
Deep Optimized Priors for 3D Shape Modeling and Reconstruction

Mingyue Yang1*, Yuxin Wen1∗, Weikai Chen2, Yongwei Chen1, Kui Jia134†

1South China University of Technology, 2Tencent Game AI Research Center
3Pazhou Laboratory, 4Peng Cheng Laboratory

{eemingyueyang,wen.yuxin}@mail.scut.edu.cn,

chenwk891@gmail.com, eecyw@mail.scut.edu.cn, kuijia@scut.edu.cn

Abstract

Many learning-based approaches have difficulty scaling

to unseen data, as the generality of its learned prior is lim-

ited to the scale and variations of the training samples.

This holds particularly true with 3D learning tasks, given

the sparsity of 3D datasets available. We introduce a new

learning framework for 3D modeling and reconstruction

that greatly improves the generalization ability of a deep

generator. Our approach strives to connect the good ends

of both learning-based and optimization-based methods. In

particular, unlike the common practice that fixes the pre-

trained priors at test time, we propose to further optimize

the learned prior and latent code according to the input

physical measurements after the training. We show that

the proposed strategy effectively breaks the barriers con-

strained by the pre-trained priors and could lead to high-

quality adaptation to unseen data. We realize our frame-

work using the implicit surface representation and validate

the efficacy of our approach in a variety of challenging tasks

that take highly sparse or collapsed observations as input.

Experimental results show that our approach compares fa-

vorably with the state-of-the-art methods in terms of both

generality and accuracy.

1. Introduction

Deep generative models have brought impressive ad-

vances to the state-of-the-art across a wide variety of gen-

erative tasks, including 2D image synthesis and 3D shape

reconstruction. At the moment, it is widely believed that

these leaps in performance come primarily from the real-

istic priors learned from a large amount of training data.

Based on this observation, most of the previous 3D learning

approaches focus on learning stronger priors during training

and strictly respecting the learned prior at test time. Specif-

ically, there are two common ways to leverage the learned
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Figure 1: The shape prior learned from the limited train-

ing data cannot capture the full landscape of the real data

distribution. Common practice that uses a fixed pre-trained

generator is constrained within the prior (path a) and thus

fails to model the unseen data lying outside the prior, even

with latent code optimization at test time. Optimizing a ran-

domly initialized generator, on the other hand, is prone to be

trapped in a local minimum due to the complex energy land-

scape (path b). Whereas the pre-train prior could provide

a good initialization in a forward pass, we propose to fur-

ther optimize the parameters of the prior and the latent code

according to the task-specific constraints at test time. We

show in this work that the proposed framework can effec-

tively break the barriers of pre-trained prior and generalize

to the unseen data that is out of the prior domain (path c).

Hence, our approach can generate results (ending point of

path c) closest to the ground truth (star point on the real data

manifold) compared to the other learning methods.

shape priors. One is to train an encoder to retrieve the most

likely prior by mapping the input into the latent code, which

is a low-dimensional representation of the shape prior. The

other is to optimize the latent code until its decoded out-

put achieves a minimal loss. Note that both methods fix

the learned prior/generator once the training is completed

as the prior is considered to be the most valuable asset in a

learning-based approach. However, is this the best strategy

of using the prior in a 3D learning task?
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The quality of the learned prior highly relies on the scale

and diversities of the training examples. Yet, even with a

large amount of data, the prior learned by the neural net-

work may still be a crude approximation of the real data

distribution (see Figure 1), making the network vulnera-

ble to unseen data. This is particularly true with the 3D

learning tasks, where the ground-truths are notoriously dif-

ficult to obtain, which greatly limits the scale of the train-

ing samples. Optimization-based approaches that leverage

constraints from data, e.g. multi-view consistency, do not

require any training to be usable. However, they are strict

with the inputs and tend to fail on the sparsity of the data

(e.g. single/sparse-view reconstruction) or the physical mis-

alignment (e.g. unregistered/mismatched images).

To alleviate the generality issue of the learning-based ap-

proach while maintaining a friendly requirement for the in-

puts, we advocate a new 3D learning paradigm that connects

the good ends of both learning-based and optimization-

based approaches. In particular, we propose that the pre-

trained data prior could obtain a maximum generality if it

is optimized, rather than fixed, according to the data con-

straints at test time. Our approach shares a similar incentive

with deep image priors [30], where high-quality images can

be synthesized simply by optimizing an untrained and ran-

domly initialized deep generator. However, unlike image

synthesis, we show that optimizing a randomly initialized

neural network often fails to achieve satisfactory results in

3D learning, especially in highly ill-posed configurations,

such as sparse-view based 3D reconstruction.

Instead of fixing the priors or using random priors, we

propose to jointly optimize the pre-trained shape prior and

the latent code towards the input physical measurements at

test time. Our observation is that though the learned prior

cannot capture the full landscape of the real data distribu-

tion, it does provide a fairly good initialization for search-

ing for the optimal solution in the entire embedding space

(Figure 1). Further, by introducing the physically based op-

timization, the searching path could break the barrier of

the pre-trained priors and converge at some point on the

real prior which is more realistic but unreachable by only

searching inside the learned priors (Figure 1). While it is

possible that the optimization may lead to 3D shapes that

do not look plausible, we propose that an l2 regularization

works surprisingly well in regularizing the searching space.

We materialize our idea using the implicit surface rep-

resentation, as it is flexible to handle shapes with arbitrary

topologies. We show that our proposed approach is a gen-

eral 3D learning framework that supports a wide range of

downstream applications, including shape modeling and re-

construction, with various forms of inputs. We also demon-

strate that our framework can significantly improve the gen-

erality of the learning-based approach, even in the pres-

ence of highly sparse or collapsed observations, e.g. the

sparse point clouds obtained from the 3D scanning, sin-

gle or sparse views of the object of interest, etc. We ver-

ify the effectiveness of our approach in a variety of chal-

lenging tasks, including shape auto-encoding, sparse-view

reconstruction and sparse point cloud reconstruction. Ex-

perimental results show that our approach is superior to the

state-of-the-arts both quantitatively and qualitatively.

2. Related Work

Optimization-based Shape Reconstruction. Traditional

image-based surface reconstruction methods, including

PMVS [8] and COLMAP [26], etc., are mainly based on

texture-rich and dense views for extracting multi-view cor-

respondences. Since these approaches follow the exact data

constraints, the reconstructed surface could be highly ac-

curate. Nonetheless, they are also vulnerable to noisy in-

put and collapsed observations which could interrupt the

acquisition of pixel-wise correspondence across different

views. In addition, they fail to generate plausible results

in the presence of sparse views. The other line of research

strives to reconstruct 3D surface from raw point clouds.

The most representative ones include Poisson surface re-

construction [13], radius basis functions (RBF) [2], and

moving least squares (MLS) [15] based approaches. The

main idea of these methods is to fit either polygonal meshes

or implicit functions to the input point cloud by optimiz-

ing a pre-defined energy objective. In contrast, our pro-

posed method take advantage of both learning-based and

optimization-based framework. Specifically, while we are

able to faithfully reconstruct 3D surface with sparse obser-

vations, we can also achieve similar quality of reconstruc-

tion with the traditional stereo-based approach when obser-

vations are sufficient.

Learning-based Shape Modeling and Reconstruction.

Recent years have witnessed great progress in introduc-

ing deep learning to 3D shape modeling and reconstruc-

tion. In particular, most of the previous works mainly

rely on a retrieval based framework that fixes the parame-

ters of the generator after training and retrieves the closest

prior in the latent space via forward passing. It has been

widely used in a wide range of 3D representations, includ-

ing mesh [31, 32, 10, 24, 27], voxels [6, 29, 11], and im-

plicit field [22, 4, 34, 28]. Though reasonable results can be

obtained from these methods, they are vulnerable to distur-

bances in the input. Once the forward pass failed, one can-

not further modify or optimize the results. To resolve this

issue, recent works [1, 19] have proposed to optimize the

latent code at test time. DeepSDF [25] presents the frame-

work of auto-decoder where the shape prior is learned only

with a decoder during training. The latent codes are opti-

mized according to the input observations at test time, given

a fixed pre-trained decoder. Despite that the reconstruction

accuracy has been further improved by these approaches,
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Figure 2: Illustration of our pipeline. Given specific supervisions (right) from the downstream applications, our goal is to

optimize both the latent code z and the parameters θ of the pre-trained shape prior to generate a high-fidelity 3D result

(left), which is represented by a neural implicit field. We perform iterative optimizations that jointly optimize z and θ in each

iteration. Our optimization framework can gradually break the barrier of the pre-trained shape prior and converge to a faithful

3D shape that could lie out of the manifold spanned by training samples. We visualize the distribution of latent code in the

leftmost using t-SNE technique [21] and the reconstructed results using marching cube [20] for better visualization.

they still have difficulty generalizing to unseen data as the

pre-trained prior is limited to the domain spanned by the

training samples. Recently, Williams et al. [33] propose

to overfit a randomly initialized the neural network to an

input point cloud. While surprisingly well results can be

achieved in this setting, we show that it can hardly be ap-

plied to other challenging tasks, such as sparse-view surface

reconstruction. In this paper, we propose a more general

learning framework that strives to optimize both the pre-

trained shape prior and latent code at test time. We show

that it can significantly improve the generality and perfor-

mance of the deep learned model in a wide range of highly

ill-posed problems.

Combination of learning with data constraints. There

have been a few preliminary explorations attempting to

combine deep learning with optimization based on data con-

straints. In particular, [36] and [16] strive to reduce the

searching space of a traditional optimization problem using

a deep learned prior. They first encode the shape into latent

space, and then optimize the latent code according to the

photometric consistency constraint [16] or the bundle ad-

justment loss [36]. Though results that are more physically

plausible can be achieved with these approaches, their per-

formance is still limited to the quality of pre-trained prior

and thus struggles to scale to unseen data. Another line of

research aims to introduce data constraints as the supervi-

sion signal during training. For instance, the latest advances

in differentiable rendering [17, 12] have been widely used

in achieving unsupervised learning of single-view 3D mesh

reconstruction. To leverage the flexibility of implicit rep-

resentation, recent works [18, 23, 19, 35] have proposed

new techniques to render implicit surfaces differentiably.

These approaches succeed in training more powerful pri-

ors as there are ample resources of 2D images that can be

directly used for training. However, they still do not re-

solve the generalization problem. Besides, since differen-

tiable rendering techniques make 2D supervision possible,

these methods [23, 35] can generate a single shape using

dense views without learnt prior. In these cases, they can

be considered as optimization-based methods. In contrast,

our approach aims to incorporate the task-specific data con-

straints for optimizing shape priors and latent codes at test

time, which can further boost the performance and general-

ity of the previous approaches.

3. Methods

We interpret the implicit function learned by a deep gen-

erator as fθ(x, z), which maps a query 3D point x and a

latent code z to the target shape’s approximate signed dis-

tance field. Our goal is to generate or reconstruct a faith-

ful 3D surface O from the input physical observations, e.g.

spatial signed distance field S , sparse multi-view images I,

or point clouds P , etc., by leveraging the priors encoded

in fθ(x, z). Given the decoding model fθ , the continu-

ous surface associated with a latent code z is represented

by the decision boundary of fθ(x, z), and the shape can be
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instantiated by isosurface extractions [20, 14]. Formally, a

general 3D modeling problem can be formulated as follows:

Ô∗ = argmin
Ô

E(Ô;O) +R(Ô), (1)

where E(Ô,O) is a task-specific energy term, and R(Ô) is

a regularizer that encourages a plausible surface.

In deep image prior [30], the regularizer R(Ô) is real-

ized using a randomly initialized and untrained neural net-

work. However, unlike image synthesis, the 3D inverse

problems are much harder, where merely depending on the

prior brought by the structure of neural network is insuffi-

cient. Therefore, instead of random initialization, we lever-

age a pre-training to initialize θ and z more appropriately.

Hence, our goal is defined in the following form:

z∗,θ∗ =argmin
z,θ

E(fθ(x, z);O) +R(fθ(x, z)), (2)

where, instead of optimizing from scratch or a random-

ized neural network, we advocate to iteratively optimize

the pre-trained priors, including the generator parameters

θ and the latent code z, according to the data constraints

E(fθ(x, z);O) (Figure 2). Further, the learned prior can

be used as a strong regularizer R(fθ(x, z)) to ensure a

reasonable output. The formulation in Eq. (2) shows our

general framework that combines the learning-based and

optimization-based approaches. We will show in the next

section how this formulation can be adapted to various ap-

plications.

4. Applications

We now show experimentally how the proposed ap-

proach works for diverse tasks on 3D modeling and recon-

struction that take different input forms. Note that each ap-

plication requires a pre-trained shape prior. Since the main

focus of this work is not about how to obtain a stronger

prior, we provide the details of our pre-training in the supp.

material.

4.1. Shape Auto-Encoding

Auto-encoding 3D shapes play an important role in ob-

taining shape priors and a variety of downstream applica-

tions related to shape modeling and reconstruction. Since

we implement our framework using implicit surface repre-

sentation, our goal is to generate an implicit field as a faith-

ful approximation of the input surface S . We first convert

the 3D locations to be queried into a signed distance field.

The resulted field is composed of a set of pair {(pi, si)}
n
i=1

,

where the first element is the coordinates of the querying

position in the space and the second element is its corre-

sponding distance value. In particular, the reconstruction

energy term in Eq. (2) is represented as

E(fθ(z);X ) =
∑

i∈{1,...,n}

‖ŝi − si‖1, (3)

where si is the ground-truth distance; ŝi denotes the esti-

mated signed distance value for the ith point pi, predicted

via the neural implicit field fθ(z,pi). We apply the regu-

larizer as that in Eq. (5), which will be discussed later in

Section 4.2, namely R(fθ(z)), to ensure high-fidelity and

reasonable results. This leads to a similar overall objective

function as shown in Eq. (6).

4.2. Multi-view Reconstruction

Given a collection of multi-view images I, together with

object silhouette masks M, the camera extrinsics P and in-

trinsics K, the aim of multi-view reconstruction is to re-

cover the underlying object surface from these partial ob-

servations of n views. To correlate the 3D surface with the

2D observations, we leverage the differentiable rendering

technique such that the renderings of the generated surface

are consistent with the input views. For more details on the

differentiable rendering technique we used, please refer to

the supp. material. Thereby, the energy term in Eq (2) is

formulated as:

E(fθ(z);X ) =
n∑

i=1

(‖Îi−Ii‖1+λc · Lc(M̂i−Mi)) (4)

where Lc is the binary cross entropy, and λc is the weighted

parameter. Îi and M̂i denotes the estimated image and sil-

houette respectively for the ith view. Specifically, the first

term restrains only on the pixels inside the intersection of

the given mask Mi and the predicted mask M̂i, where the

photometric RGB loss can be defined reasonably; while the

second term applies to all the pixels to penalize mismatched

object silhouettes.

In the presence of highly sparse views, the multi-view re-

construction task becomes a highly underdertermined prob-

lem. Hence, we further introduce additional regularizers on

the neural network to ensure plausible results. For z, we

encourage the prior distribution of the latent code to be a

zero-mean multivariate-Gaussian to encapsulate them into

a compact shape manifold, preventing biased solutions. In

addition, we would like to prevent θ from moving too far

away from the learned categorical prior. Through exten-

sive experiments, we find that a simple l2 norm on θ works

surprisingly well to strike a balance between flexibility and

regularity. Formally, the regularizer term in Eq. (2) is de-

fined as:

R(fθ(z)) =
1

σ2
‖z‖2 + λθ · ‖θ − θ0‖2, (5)

where λθ denotes the weighted parameter, and θ0 denotes

the parameters of θ learned from the pre-training dataset.

All together, the energy objective is formulated as:

min
θ,z

L(X ) = E(fθ(z);X ) + λ ·R(fθ(z)), (6)
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where λ is the regularizer parameter. The overall default

values are set as λ = 0.5, λc = 0.5, λθ = 0.1, which works

well in all our experiments.

4.3. Point Cloud Reconstruction

Our approach also supports reconstructing a complete

3D shape from the sparse 3D observation – point cloud

P . In this case, the input X is composed of a set of 3D

points {pi}
n
i=1

with or without their corresponding normals

{ni}
n
i=1

. The goal is to reconstruct the continuous implicit

field to represent the plausible object surface O that best fit

the inputs. We hence can reformulate the energy term in Eq.

(2) as:

E(fθ(z);X ) =
∑

i∈{1,...,n}

(‖ŝi‖1 + λn · ‖n̂i − ni‖2), (7)

where λn is the weight for the normal regularizer; ŝi =
fθ(z,pi) and n̂i = ∇pfθ(z,pi) are the estimated signed

distance value and normal for the ith point pi respectively.

Note that the normal term is optional depending on the

availability of the normal data.

To encourage a smooth surface, apart from the

multivariate-Gaussian prior for the latent space, we also in-

clude an Eikonal term [7], which regularizes the l2-norm of

the gradients ∇pf(z,pi). The regularization term can be

formulated as:

R(fθ(z)) =
1

σ2
‖z‖2 + λθ · ‖θ − θ0‖2

+ λg · Ep(‖∇pfθ(z,pi)‖2 − 1)2,
(8)

where λθ and λg are the weights for their regularization

terms. The Eikonal term is formulated as the expectation

with respect to the probability distribution of p. As it en-

courages the gradients ∇pfθ to be of unit-2 norm, fθ will

achieve minimum loss of Eq. (8) if fθ vanishes on p and

becomes a signed distance in Euclidean metric.

5. Experimental Results

Dataset. We adopt the category of chairs, lamps and

cars in ShapeNet Core dataset [3] as our dataset, with

6778, 2318, 7497 shapes respectively. Each mesh is nor-

malized into a unit sphere during pre-processing. For the

task of auto-encoding given input shape, we follow Park et

al. [25] to construct the signed distance fields, each with

250, 000 spatial points and their values. For surface recon-

struction based on sparse input RGB images, we use the

rendered dataset from the Choy et al. [6] to adhere to the

community standards [23, 22, 31, 32]. The dataset contains

24 images of resolution 642 and the viewpoints are sampled

on the northern hemisphere of the object. We use 24 im-

ages and corresponding object masks per object for super-

vision on the pre-training stage to obtain a good prior, and 3

DeepSDF

Ours

GT

Figure 3: Qualitative comparisons between shape auto-

encoding results generated by different methods.

images from the testing set of the same resolution for test-

ing. As for the task of point cloud based reconstruction, we

sample 150, 000 points and their corresponding normals for

training shape priors, but only use 300 points for evaluating

our performance on sparse point cloud reconstruction.

Evaluation metrics. For quantitative evaluations, we ap-

ply the most commonly used metrics of Chamfer Distance

(CD) between uniformly sampled point clouds to measure

the accuracy and completeness of the surface (the lower the

better). We also adopt F-Score, measuring the complete-

ness and precision of generated shapes (the higher the bet-

ter). For shape auto-encoding, we further adopt the median

of Chamfer Distance (the lower the better) following [25].

For point cloud reconstruction, we further use normal con-

sistency [5] to measure the accuracy and completeness of

the shape normals (the higher the better).

5.1. Shape Auto-Encoding

We compare the performance of shape auto-encoding

with DeepSDF [25] in this section. We show the quanti-

tative and qualitative results in Table 1 and Figure 3 respec-

tively. As shown in Figure 3, our approach performs sig-

nificantly better in recovering the fine details, such as the

bumping details in the chair legs (1st column) and the thin

rods on the chair back (5-th column). This performance

leap become more prominent when the testing object de-

viates stronger from the training set. The quantitative re-

sults in Table 1 further support that our method performs

much better across a range of different instances compared

to DeepSDF [25].

5.2. Sparse Multi-view Reconstruction

Comparisons. We compare our proposed method with

the state-of-the-art approaches including LSM [11], P2M++
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Images LSM[11] P2M++[32] DISN[34] DVR[23] IDR[35] Ours GT

Figure 4: Qualitative comparisons among sparse multi-view reconstruction results generated by different methods. For each

instance, the leftmost three images are the only given images, and the rightmost is the ground truth, dubbed as “GT”. We

show two different views for each generated object surface, including one from the view of the first image and one completely

different view from the three images. We use dashed lines to distinguish the methods based on different concepts.

Methods
CD, mean (10−3) CD, median (10−3) F-score

Chair Table Chair Table Chair Table

DeepSDF 0.21 0.42 0.08 0.07 88.23 82.34

Ours 0.08 0.10 0.06 0.05 96.21 93.38

Table 1: Comparative results of different methods for shape

auto-encoding reconstruction. Performance is measured in

terms the mean, median value of Chamfer distance and F-

score over 50 instances. 10−3 refers to the magnitude.

[32], DISN [34], DVR [23] and IDR [35]. Specifically,

LSM, P2M++, and DISN rely on retrieving the most likely

shape priors via forward pass and are the representative

works of voxel-, mesh- and implicit function-based ap-

proaches respectively. The other two methods can be con-

sidered as optimization-based methods here, which opti-

mize a specific shape using data constraints. DVR [23] pro-

poses a differentiable renderer for implicit field that enables

unsupervised learning of 3D shape with 2D-to-3D consis-

tency. IDR [35] achieves the state-of-the-arts for multi-view

reconstruction. In particular, our approach employs the dif-

ferentiable renderer from DVR in our network training. We

randomly select 50 instances with 3 views for each object

from the testing set per category. Results of these methods

are obtained either by using their released codes (if avail-

able) or reproducing their methods (multi-view setting in

DISN). In both cases, we report the best performance.

In Table 2, we compare different methods under the met-

rics of Chamfer and F-score. Our proposed method sig-

nificantly outperforms all the alternative methods in both
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Methods
CD, mean (10−3) F-score

Chair Lamp Chair Lamp

LSM [11] 7.36 6.32 27.43 25.89

P2M++ [32] 8.41 7.89 37.23 32.15

DISN [34] 2.75 15.29 52.47 26.03

Ours 1.75 5.44 62.34 36.20

Table 2: Comparative results of different methods for sparse

view reconstruction. Performance is measured in terms

Chamfer and F-score over 50 instances. 10−3 refers to

the magnitude. We only show the comparative results with

learning-based methods because optimization-based meth-

ods are unstable in some instances, which leads to terribly

bad numerical results.

metrics. We demonstrate the visual comparison results in

Figure 4, where we show the reconstructed shapes of sev-

eral randomly selected instances. The retrieval based ap-

proaches, including LSM, P2M++, and DISN, can recover

the rough shape and structure but struggle to capture fine-

scale geometry details. This is primarily due to that they

heavily rely on the pre-trained prior and have difficulty gen-

eralizing to the unseen data. The results from DVR [23]

and IDR [35] in some cases perform well from the same

views of input images (as shown in the first row of each

instance), but appear significantly worse in the views with-

out supervision. This is because that the training of DVR

and IDR only resort to the specific data constraints, such as

multi-view consistency or 2D-to-3D correspondence. As a

result, their networks are prioritized to memorize the image-

to-shape correspondence but lacks of a strong shape prior.

This leads to corrupted results of DVR and IDR as shown

in the third group of Figure 4. Since our approach leverages

both the pre-trained shape prior and the novel optimization

scheme, we are able to precisely reconstruct the intricate

and thin structures, e.g, the thin chair legs and back struc-

ture, while ensuring a plausible shape. For more qualitative

results, please refer to the supp. material.

Control Studies on Number of Views. We also conduct

ablation study to evaluate the performance of our approach

given different number of input views. In particular, we test

our approach using 1, 2, 6 and 12 views. As can be seen

in Figure 5, our approach can produce robust reconstruc-

tion with only a single view. In addition, with more views

available, the quality of our reconstruction can be further

improved. When 12 views are present, we can achieve sim-

ilar quality of reconstruction with that of the stereo-based

approach. It indicates that the learning-based approach can

benefit a lot optimizing the pre-trained prior according to

the data constraints. In Figure 6, we further compare our ap-

proach with DISN, which is specialized for singe-view re-

construction, and with IDR that excels at using dense multi-

views. In comparisons, our approach can achieve similar or

1 view 2 views 6 views 12 views GT

Figure 5: Example results of control studies on different

number of views.

DISN Ours GT IDR Ours GT

(a) Single View (b) Dense View

Figure 6: Qualitative comparisons among reconstructed re-

sults for the extreme cases of single view and dense views.

We compare with the state-of-the-art method learning-

based DISN [34] under single view setting while com-

paring with the state-of-the-art optimization-based method

IDR[35] under dense view setting.

even better reconstructions.

5.3. Point Cloud Reconstruction

We compare our approach with the state-of-the-art point

reconstruction approaches: IFNet [5] and IGR [9]. We test

all the approaches using a highly sparse point cloud con-

sisting of 300 points. The qualitative and quantitative re-

sults can be found in Figure 7 and Table 3. Compared to

IFNet and IGR, our approach can better reconstruct the in-

tricate geometry details, such as the thin slats in the chair

back (1st row), with quality close to the ground truth. In

contrast, IGR fails to generate the thin chair legs (2nd row)

while IFNet suffers from artifacts (1st and 3rd rows). In

particular, we achieve these results by first searching for the

instance shape code that best corresponds to the given point

cloud, and then gradually updates the parameters of the im-

plicit prior for the shape fitting. The initial latent code plays

an important role for regularizing the subsequent optimiza-

tion and provide an accurate initialization to optimize from.
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Point set IFNet[5] IGR[9] Ours GT

Figure 7: Qualitative comparisons between reconstruction

results generated by different methods. The reconstruction

results are based on the leftmost sparse point cloud.

Methods
CD, mean (10−3) Normal-Consis. F-score

Chair Car Chair Car Chair Car

IFNet [5] 0.72 1.68 0.84 0.85 72.23 63.86

IGR [9] 1.55 0.71 0.75 0.89 60.32 73.39

Ours 0.64 0.28 0.86 0.90 76.23 85.98

Table 3: Comparative results of different methods for shape

reconstruction from sparse point clouds. Performance is

measured in terms of Chamfer distance, normal consistency

and F-score over 50 instances. 10−3 refers to the magni-

tude.

5.4. Ablation Studies

In this section, we perform ablation studies to evaluate

the efficacy of our proposed pipeline. All the following ex-

periments are conducted in the context of multi-view recon-

struction. Results are shown in Figure 8, including our pro-

posed method, optimizing from random initialized network

and optimizing only latent code. The reconstructions are

based on the leftmost image (single view reconstruction),

and then in turns our proposed method, the one without pre-

trained network parameters and the one without optimizing

network parameters. We show two different views for each

generated object surface, including one from the view of the

image and one from a completely different view.

Optimize latent code only. One of the keys to our ap-

proach is optimizing both the latent code and the parameters

of the network, making them adapt to the given observation.

Though DeepSDF [25] has shown promising results by only

optimizing latent code, we find in many cases, such as the

4th column in Figure 8, fails to faithfully reconstruct the ge-

ometric details, especially for unseen data. In contrast, our

approach can achieve better results by jointly optimizing the

latent code and the shape prior.

Image Our method
W/O

pretraining θ

W/O

optimizing θpretraining θ optimizing θ

Figure 8: Example results of ablation study among our pro-

posed method, optimizing both the latent code and the ran-

domly initialized network, and optimizing the latent code

only.

Optimizing from randomly initialized parameters. The

other key for our approach is to pre-train the parameters

of the network via an additional dataset to obtain a good

initialization. As seen in Figure 8, optimizing a randomly

initialized network (the 3rd column) fails to generate a plau-

sible shape. Without the proposed pre-training, the sub-

sequent optimization may deviate from a plausible search-

ing path especially for highly ill-posed problems, such as

single-view 3D reconstruction.

6. Conclusions and Discussions

We have presented a new learning framework for 3D

modeling and reconstruction that profits from both the

advantages of learning-based and optimization-based ap-

proaches. We have shown that by jointly optimizing the

pre-trained prior and the latent code at test time, accord-

ing to the data constraints, is a promising avenue to greatly

improve the generality of a deep prior. To ensure the opti-

mization would lead to reasonable result, we proposed that

a simple l2 regularization mechanism plays an important

role in regularizing the searching space. Our experiments

and evaluations have shown that our approach can general-

ize significantly better to unseen data compared to alterna-

tive approaches, especially in presence of sparse or highly

collapsed inputs. Despite these promising directions, our

method is currently more expensive than alternatives. It

would be an interesting avenue to accelerate the optimiza-

tion. In addition, we are still lacking a theoretical analysis

of the working principle of our approach, which will be our

next focus.
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