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Abstract

Convolutional Networks (ConvNets) excel at seman-

tic segmentation and have become a vital component

for perception in autonomous driving. Enabling an all-

encompassing view of street-scenes, omnidirectional cam-

eras present themselves as a perfect fit in such systems.

Most segmentation models for parsing urban environments

operate on common, narrow Field of View (FoV) images.

Transferring these models from the domain they were de-

signed for to 360◦ perception, their performance drops dra-

matically, e.g., by an absolute 30.0% (mIoU) on established

test-beds. To bridge the gap in terms of FoV and structural

distribution between the imaging domains, we introduce Ef-

ficient Concurrent Attention Networks (ECANets), directly

capturing the inherent long-range dependencies in omni-

directional imagery. In addition to the learned attention-

based contextual priors that can stretch across 360◦ im-

ages, we upgrade model training by leveraging multi-source

and omni-supervised learning, taking advantage of both:

Densely labeled and unlabeled data originating from mul-

tiple datasets. To foster progress in panoramic image seg-

mentation, we put forward and extensively evaluate models

on Wild PAnoramic Semantic Segmentation (WildPASS), a

dataset designed to capture diverse scenes from all around

the globe. Our novel model, training regimen and multi-

source prediction fusion elevate the performance (mIoU) to

new state-of-the-art results on the public PASS (60.2%) and

the fresh WildPASS (69.0%) benchmarks. 1

1. Introduction

Convolutional Networks (ConvNets) reach striking per-

formance on semantic segmentation [1, 34], a dense vi-

sual recognition task that aims at transforming an image

into its underlying semantic regions. Particularly, segment-

ing images of road scenes automatically is of interest as

it lies vital groundwork for scene understanding in an au-

tonomous driving environment [26]. Most segmentation

1WildPASS: https://github.com/elnino9ykl/WildPASS
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Figure 1. Top: Examples from our Wild PAnoramic Semantic

Segmentation (WildPASS) dataset; bottom: Class distribution of

pixel-class associations as unfolded over the angular direction.

algorithms [8, 40, 73] are designed to work on pinhole-

camera images whose Field of View (FoV) is rather narrow,

capturing only a fraction of what is occurring on and aside

the road. For a more holistic view on street-scenes, omnidi-

rectional cameras are becoming ubiquitous in autonomous

driving systems [71], as their capability of all-around sens-

ing, gives rise to comprehensive 360◦ scene understanding.

Yet, rather than designing models based on the new imag-

ing modality, predominantly, due to lack of sufficient la-

beled data, narrow FoV-trained models are applied to yield

a segmentation [7, 15, 59]. Brought about by the large

mismatch in FoV and structural distribution between imag-

ing domains, this practice causes significant performance

degradation, even to a point of rendering the perception of

surroundings completely unreliable [70].

Fig. 1 shows the distribution of semantic classes along
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the viewing angle, where green-tinted regions indicate the

section visible to a front-facing narrow FoV camera. It be-

comes apparent, that the positional priors in narrow- and

omnidirectional images diverge severely, e.g., the road class

occupies much of the center portion in narrow FoV images,

which, in 360◦ images, is far smaller at viewing angles

perpendicular to the front-facing direction (180◦). These

observations suggest distinct contextual priors between the

imaging techniques, which provide critical cues for seman-

tic segmentation [78, 87]. Here, we address the challenging

problem of leveraging inherent long-range contextual priors

unique to omnidirectional images, that previous systems fail

to harvest [69]. We lift the widely used, but computation-

ally expensive non-local operations based on pixel-to-pixel

correlations [17, 64] to the 360◦ FoV scenario in a computa-

tionally efficient fashion, i.e., modeling correlations of each

position to omni-range regions.

By design, non-local attention [64] is meant to aggre-

gate associations from highly correlated positions like re-

gions of homogeneous classes, which often lie in the hori-

zontal direction at a similar height, e.g., the sidewalks can

be distributed across 360◦ but principally in the lower part

of street-scenes. As preliminary investigation, we calcu-

late the mean of the Pearson correlation coefficient r(Xdir)
of the probability distribution over the classes in either the

horizontal r(Xhor) = 0.37 or vertical r(Xver) = 0.16 di-

rection. In light of the substantially larger class-correlation

of pixels observed horizontally, one can expect designing

an attention module with emphasis in the large-FoV width-

wise dimension to be advantageous, which reinforces the

model’s discriminability while eliminating redundant com-

putation on weakly-correlated pixels belonging to hetero-

geneous semantics. With this rationale, we propose Effi-

cient Concurrent Attention Networks (ECANets) for captur-

ing omni-range dependencies within wide-FoV imagery.

Aside from considering the inherent properties of 360◦

data in architecture design, training such models is not

straightforward, as a lack of sufficient annotated panoramic

images impedes optimization. The labeling process is ex-

tremely time- and labor-intensive, thus, only few surround-

view datasets [52, 63, 76] are publicly accessible and

none capture as diverse scenes as contemporary pinhole

datasets [38, 58] do. This is why, to unlock the full po-

tential of our novel ECANet architecture, we propose a

multi-source omni-supervised learning regimen that inter-

twines training on unlabeled, full-sized panoramic images

and densely labeled pinhole images. By means of data dis-

tillation [46] and our novel multi-source prediction fusion,

we increase prediction certainty, ingrain long-range contex-

tual priors while still benefiting from large-scale, narrow

FoV segmentation datasets.

To facilitate progress in omnidirectional semantic image

segmentation, we put forward the Wild PAnoramic Seman-

tic Segmentation (WildPASS) dataset for evaluating models

in unconstrained environments, featuring scenes collected

from all around the globe, reflecting the perception chal-

lenge of autonomous driving in the real world. An exhaus-

tive number of diverse experiments demonstrate the pro-

posed ECANet model, learning- and fusion strategy make it

possible to deploy highly efficient ConvNets for panoramic

image segmentation, surpassing the state-of-the-art on the

public PASS [69] and novel WildPASS datasets. On a

glance, we deliver the following contributions:

• Rethink omnidirectional semantic segmentation from

the context-aware perspective and propose Efficient

Concurrent Attention Networks, capturing inherent

long-range dependencies across the 360◦.

• Introduce multi-source omni-supervised learning, inte-

grating unlabeled panoramic images into training, em-

powering models to learn rich contextual priors.

• Present the diverse WildPASS dataset: Collected from

6 continents and 65 cities, enabling evaluation of

panoramic semantic segmentation in the wild.

• Our methods surpass previous and set new state-of-

the-art results on the PASS and WildPASS datasets.

2. Related Work

Context-aware semantic segmentation. Semantic seg-

mentation has progressed exponentially since the concep-

tion of fully convolutional networks [34] and the ground-

work laid by early encoder-decoder architectures [1, 39,

49]. Building atop classification networks [18, 22],

DeepLab [4, 5], PSPNet [91], RefineNet [31] and DenseA-

SPP [73] leverage pre-trained models and achieve notable

performance improvements. Yet, a lot of progress is driven

by sub-modules like dilated convolutions [81], large ker-

nels [43], pyramid-, strip- and atrous spatial pyramid pool-

ing [4, 19, 91] for capturing structured context.

A second branch of work takes advantage of recent chan-

nel/spatial attention mechanisms [20, 21, 62, 65] to exploit

global context [29, 86], dimension-wise priors [8, 72] and

cross-modal features [55, 67, 88]. More recently, inspired

by non-local blocks in recognition tasks [64], DANet [17]

and OCNet [83] adopt self-attention [60] to capture either

associations between any pair of pixels/channels or dense

object context, respectively. Further, point-wise attention is

adaptively learned in [92]. This trend prompts a variety of

attention modules [6, 24, 30, 32], as well as graph-based

models [77, 89] and factorized variants [23, 51, 75]. With

the nature of dense prediction in segmentation, the com-

putational cost induced by combinatorics of pixel-pairs be-

comes infeasible very fast, which is amplified when work-

ing on pixel-rich, extra-wide panoramic images. In order to

reduce these pair-wise computations, CCNet [25] operates

in criss-cross paths, Axial-DeepLab [61] propagates along

height- and width-axis sequentially, while [16, 53, 77, 94]
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Figure 2. Horizontal Segment Attention (HSA) module. The omnidirectional image feature is divided into segments to model self-attention

for capturing horizontal contextual information. To further reduce computation complexities and emphasize dependencies along the 360◦

width-wise direction, the association is measured between each pixel and gathering regions obtained with height-wise strip pooling.

act on key responding positions. Addressing the nature

of omni-range contextual priors in panoramic images, we

propose an efficient concurrent attention module. Unlike

context-aware networks [19, 25] that only aggregate spa-

tial dependency or refine pixel-level context, our attention

concurrently highlights horizontally-driven dependencies

and collects global contextual information for wide-FoV

segmentation. While accuracy-oriented networks reach

high performance, efficient networks like Fast-SCNN [45],

CGNet [66] and ERFNet [48] aim to perform both swift

and accurate segmentation. Further, a subset of compact

ConvNets [66, 70, 79] utilize attention mechanisms to ef-

ficiently aggregate context. However, these methods do

not consider inherent properties of omnidirectional imagery,

and thus suffer from large accuracy degradation on such

data. Our solution to solve this issue extends the line of effi-

cient ConvNets and consistently elevates their performance

and reliability when operating on panoramic images.

Omnidirectional semantic segmentation. As systems

progressed towards 360◦ perception, early omnidirectional

segmentation works were based on fisheye images [12, 74]

or focused on indoor scenes [54, 56] with surround-view

systems in street-scenes being largely based on a mul-

titude of cameras [11, 37, 41, 47]. Motivated by the

prospect of attaining 360◦ semantic perception based on

a singular panoramic camera, recent works build seman-

tic segmentation systems directly on top of this sensor-

modality [2, 68, 85]. However, these methods rely on ei-

ther expensive manually labeled or synthesized omnidirec-

tional data, that does not capture the diversity nor the re-

alism as seen in large-scale pinhole image collections with

rich ontologies [38, 58]. With this sentiment in mind, we

introduce the WildPASS dataset, comprising 360◦ images

from over 60 cities and multiple continents, encouraging a

more realistic assessment of panoramic segmentation per-

formance. Yang et al. presented a framework [69, 70] for

re-using models trained on pinhole images via style trans-

fer [93] and separating the panorama into multiple parti-

tions for predictions, each resembling a narrow FoV im-

age. While quite accurate, running multiple forward passes

suffers from high latency [69] and disregards global con-

text information within the panorama, as it is divided into

patches. With our holistic view on panoramic image seg-

mentation, we cut this computational burden by nearly a

factor of four, extending the framework in [71] with a multi-

source omni-supervised learning regimen that covers 360◦

imagery via data distillation [46] as well as enjoying the

advantages of large, readily available, labeled pinhole im-

age datasets. Further, making best use of the multi-source

setting, we integrate a prediction fusion scheme, improving

semantic certainty and generalization, as indicated by per-

formance measures on both: PASS and WildPASS datasets.

3. Methodology

3.1. Efficient Concurrent Attention

To capture omni-range contextual priors in panoramic

images, we propose Efficient Concurrent Attention Net-

works (ECANets). Classical non-local methods [17, 64]

generate large affinity maps to measure the association

among each pixel-pair, producing a complexity in space

of O((He×We) × (He×We)) ∼ O(He
2We

2). He×We

denotes the spatial resolution of the feature map, there-

fore at the rather small scale of 128×64, the complex-

ity already amounts to 67, 108, 864 attention-related com-

putations. This substantially increases training footprint

and inference requirement, thus hindering memory-efficient

learning and fast execution. With the assumption that wide-

FoV panoramas contain rich contextual dependencies in the

horizontal dimension, our ECANet features a Horizontal

Segment Attention (HSA) module (Fig. 2) and a Pyramidal

Space Attention (PSA) module (Fig. 3) for efficient context

aggregation, simultaneously lessening the computational

burden to a large extent as compared to the non-local base-
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line [64]. As shown in Fig. 4, the attended-to feature maps

are passed through PSA at different scales and then concate-

nated with HSA- and backbone feature maps. Finally, the

resulting feature map is transformed by convolution- and

upsampling layers to yield the semantic maps.

Horizontal segment attention module. The HSA mod-

ule (Fig. 2) produces horizontally-driven feature maps for a

given input I ∈ R
Ce×He×We obtained from the backbone.

For street-scenes, wide-FoV panoramas contain rich depen-

dencies in the spatial dimension W , e.g., shared semantics

between distant patches of sidewalk along the 360◦ can help

in producing more consistent predictions. In this sentiment

and with the aim of modeling self-attention to capture the

wide FoV dependencies, the input feature is first divided

into N segments (N = 4 in Fig. 2) along the H dimen-

sion. Each segment S ∈ R
Ce×H×W has a smaller size with

(H,W ) = (He

N
,We), which is fed into convolution lay-

ers to generate feature maps of query Q, key K and value

V to carry out self-attention [60]. This reinforces the hor-

izontal context aggregation and reduces the complexity to

O(N × (He

N
×We)× (He

N
×We)) ∼ O(He

2We
2/N).

Further, advocating 360◦ region-level priors and to

largely lessen computation burdens, we propose to apply

a height-wise strip pooling on both the key feature K ∈
R

C×H×W and value feature V ∈ R
Ce×H×W . The result-

ing size of this strip pooling is Ĥ × Ŵ , where Ĥ ≪ Ŵ
but Ĥ 6=1 to enable interactions between vertically adjacent

patches. The attention map A, is then computed from the

reshaped query feature Q′ ∈ R
(H×W )×C and the new key

feature K′ ∈ R
C×(Ĥ×Ŵ ):

Q′ ×K′ → A ∈ R
(H×W )×(Ĥ×Ŵ ) (1)

In this manner, the association between each pixel and strip-

pooled regions is ingrained in the module’s architecture,

which directly enables learning relations along the horizon-

tal axis, across the 360◦. We apply the softmax function to

the attention map, transpose it and attend to the value fea-

ture V′ ∈ R
Ce×(Ĥ×Ŵ ) as follows:

V′ ×AT → S′ ∈ R
Ce×(H×W ) (2)

Finally, all segments S′ ∈ R
Ce×H×W are concate-

nated along the vertical dimension H amounting to the

horizontally-driven output O ∈ R
Ce×He×We . With this

architectural design, we are able to greatly reduce the com-

plexity to O(N×(He

N
×We)×(Ĥ×Ŵ )) ∼ O(HeWeĤŴ ),

as ĤŴ≪HeWe. Further, our HSA module selectively ag-

gregates context, as each pixel gathers information from its

semantically-correlated regions in the horizontal direction.

Pyramidal space attention module. To capture global

context, we introduce the PSA module (Fig. 3), relating

each pixel to globally distributed regions using spatial pool-

ing. We depict the pyramid scales of the spatial pool-

ing in Fig. 4 with (Ĥ, Ŵ ) = {(3, 3), (4, 4), (6, 6)}. In

this manner, the complexity is
∑

i O(HeWeĤiŴi), a con-
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Figure 3. Pyramidal Space Attention (PSA) module. To capture

global context in an efficient way, self-attention is modeled with

the association measured between each pixel and globally dis-

tributed regions sampled using spatial pooling of pyramid scales.

siderable reduction as compared to the non-local baseline.

The attended-to feature maps are concatenated to the HSA

module output and the features produced by the backbone.

Thereby, the proposed ECANet gathers both: wide-FoV

horizontal semantics and global dependencies for enhanced

omni-range reasoning.

3.2. Multi­source Omni­supervised Learning

In the following, we consider the training of panoramic

segmentation networks and propose a better suited regimen.

Multi-source omni-supervision. We extend the design

of [71] based on data distillation [46] and present a multi-

source omni-supervised learning regimen. As shown in

Fig. 4, we train efficient networks on both labeled pinhole-

and unlabeled panoramic images in a multi-source setup.

This adds diversity of FoV while simultaneously preventing

the model from overfitting to pinhole images. While differ-

ent datasets have heterogeneous class definitions, therefore

hindering direct training by merging sources, we argue that

the relationships encoded in their similar label hierarchies

positively affect the generalization of feature representa-

tions. For example, street-scene datasets [9, 38, 58] have

different definitions of road surfaces, but share similar class

hierarchies that both comprise flat region and traffic object

categories. As shown in Fig. 4, our approach is designed

to enable learning with unequal sources in spite of their

class-label conflicts. Precisely, to address the heterogene-

ity in semantic spaces, we append multiple output-heads to

the efficient learner, each of which is a fully convolutional

module with an upsampling layer for prediction in different

label spaces (semantic spaces 1 and 2 for two sources, as

illustrated in Fig. 4).

For unlabeled panoramas, we create annotations using

a sophisticated architecture pre-trained on pinhole sets by

means of the PASS pipeline [69], as such we leverage the

correspondence of FoV between pinhole images and parti-

tioned panoramas for accurate segmentation. The panorama

is rotated along the horizontal direction based on its 360◦

wrap-around structure, and the predictions on differently

rotated transformations are ensembled, producing the an-

notation. While time-consuming due to the complex PASS
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Figure 4. Diagram of the multi-source omni-supervised learning regimen for omnidirectional semantic segmentation. During training, the

efficient concurrent attention network is trained on the union of labeled pinhole images and unlabeled panoramas in a multi-source manner.

In the case of two domains, the network is enhanced with two heads for segmentation in heterogeneous label spaces. Annotations for the

panoramas are automatically generated by seizing an ensemble of predictions on multiple transformations with the PASS pipeline [69].

During testing, the efficient produces two sets of semantic maps with classes C1 and C2, which are fused in a post-processing step. On the

right is an example of multi-space fusion, where green pixels on the uncertainty map denote areas with refined semantics (see the truck).

pipeline and ensembling, the resulting fine-grained, high

quality annotations are computed in advance and can be

leveraged for data distillation (Fig. 4). Unlike [71] that

uses a battery of single-city unlabeled images, we distill

knowledge via diverse panoramas from all around the globe,

which will unfold as crucial detail for attaining generaliza-

tion to open omnidirectional domains.

Multi-space fusion. In [71], while multi-space predictions

are produced, only a single semantic map (i.e., the Vistas-

space) is used for the inferred omnidirectional perception.

We assess this to be sub-optimal as it disregards the over-

lap in labels of the multi-source semantic spaces. To ad-

dress this, we propose to fuse the multi-space predictions

in a post-processing step. As such, we consider the inter-

secting classes of all semantic spaces Cj : CIN =
⋂J

j=1 Cj .

Based on the unnormalized output z
j
i for the ith pixel as pro-

duced by the trained jth output-head, the predicted class yji
is known as yji = argmaxc∈Cj

z
j
i,c. However, considering

other candidate heads, the prediction will be updated as:

y′
j

i = argmax
c∈CIN

z
j∗

i,c, (3)

if the prediction of the optimal head j∗ is within the in-

tersecting classes CIN . To find the optimal output-head

j∗, several strategies can be leveraged. A straightforward

method based on the minimal uncertainty of the prediction

is j∗var = minj∈J(var(z
j
i )), where uncertainty is modeled

by the variance var(zji ) = (1/Cj)
∑Cj

c=1(z
j
i,c − z̄

j
i )

2. An

exemplary uncertainty map is visualized on the right side

of Fig. 4. Likewise, a common method for fusing predic-

tions is to simply choose the maximum confidence based

on the prediction probability: j∗conf = maxj∈J maxσ(zji,c)
with σ(·) denoting the softmax function. However, to se-

lect the optimal prediction, we make use of the calibrated

confidence as given by the ratio of the highest and second

highest probabilities: j∗cal = maxj∈J
max1 z

j

i,c

max2 z
j

i,c

. Compared

to using all values in j∗var or just the maximum one in j∗conf,

this fusion refines panoramic segmentation by considering

the top-2 predictions, as shown in Fig. 4.

4. Experiments

4.1. WildPASS Dataset

To foster research and to facilitate credible numerical

evaluation for panoramic scene segmentation, we intro-

duce the Wild PAnoramic Semantic Segmentation (Wild-

PASS) dataset. Unlike mainstream large-scale datasets like

Cityscapes [9] and BDD [80] that focus on urban scene un-

derstanding in Europe or North America, WildPASS em-

braces segmentation in the wild with images from all around

the world based on Google Street View. As shown in Fig. 5,

it includes unstructured and adverse road scenes like night-

time, as well as images taken from different viewpoints to

paint a comprehensive picture of real-world challenges for

navigational perception systems. Overall, we gather 2500

panoramas in 65 cities from all continents Asia, Europe,
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Figure 5. Example images in the WildPASS dataset, including fine labeled and unlabeled panoramas collected from all around the world.

Africa, Oceania, North and South America (excluding only

Antarctica). Following PASS [69] and RainyNight [13],

500 panoramas from 25 cities are precisely annotated for

the most critical navigation-related classes. We extend the

semantics defined for panoramic segmentation [69] to 8

classes: Car, Road, Sidewalk, Crosswalk, Curb, Person,

Truck and Bus. The remaining 2000 panoramas from 40

different cities are collected for omni-supervised learning.

All images have a 360◦×70◦ FoV at 2048×400. WildPASS

thereby is the largest panoramic street-scene segmentation

benchmark, exceeding other evaluation-oriented WildDash

(211 annotations) [84], ISSAFE (313 annotations) [88] and

PASS (400 annotations) [69] datasets.

4.2. Experimental Setup

Our experiments are built on the Mapillary Vistas [38]

and IDD20K [58] pinhole datasets for a multi-source set-

ting. These datasets are appealing as they feature di-

verse viewpoints and unstructured scenes inherent in real-

world unconstrained surroundings. Both datasets contain

18000/2000 and 14027/2036 images for training/validation,

respectively. Following [71], we use 25 classes from Vis-

tas and the level-3 labels (26 classes) of IDD20K, 15 of

which overlap. We use the 2000 unlabeled panoramas of

WildPASS to create omnidirectional annotations with PSP-

Net50 [91] for data distillation. We test on public PASS

(400 annular images) and WildPASS (500 panoramas)

datasets and evaluate with the mean Intersection over Union

(mIoU) metric. Facilitating fair comparisons with omni-

directional segmentation frameworks [69, 71], ECANet is

implemented using the ERFNet [48] backbone pre-trained

on ImageNet [50]. We use N = 4 segments and a strip

pooling of (Ĥ, Ŵ ) = (2, 16) in HSA and spatial pool-

ing of (Ĥ, Ŵ ) = {(3, 3), (4, 4), (6, 6)} in PSA. ECANet is

trained under Adam optimization [28] with a Weight Decay

of 2×10−4 and a Learning Rate of 1×10−4 that decreases

exponentially over 200 epochs. We train with a batch-size

of 12 and a resolution of 1024×512. For multi-source train-

ing, each iteration comprises a forward and backward pass

per dataset with standard cross-entropy loss throughout.

4.3. Results on PASS

As shown in Table 1, we first present the results on the

public Panoramic Annular Semantic Segmentation (PASS)

dataset [69], which represents an unseen test-bed to our

Network and Method mIoU

Vistas-trained Fast-SCNN [45] 28.5%

Vistas-trained SegNet [1] 25.7%

Vistas-trained DRNet (ResNet18) [82] 28.0%

Vistas-trained PSPNet (ResNet50) [91] 41.4%

Vistas-trained DenseASPP (DenseNet121) [73] 33.3%

Vistas-trained DANet (ResNet50) [17] 38.9%

Style-transferred ENet [42] 31.0%

Style-transferred SQNet [57] 27.9%

Style-transferred ERFNet [48] 34.3%

Style-transferred LinkNet [3] 30.5%

Style-transferred PSPNet (ResNet18) [91] 34.8%

Style-transferred ICNet [90] 25.7%

Style-transferred ESPNet [36] 24.7%

Style-transferred BiSeNet [79] 27.7%

Style-transferred EDANet [33] 30.5%

Style-transferred CGNet [66] 30.4%

Style-transferred SwiftNet [40] 37.4%

Style-transferred SwaftNet [70] 38.2%

Vistas-trained ERF-PSPNet 32.2%

Style-transferred ERF-PSPNet 39.2%

PASS [69] ERF-PSPNet 58.2%

OOSS [71] ERF-PSPNet 47.9%

Our method ERF-PSPNet 58.4%

Our method ECANet 60.2%

Table 1. Accuracy analysis on the public PASS dataset [69].

models. Thereby, the evaluation paradigm expects a trained

model that can generalize well in an open, previously un-

seen domain. A variety of networks has been benchmarked

on the PASS dataset, including some trained on Mapillary

Vistas and some style-transferred using CycleGAN [69, 70].

Overall, even though the networks under our multi-source

omni-supervision have not seen any annular image from the

PASS domain, they outperform all previous models by large

margins. In comparison to the PASS method using ring-

padding [10] for continuous segmentation and the single-

pass OOSS method [71], our improvement is significant

thanks to the diversity introduced in the data distillation.

Moreover, our ECANet capturing omni-range dependen-

cies, boosts mIoU to 60.2%, setting new state-of-the-art ac-

curacy among 20 mainstream networks.

4.4. Results on WildPASS

Comparison with state-of-the-art. With the novel Wild-

PASS dataset, we establish a benchmark for omnidirec-

tional segmentation. The most accurate and efficiency-

oriented architectures are trained on Mapillary Vistas and

extensively evaluated on WildPASS. Table 2 shows their

per-class accuracy as well as their computation complexity

quantified by Multiply-Accumulate operations (MACs) and

1381



Network mIoU Car Road Sidew. Crossw. Curb Person Truck Bus MACs PARAMs

SegNet [1] 22.7% 57.2% 61.1% 18.2% 4.2% 14.1% 5.8% 9.6% 11.1% 398.3G 28.4M

PSPNet50 [91] 46.1% 80.0% 74.9% 51.7% 23.9% 31.4% 19.8% 38.9% 48.1% 403.0G 53.3M

DenseASPP [73] 33.2% 51.1% 69.1% 38.1% 16.4% 26.3% 8.7% 27.4% 28.4% 78.3G 8.3M

DANet [17] 47.2% 74.8% 72.2% 49.9% 28.9% 23.8% 25.4% 51.9% 50.6% 114.1G 47.4M

ENet [42] 23.8% 41.9% 58.3% 31.9% 9.2% 17.3% 3.2% 14.8% 13.9% 4.9G 0.4M

Fast-SCNN [45] 24.8% 45.9% 60.0% 31.7% 9.7% 17.1% 6.0% 14.2% 13.8% 1.7G 1.1M

PSPNet18 [91] 28.2% 58.2% 66.8% 28.4% 13.0% 19.2% 6.2% 18.2% 15.6% 235.0G 17.5M

DRNet22 [82] 27.3% 53.0% 66.2% 19.7% 7.1% 16.3% 7.5% 20.5% 28.2% 136.5G 15.9M

ERFNet [48] 29.8% 64.7% 68.0% 25.9% 6.2% 22.0% 9.0% 19.2% 23.0% 30.3G 2.1M

CGNet [66] 25.8% 49.7% 60.1% 24.0% 9.9% 15.3% 4.6% 16.1% 26.5% 7.0G 0.5M

SwiftNet [40] 30.0% 55.7% 64.1% 29.2% 16.2% 22.9% 8.5% 21.1% 22.2% 41.7G 11.8M

SwaftNet [70] 35.4% 64.0% 68.5% 37.2% 10.7% 26.7% 13.1% 27.8% 35.6% 41.8G 11.9M

ERF-PSPNet [69] 34.0% 66.3% 70.5% 36.5% 6.4% 24.1% 9.4% 26.5% 32.0% 26.6G 2.5M

PASS (ERF-PSPNet) [69] 64.7% 87.3% 80.0% 61.4% 71.1% 49.9% 72.2% 37.5% 57.9% 91.6G 2.5M

OOSS (ERF-PSPNet) [71] 56.1% 87.2% 79.3% 60.8% 28.0% 38.1% 54.5% 48.8% 52.2% 26.6G 2.5M

Our omni-supervised (ERF-PSPNet) 66.8% 90.5% 82.7% 65.6% 70.5% 51.5% 58.2% 62.0% 53.1% 26.6G 2.5M

With attention (ECANet) 67.7% 90.4% 83.7% 68.4% 67.8% 52.1% 61.4% 54.5% 63.3% 27.8G 2.6M

With fusion (ECANet) 69.0% 90.6% 85.7% 68.0% 67.9% 52.1% 66.0% 59.3% 62.3% 27.8G 2.6M

Table 2. Accuracy analysis on WildPASS.

Network Vistas-trained Omni-supervised Multi-space fused

ERF-PSPNet [69] 34.0% 66.8% 68.1%

Fast-SCNN [45] 24.8% 45.4% 45.8%

CGNet [66] 25.8% 48.2% 48.8%

DRNet22 [82] 27.3% 64.7% 66.0%

Our ECANet 39.7% 67.7% 69.0%

Table 3. Analysis of our approach for various efficient networks.

number of Parameters. It can be seen that they generally

achieve unsatisfactory results. For example, DenseASPP is

reported to have a mIoU of 65.8% on Vistas but degrades

by more than 30.0% when taken to our challenging Wild-

PASS. State-of-the-art panoramic segmentation frameworks

PASS [69] and OOSS [71] improve upon the ERF-PSPNet

baseline. However, PASS needs to separate the panorama

into multiple partitions and thereby requires nearly 4 times

of MACs, while OOSS is limited without materializing di-

verse panoramas in data distillation. Our proposed multi-

source omni-supervised approach outperforms both of them

while maintaining the high efficiency of ERF-PSPNet. With

concurrent attention, the proposed ECANet surpasses ERF-

PSPNet and our multi-space fusion elevates mIoU to 69.0%,

outperforming all previous methods.

Effectiveness for different networks. Furthermore, we

experiment with various efficient ConvNets to study how

well our approach generalizes. As shown in Table 3, the

multi-source omni-supervision is advantageous for all effi-

cient networks, as the mIoU scores on WildPASS are im-

proved by significant amounts, even up to 37.4%. The

multi-space fusion is also consistently effective and the ben-

efit is most pronounced for more accurate networks. These

results demonstrate that our novel learning regimen is not

strictly tied to a specific architecture and enables reliable

predictions for omndirectional imagery across the board.

4.5. Ablation Study

Ablation of multi-source omni-supervision. We first an-

alyze our multi-source omni-supervision training method

Method on Vistas on WildPASS

Vistas-trained 61.6% 34.0%

Multi-source trained 63.0% 39.8%

Single-source fine-tuned 20.3% 41.1%

Multi-source fine-tuned 45.2% 60.7%

Omni-supervised (Pittsburgh) [71] 62.9% 56.1%

Omni-supervised (World-wide panoramas) 62.9% 66.8%

CLAN [35] 39.9% 38.3%

USSS [27] 49.5% 38.7%

PASS [69] - 64.7%

Seamless [44] - 34.0%

Our method (ERF-PSPNet) 62.9% 68.1%

Our method with attention (ECANet) 63.5% 69.0%

Table 4. Analysis of our multi-source learning method.

with ERF-PSPNet [69] on Vistas validation set and our

WildPASS. As shown in Table 4, while the single-source

Vistas-learned model is accurate in the training domain

(61.6%), it only yields a mIoU of 34.0% on WildPASS.

The IDD20K-trained model does not contain all the classes

and thus no fair evaluation is possible, yet, the multi-

source joint-training boosts the score to 39.8%. Fine-

tuning on panoramas with generated annotations in both

a single- or multi-source fashion improves the results on

WildPASS. Omni-supervised learning by using the Pitts-

burgh dataset [71] is limited by less diverse panoramic

images. In comparison, omni-supervision on world-wide

panoramas largely improves the mIoU to 66.8%, demon-

strating the importance of diverse panoramic images in the

data distillation process. We further compare to the state-of-

the-art domain adaptation method CLAN [35] by adapting

from pinhole to panoramic imagery and the multi-source

semi-supervised method USSS [27]. Moreover, PASS [69]

for panoramic- and Seamless [44] for panoptic segmen-

tation enable a smooth holistic understanding. However,

both of the above frameworks remain sub-optimal in con-

trast to our method with ERF-PSPNet (68.1%) and ECANet

(69.0%) which reaches high performances via multi-source

omni-supervision and multi-space fusion.
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(a) Panorama (b) Sub-attention maps (c) Baseline (d) Ours

Figure 6. Qualitative examples of omnidirectional semantic segmentation: (a) Input panorama. (b) Sub-attention maps for the red point

in (a), generated with our omni-supervised ECANet including the 2×16 map from the HSA- and the {3×3, 4×4, 6×6} maps from the

PSA module. The brighter, the higher correlation to the region (maps normalized for visualization). For instance, the red point on the left

sidewalk in the last row is correlated to the right sidewalk region according to the 2×16 map. (c) Baseline (ERF-PSPNet [69]). (d) Ours.

Network mIoU Memory MACs PARAMs

ERF-PSPNet [69] 34.0% 4.1M 4.6G 17K

ERFNet [48] 29.8% 224.0M 5.0G 189K

Non-local [64] 36.6% 261.3M 2.6G 38K

Dual attention [17] 36.7% 265.3M 2.9G 75K

Criss-cross attention [25] 38.3% 14.5M 0.7G 79K

Axial attention [61] 39.0% 22.5M 0.9G 104K

Our ECANet (HSA) 39.4% 5.3M 0.3G 43K

Our ECANet (PSA) 37.5% 14.7M 0.9G 116K

ECANet (HSA+PSA) 39.7% 20.0M 1.3G 159K

Table 5. Ablation of efficient concurrent attention. Computation

metrics correspond to the context aggregation of single-source

trained networks after ERFNet backbone (feature res. at 128×64).

Ablation of attention and fusion. Table 5 shows the mIoU,

memory and computation requirement of our ECANet com-

pared to its dissected versions using only HSA or PSA as

well as non-local techniques from literature. It can be seen

that our ECANet, while strengthening the horizontal con-

text aggregation, is much more memory-efficient as com-

pared to the non-local and dual attention modules. More-

over, ECANet clearly outperforms them as well as effi-

cient axial- and criss-cross attention in omnidirectional seg-

mentation. This demonstrates ECANet, by capturing es-

sential omni-range contextual priors, is inherently robust in

panoramic image segmentation. In the multi-source omni-

supervised setting, we further compare different attention

and context aggregation modules (Table 6). We experiment

with N = {2, 4, 8} segments and verify that a 4-segment

ECANet is most accurate. Moreover, our multi-space fu-

sion method exceeds calibration-bypassed fusion methods

that simply take the class with maximum probability from

both spaces or from the space with minimum variance.

4.6. Qualitative Analysis

Fig. 6 displays qualitative omnidirectional segmenta-

tion examples. For each panorama, we select a point and

show their corresponding attention maps yielded from our

ECANet. It can be observed that ECANet achieves more re-

liable segmentation than the pinhole-trained baseline, e.g.,

ours enables complete segmentation of the crosswalk rather

Network/Method mIoU Network/Module mIoU

ERF-PSPNet [69] 66.8% Non-local [64] 62.6%

ECANet (HSA, 2 Segs) 66.8% Dual attention [17] 65.0%

ECANet (HSA, 4 Segs) 67.4% Criss-cross attention [25] 66.3%

ECANet (HSA, 8 Segs) 66.7% Axial attention [61] 64.3%

ECANet (PSA) 67.2% Height-driven attention [8] 64.8%

ECANet (HSA+PSA) 67.7% Point-wise attention [92] 65.4%

Fusion (Max Prob.) 68.8% ASPP [4] 65.7%

Fusion (Min Var.) 68.4% BFP [14] 65.6%

Our Fusion 69.0% Strip pooling [19] 63.7%

Table 6. Accuracy analysis of efficient concurrent attention and

fusion methods in the multi-source omni-supervised setting, and

comparison against state-of-the-art context aggregation modules.

than wrongly classifies into general road markings. The

3×3 attention map (orange) learned to highlight regions

within the same height, which shows that it is meaningful

to emphasize horizontal dependencies, forming a more dis-

criminative feature representation. The 4×4 (blue) and 6×6

(purple) maps handle more detailed dependencies. On the

other hand, the 2×16 (red) attention map captures semanti-

cally related regions in the horizontal direction stretching

across 360◦. For example, for the marked points in the

first and last row, the spotlighted regions correspond to the

strongly correlated homogeneous semantics, i.e., other cars

and sidewalks, whose features are passed back, significantly

improving the consistency of the segmentation.

5. Conclusion

We look into omnidirectional image segmentation from

the context-aware perspective. To bridge the gap in terms

of FoV and structural distribution, our proposed ECANet

captures inherent omni-range dependencies that stretch

across 360◦, whose generalization is optimized via multi-

source omni-supervision and multi-space fusion. To fos-

ter progress in panoramic semantic perception, we establish

and extensively evaluate models on WildPASS, a bench-

mark that captures diverse scenes from all around the world.

Comprehensive experimental results show the proposed

methods significantly elevate state-of-the-art accuracy for

high-efficiency ConvNets on PASS and WildPASS.
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