We adopt Adam [18] with β1 = 0.5, β2 = 0.999 as the

optimizer in our all experiments. Our model is trained in

stages. Complementary Warping Module is firsted trained

for 20 epoches to estimate reasonable warpings. Then our

model is jointly trained in an end-to-end manner for another

80 epoches. Learning rate is fixed at 0.0002 for the first 40

epoches and then decays to zero linearly in the remaining

steps. InstanceNorm2d Normalization [33] is applied to all

layers to stabilize the training. The detailed network struc-

tures can be found in the supplementary materials. To bal-

ance the scales of losses in Eqn. 11, we set α1,2,3,7,8 = 10
and α4,5,6 = 1.

4.3. Baselines

ACGPN. ACGPN is a state-of-art virtual try-on net-

work proposed by Yang et al. [38], which aims to transfer

a stand-alone clothing image onto a reference person. In

comparison to previous methods [13, 34], ACGPN first pre-

dicts the target clothing segmentation progressively in two

stages, then estimates a TPS warping utilizing STN [16].

ACGPN shows state-of-art performance on VITON [13]

dataset with natural deformed clothes and well-preserved

non-target body parts.

CoCosNet. CoCosNet stands for the cross-domain cor-

respondence network proposed by Zhang et al. [40], aiming

to synthesize realistic images according to the examplar im-

ages. Different from other methods, CoCosNet establishes

a cross-domain correspondence matching to align the exam-

plar image with the target image and then synthesize photo-

realistic results, which achieves state-of-art performance in

pose-guided human generation task. However, CoCosNet

lacks of the ability to generate garment transfer results. To

adapt it into our task, we apply the cross-domain correspon-

dence warping to warp the layouts and replace the inputs for

the Translation Network in CoCosNet to be the same as ours

in the Dynamic Fusion Module.

To keep the fairness of our experiments, We retrain all

aforementioned methods on DeepFashion [21] dataset with

the same training set as ours.

4.4. Qualitative Results

Figure 5 shows the qualitative comparisons of ACGPN,

CoCosNet and our model, which indicates that our model

synthesizes more convincing results with well-preserved
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Target Person Model Image ACGPN CoCosNet CT-Net(ours) Target Person Model Image ACGPN CoCosNet CT-Net(ours)

Figure 5. Qualitative comparisons of our method with our baselines.

characteristics of clothes and distinct identities of humans.

Since ACGPN overlooks the misalignments between the in-

puting segmentations, it fails to generate the correct target

clothing segmentation and estimate reasonable TPS warp-

ing, leading to unsatisfying results with messy textures,

incorrect body parts and abundant artifacts. Our CoCos-

Net [40] baseline eliminates the misalignments by employ-

ing the cross-domain correspondence warping. However,

cross-domain correspondence warping has a high degree of

freedom and fails to preserve the complex clothing patterns,

result in visual artifacts such as cluttered textures and blurry

boundaries. Benefited from the Layout Prediction Module,

our CT-Net adaptively preserves the non-target body parts

and generates the occluded parts, leading to realistic gar-

ment transfer results with distinct human identities and clear

body boundaries. As shown in the first row (right) and sec-

ond row of the Figure 5, the proposed attention mechanism

in the Dynamic Fusion Module adaptively combines the ad-

vantages of the two complementary warpings and preserves

the logos on the desired clothes clearly. In the last row

(right), since ACGPN is unaware of the change of the hu-

man pose, it wrongly preserves the logo in the back view of

the person, while our attention mechanism adaptively drops

the logo and synthesizes reasonable back-view image.

In Figure 6, we visualize warping results from different

Target Cloth ACGPN CoCosNet TPS(CWM) DFW(CWM)

Figure 6. Visual comparisons of warping results. DFW(CWM)

represents the warping results from DF-guided dense warping es-

timated in the Complementary Warping Module.

methods to make further comparisons. Benefited from the

joint training of all modules, CT-Net shows superior perfor-

mance in the estimation of both the DF-guided dense warp-

ing and the TPS warping. Please refer to supplementary

materials for more qualitative results.

4.5. Quantitative Results

We adopt Structural Similarity (SSIM) [36] to measure

the similarity between the generated images and the real
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Methods Warp-SSIM Mask-SSIM H-SSIM IS

ACGPN [38] 0.744 0.757 0.813 3.366

CoCosNet [40] 0.815 0.835 0.851 3.472

w/o PR 0.857 0.913 0.919 3.495

w/o LPM 0.836 0.917 0.923 3.479

w/o TPS 0.860 0.919 0.931 3.515

CT-Net (ours) 0.865 0.923 0.930 3.511

Table 1. Quantitative comparisons of our method with other meth-

ods.

ones. To compute SSIM, we take the same person wearing

the same clothes but in different poses as test set. Specifi-

cally, inspired by [31, 11], we compute SSIM in three dif-

ferent scales: (i) To isolate the influence from the back-

ground, we compute SSIM for human pixels (H-SSIM).

(ii) To evaluate the accuracy of reconstructed clothes, we

compute SSIM for clothing area in the synthesized results

(Mask-SSIM). (iii) To compare the warping accuracy of

different methods, we compute SSIM for warped clothes

(Warp-SSIM). For our model, we use the warping results

from DF-guided dense warping to calculate Warp-SSIM.

Besides, we adopt Inception Score (IS) [30] to evaluate the

quality of our synthesized images.

Table 1 reports the quantitative results of our method and

baselines. Higher scores are better. As summarized in ta-

ble 1, our method outperforms all baselines by a significant

margin. Specially, our model greatly improves the warping

accuracy with 0.050 higher Warp-SSIM scores compared

to CoCosNet. Moreover, we also achieve higher scores in

terms of H-SSIM, Mask-SSIM and IS, which indicates that

our method synthesizes more realistic images with well-

preserved details.

4.6. Ablation Study

We conduct ablation experiments to explore the effec-

tiveness of the main components in our model. In partic-

ular, w/o PR denotes removing the pose representation pM

inputing to the feature extractor in Complementary Warp-

ing Module. w/o LPM denotes removing Layout Prediction

Module. w/o TPS denotes removing the estimation of TPS

warping.

Table 1 reports all the results of our ablation experi-

ments. In specific, our full model outperforms all abla-

tion methods by a margin in Warp-SSIM, which indicates

that our designs in the network significantly facilitate the

estimation of DF-guided dense warping. Combining the

advantages of the two complementary warpings, our full

model also shows the best performance in reconstructing the

clothes and achieves the highest Mask-SSIM scores. Our

full model and w/o TPS have similar scores in all metrics,

since SSIM only roughly measures the local similarity and

IS only captures the realism of the images.

To further demonstrate the superiority of our full model,

Target

Person

Model

Image
w/o PR w/o LPM w/o TPS

CT-

Net(full)

Figure 7. Visual comparisons with ablation methods.

we visualize some examples to make qualitative compar-

isons in Figure 7. Since w/o PR and w/o LPM can not esti-

mate the warping precisely, artifacts such as incorrect cloth-

ing shape (first row) and blurry boundaries (third row) can

be observed. Although w/o TPS achieves the best scores in

terms of H-SSIM and IS, visual results show that our full

model synthesizes more photo-realistic images with better-

preserved clothing patterns and distinct body parts.

5. Conclusion

We propose Complementary Transfering Net (CT-Net)

for garment transfer with arbitrary geometric changes. In

particular, our model adaptively combines two comple-

mentary warpings to model different levels of geometric

changes and synthesizes photo-realistic garment transfer re-

sults with well-preserved characteristics of the clothes and

distinct human identities. We introduce three novel mod-

ules: i) Complementary Warping Module. ii) Layout Pre-

diction Module. iii) Dynamic Fusion Module. Experi-

ment results demonstrate that our model significantly out-

performs state-of-art methods both qualitatively and quan-

titatively.
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