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Abstract

Beyond achieving high performance across many vi-

sion tasks, multimodal models are expected to be robust

to single-source faults due to the availability of redun-

dant information between modalities. In this paper, we

investigate the robustness of multimodal neural networks

against worst-case (i.e., adversarial) perturbations on a

single modality. We first show that standard multimodal

fusion models are vulnerable to single-source adversaries:

an attack on any single modality can overcome the cor-

rect information from multiple unperturbed modalities and

cause the model to fail. This surprising vulnerability holds

across diverse multimodal tasks and necessitates a solu-

tion. Motivated by this finding, we propose an adversar-

ially robust fusion strategy that trains the model to com-

pare information coming from all the input sources, detect

inconsistencies in the perturbed modality compared to the

other modalities, and only allow information from the un-

perturbed modalities to pass through. Our approach sig-

nificantly improves on state-of-the-art methods in single-

source robustness, achieving gains of 7.8-25.2% on action

recognition, 19.7-48.2% on object detection, and 1.6-6.7%

on sentiment analysis, without degrading performance on

unperturbed (i.e., clean) data.

1. Introduction

Consider a multimodal neural network, illustrated in Fig-

ure 1(a), that fuses inputs from k different sources to iden-

tify objects for an autonomous driving system. If one of

the modalities (e.g., RGB) receives a worst-case or adver-

sarial perturbation, does the model fail to detect the truck

in the scene? Or does the model make a robust prediction

using the remaining k − 1 unperturbed modalities (e.g., LI-

DAR, audio, etc.)? This example illustrates the importance

of single-source adversarial robustness [17] for avoiding
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Figure 1. (a) Example of a single source, worst-case (i.e., adver-

sarial) perturbation on a multimodal model. (b) Standard multi-

modal models are vulnerable to worst-case perturbations on any

single modality (“Vulnerable”). Our adversarially robust fusion

strategy (“Robust”) leverages multimodal consistency to defend

against such perturbations without degrading clean performance.

catastrophic failures in real-world multimodal systems. In

a realistic setting, any single modality may be affected by a

worst-case perturbation, whereas multiple modalities usu-

ally do not fail simultaneously particularly if the physi-

cal sensors are not coupled. Since multimodal models are

being increasingly developed for real-world vision tasks

[5, 35, 24, 18], it is imperative to investigate whether they

are robust to worst-case errors that may affect any single

modality and, if they are not, to develop strategies to im-

prove robustness.

Despite the importance of this problem, we found to

the best of our knowledge that empirical studies of single-

source adversarial robustness are lacking. Previous empiri-

cal works on multimodal robustness have so far only consid-

ered single-source corruptions (e.g., dropout, blurring, etc.)

[16, 15, 17], and although Kim & Ghosh [17] formulate the

problem for the adversarial setting, they do not perform an

3340



empirical study. In the field of adversarial robustness, most

studies have focused on the unimodal setting rather than the

multimodal setting [20, 21]. An effective strategy for de-

fending unimodal models against adversaries is adversarial

training (i.e., end-to-end training of the model on adversar-

ial examples). In principle, adversarial training could be

extended to multimodal models as well, but it has several

downsides: (1) it is resource-intensive [31] and may not

scale well to large, multimodal models that contain many

more parameters than their unimodal counterparts; (2) it

significantly degrades performance on clean data [21]. For

these reasons, end-to-end adversarial training may not be

practical for multimodal systems used in real-world tasks.

Contributions. This paper presents, to our knowledge, the

first empirical study of single-source adversarial robustness

in multimodal systems. Our contributions are two-fold.

(1) We investigate multimodal robustness against single-

source adversaries on diverse benchmark tasks with three

modalities (k = 3): action recognition on EPIC-Kitchens

[7], object detection on KITTI [9], and sentiment analysis

on CMU-MOSI [40]. We find that standard multimodal

fusion practices are vulnerable to single-source adversar-

ial perturbations, even when there are multiple unperturbed

modalities that could yield a correct prediction; naive en-

sembling of features from a perturbed modality with fea-

tures from clean modalities does not automatically yield ro-

bust prediction. As shown in Figure 1(b), a worst-case input

at any single modality of a multimodal model can outweigh

the other modalities and cause the model to fail. In fact,

contrary to expectations, a multimodal model (k = 3) un-

der a single-source perturbation does not necessarily out-

perform a unimodal model (k = 1) under the same attack.

(2) We propose an adversarially robust fusion strategy that

can be applied to mid- to late- fusion models to defend

against this vulnerability without degrading clean perfor-

mance. Inspired by recent works that detect correspon-

dence between inputs to defend against image manipula-

tion [13], we hypothesize that a multimodal model can be

trained to detect correspondence (or lack thereof) between

features from different modalities and use this information

to perform a robust feature fusion that defends against the

perturbed modality. Our approach extends existing work

on adaptive gating strategies [16, 15, 34, 22] with a robust

fusion training procedure based on odd-one-out learning

[8] to improve single-source adversarial robustness without

degrading clean performance. Through extensive experi-

ments, we demonstrate that our approach is effective even

against adaptive, white-box attacks with access to the robust

fusion strategy. We significantly outperform state-of-the-art

methods in single-source robustness [16, 15, 17], achiev-

ing gains of 7.8-25.2% on action recognition on EPIC-

Kitchens, 19.7-48.2% on 2D object detection on KITTI, and

1.6-6.7% sentiment analysis on CMU-MOSI.

Overall, this paper demonstrates that multimodal mod-

els are not inherently robust to single-source adversaries,

but that we can improve their robustness without the down-

sides associated with end-to-end adversarial training in uni-

modal models. The combination of robust fusion architec-

tures with robust fusion training may be a practical strategy

for defending real-world systems against adversarial attacks

and establishes a promising direction for future research.

1.1. Related work

Adversarial Robustness. Vision systems based on deep

learning models are susceptible to adversarial attacks– addi-

tive, worst-case, and imperceptible perturbations on the in-

puts that cause erroneous predictions [6, 4, 33, 10]. A large

number of defense methods against adversarial attacks have

been proposed, with the two most effective defenses being

end-to-end adversarial training [10, 20, 21], which synthe-

sizes adversarial examples and includes them in training

data, and provably robust training, which provides theoret-

ical bounds [37, 25] on the performance. However, these

methods have primarily focused on the unimodal setting, in

which the input is a single image. In contrast to those works,

we consider single-source adversarial perturbations in the

multimodal setting and leverage consistent information be-

tween modalities to improve the robustness of the model’s

fusion step. Our training procedure is related to adversar-

ial training in the sense that we also use perturbed inputs,

but instead of end-to-end training of model parameters, we

focus on designing and training the feature fusion in a ro-

bust manner. This strategy brings benefits from adversarial

training, while retaining performance on clean data and sig-

nificantly reducing the number of parameters that need to

be trained on perturbed data.

Multimodal Fusion Models. Multimodal neural networks

have demonstrated remarkable performance across a variety

of vision tasks, such as scene understanding [14], object de-

tection [35, 12], sentiment analysis [40, 3, 39, 19], speech

recognition [1], and medical imaging [11]. In terms of fu-

sion methods, several approaches that use gating networks

have been proposed to weigh sources adaptively depending

on the inputs [22, 34, 23, 2]. These works focus on lever-

aging multiple modalities to improve clean performance on

the task and do not evaluate or extend these approaches to

improve single-source robustness, which is our focus.

Single Source Robustness. Several recent works provide

important insights into the effects of single-source corrup-

tions such as occlusions, dropout, and Gaussian noise on

object detection systems with two modalities (k = 2)

[16, 15, 17]. In contrast to their work, we consider single-

source adversarial perturbations, which explore worst-case

failures of multimodal systems due to one perturbed modal-

ity. We consider other tasks in addition to object detection

and evaluate models with three modalities (k = 3), in which
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Figure 2. We propose a robust multimodal fusion strategy based on “odd-one-out” learning, an auxiliary self-supervised task in which

a model is presented with multiple elements and must predict which one of them is different from the others. A multimodal model

augmented with an odd-one-out network can be trained to compare information coming from all the input sources, detect the perturbed

modality because it is inconsistent with the other modalities, and only allow information from the unperturbed modalities to pass through.

there are more clean sources than perturbed sources. In

terms of defense strategies, robust multimodal fusion meth-

ods based on end-to-end robust training [17] and adaptive

gating fusion layers [16, 15] have been developed to im-

prove single-source robustness to corruptions. We extend

this line of work by developing a robust fusion strategy that

leverages correspondence between unperturbed modalities

to defend against the perturbed modality, and is effective

against more challenging adversarial perturbations.

2. Single Source Adversarial Perturbations

Let f : x 7→ y denote a multimodal model with k in-

put modalities (i.e., x = [x1, · · · , xk]). We aim to under-

stand the extent to which the performance of f is degraded

by worst-case perturbations on any single modality i ∈ [k]
(where [k] = {1, · · · , k}) while the other k − 1 modalities

remain unperturbed. To this end, we define a single-source

adversarial perturbation against f on modality i as,

δ(i)(x, y; f) := arg max
||δ||p≤ǫ

L(f(xi + δ,x−i), y), (1)

where L is the loss function and ǫ > 0 defines the allow-

able range of the perturbation δ(i). If we assume that the

multimodal inputs x and outputs y are sampled from a dis-

tributionD, then the single-source adversarial performance

of f with respect to modality i ∈ [k] is given by,

IE(x,y)∼D max
||δ||p<ǫ

[L(f(xi + δ,x−i), y)] . (2)

The difference between the performance of f on unper-

turbed data, i.e., IE(x,y)∼D [L(f(x), y)], and its single-

source adversarial performance specified in (2) indicates,

on average, the sensitivity of f to its worst-case inputs on

modality i. Ideally, a multimodal model that has access

to multiple input modalities with redundant information

should not be sensitive to perturbations on a single input;

it should be able to make a correct prediction by leveraging

the remaining k − 1 unperturbed modalities. However, we

find across diverse multimodal benchmark tasks that stan-

dard multimodal fusion models are surprisingly vulnerable

to these perturbations, even though the clean modalities out-

number the perturbed modality. We discuss the experiments

and results in later sections; for now, we emphasize that this

vulnerability necessitates a solution.

3. Adversarially Robust Fusion Strategy

Let fnaive be a standard multimodal neural network, pre-

trained to achieve acceptable performance on unperturbed

data, i.e., it minimizes IE(x,y)∼D [L(fnaive(x), y)]. Our ro-

bust fusion strategy aims to improve the single-source ro-

bustness of fnaive by leveraging the correspondence between

the unperturbed modalities to detect and defend against the

perturbed modality. We assume that fnaive has a mid- to

late- fusion architecture, consisting of the composition of

modality-specific feature extractors g1, · · · , gk applied to

their respective modalities and a fusion subnetwork h:

fnaive(x) := h(g1(x1), g2(x2), · · · , gk(xk)), (3)

To make fnaive robust, we equip it with an auxiliary odd-

one-out network and a robust feature fusion layer in place

of the default feature fusion operation, as shown in Figure

2(a). Then we perform robust training based on odd-one-

out learning [8] and adversarial training [21] that focuses on

these new modules. The odd-one-out network o is trained

to detect the inconsistent or perturbed modality when pre-

sented with feature representations of different modalities

(Section 3.1). The robust feature fusion layer ensembles dif-

ferent multimodal fusion operations using the output of the

odd-one-out network, ensuring that only the modalities that

are consistent with each other are passed to the downstream

layers (Section 3.2). We denote the fusion subnetwork h

equipped with the robust feature fusion layer as h̃, and we

denote the full, augmented multimodal model as frobust, i.e.,

frobust(x) := h̃(g1(x1), g2(x2), · · · , gk(xk); o({gi(xi)}i∈[k]).
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Finally, we jointly train the odd-one-out network o and the

fusion subnetwork h̃, while keeping the weights and archi-

tectures of the feature extractors g1, · · · , gk fixed from fnaive

(Section 3.3).

3.1. Odd­one­out learning

Odd-one-out learning is a self-supervised task that aims

to identify the inconsistent element from a set of otherwise

consistent elements [8]. To leverage the shared information

between modalities, we propose to augment the multimodal

model with an odd-one-out network. Given the set of fea-

tures z = [z1, · · · , zk] extracted from the k-modality input,

the odd-one-out network predicts whether the multimodal

features are consistent with each other (i.e., the inputs are

all clean), or whether one modality is inconsistent with the

others (i.e., some input has been perturbed). To perform

this task, the odd-one-out network must compare the fea-

tures from different modalities, recognize the shared infor-

mation between them, and detect any modality that is not

consistent with the others. For convenience, we take the

features to be the final outputs of the feature extractor net-

works g1, · · · , gk applied to their respective modalities. In

principle, though, these features could also come from any

of the intermediate layers of the feature extractors.

Concretely, the odd-one-out network is a neural network

o that maps the features z to a vector of size k+1, as shown

in Figure 2(b). The i-th entry of this vector indicates the

probability that modality i has been perturbed, i.e., zi is in-

consistent with the other features. The k+ 1-th entry of the

vector indicates the probability that none of the modalities

are perturbed. The odd-one-out network o is trained to per-

form odd-one-out prediction by minimizing the following

cross-entropy loss:

−IE (x,y)∼D
zi=gi(xi)

[

log o(z)k+1 +
k

∑

i=1

log o(z∗i , z−i)i], (4)

where z∗i = gi (x
∗
i ) is the feature extracted from perturbed

input x∗
i that we generate during training.

3.2. Robust Feature Fusion Layer

To integrate the output of the odd-one-out network o into

the multimodal model, we propose a feature fusion layer

inspired by the mixture-of-experts layer [32]. This layer

consists of an ensemble of k + 1 feature fusion operations

e1, · · · , ek+1, each of which is specialized to exclude one

modality, as illustrated in Figure 2(c). Formally, each fu-

sion operation takes the multimodal features z as input and

performs a fusion of a subset of the features as follows:

ei(z) = NN
(

⊕ z−i

)

∀i ∈ [k], ek+1(z) = NN
(

⊕ z
)

,

where ⊕ denotes the concatenation operation and NN

stands for a shallow neural network. By definition, ei is

Algorithm 1 Robust Training Strategy.

1: procedure GRADIENTUPDATE

2: ℓodd ← 0
3: ℓtask ← 0
4: Sample x = [x1, · · · , xk], y from D
5: z = [z1, · · · , zk]← [g1(x1), · · · , gk(xk)]
6: ℓodd ← ℓodd − log o(z)k+1

7: ℓtask ← ℓtask + L
(

h(z, o(z)), y
)

8: for i ∈ [k] do

9: δ(i) ← δ(i)(x, y; frobust) (Eqn. 1)

10: z∗i ← gi(xi + δ(i))
11: ℓodd ← ℓodd − log o(z∗i , z−i)i
12: ℓtask ← ℓtask + L

(

h(z∗i , z−i, o(z
∗
i , z−i)), y

)

13: ℓ← ℓodd + ℓtask

14: Update o, h based on ∇ℓ

responsible for performing a fusion of features from all the

modalities except for i, and only ek+1 fuses features from

all the modalities. If feature zi is not consistent with fea-

tures from the other k−1 modalities because it results from

a perturbed input, then ei receives more weight than the

other fusion operations based on the output of the odd-one-

out network:

zoutput =

k+1
∑

i=1

ei(z)o(z)i, (5)

We form a robust fusion subnetwork h̃ by equipping the

fusion subnetwork h with this robust feature fusion layer.

Then h̃ and o are trained to optimize clean performance,

IE (x,y)∼D
zi=gi(xi)

[

L
(

h̃(z; o(z)), y
)]

, (6)

as well as the single-source robust performance,

IE (x,y)∼D
zi=gi(xi)

[

L
(

h̃(z∗i , z−i; o(z
∗
i , z−i)), y

)]

, (7)

with respect to each modality, where z∗i = gi (x
∗
i ) is the

feature extracted from perturbed input x∗
i that we generate

during training. Note that one of the arguments into the

fusion network h̃ is now the output of o.

Spatiotemporal Dimensions. Our formulations assume

that z1, · · · , zk are one-dimensional feature representations,

in which case the odd-one-out network o and fusion oper-

ations e1, · · · , ek+1 can be implemented as shallow fully-

connected networks (e.g., two fully-connected layers). In

many multimodal models, the features also have spatiotem-

poral dimensions that are aligned between different modal-

ities, i.e., zi ∈ R
ci×N1×···×Nd , where ci is the number of

feature channels and N1×· · ·×Nd are the shared spatiotem-

poral dimensions (e.g., audio and visual features extracted

from a video are aligned along the temporal axis, features
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Dataset Tasks Input Modalities Model Adversarial Perturbation Evaluation Metrics

EPIC-Kitchens [7]
Action

recognition

Visual frames;

Motion frames (flow);

Audio (spectrogram)

Feature extractors: BNInception [14] (all);

Fusion: feed-forward network + temporal pooling;

Odd-one-out network: feed-forward network

PGD (10-step):

ǫ = 8/256 (vision)

ǫ = 8/256 (motion)

ǫ = 0.8 (audio)

Top-1, top-5 accuracy:

Verbs, nouns, actions

KITTI [9]
2D object

detection

Visual frame;

Depth map (Velodyne);

Depth map (stereo image)

Feature extractors: Darknet19 [26] (all);

Fusion: 1 × 1 conv layer + YOLO [27];

Odd-one-out network: 1 × 1 conv net;

PGD (10-step):

ǫ = 16/256 (all)

Average precision:

Cars (>0.7 IoU),

Pedestrians (>0.5 IoU),

Cyclists (>0.5 IoU)

MOSI [40]
Sentiment

analysis

Visual frame;

Audio (mel ceptron);

Text

Feature extractors: FaceNet[29] +LSTM (vision),

MFCC+LSTM (audio), transformer [] (text);

Fusion: feed-forward network

Odd-one-out network: feed-forward network

PGD (10-step):

ǫ = 8/256 (vision)

ǫ = 0.8 (audio)

word replacement [28],

1-word per sentence (text)

Binary accuracy

7-class accuracy

Table 1. A summary table of our experimental setups.

extracted from different visual modalities are aligned along

the spatial axes). In those cases, our odd-one-out network

and fusion operations are more efficiently implemented as

convolutional neural networks with 1× · · · × 1 filters. This

enables us to compute the losses in Equations (4) and (5) in

parallel over the spatiotemporal dimensions.

3.3. Robust Training Procedure

The multimodal model frobust, which is equipped with

an odd-one-out network o and fusion subnetwork h̃, con-

tains a mechanism to compare information coming from all

the input sources, detect that the perturbed modality is in-

consistent with the other unperturbed modalities, and only

allow information from the unperturbed modalities to pass

through. During training, we generate perturbed inputs

x∗
i using the single-source adversarial perturbations from

Equation 1, i.e., we let

x∗
i = xi + δ(i)(x, y, frobust).

Note that this adversarial perturbation is generated against

frobust. In other words, our approach performs adversarial

training of the fusion network and also leverages the adver-

sarial examples to provide self-supervised labels for odd-

one-out learning. We optimize the parameters of the odd-

one-out network o and the fusion subnetwork h̃ with respect

to the losses in Equations (4), (6), and (7), as shown in Algo-

rithm 1. We do not retrain the feature extractors g1, · · · , gk,

which are already pretrained on clean data.

4. Experiments

We evaluate the single-source adversarial robustness of

multimodal models on three benchmark tasks: action recog-

nition on EPIC-Kitchens, 2D object detection on KITTI,

and sentiment analysis on MOSI. Existing benchmark tasks

for studying single source corruptions in multimodal mod-

els have primarily focused on the object detection task with

two modalities [17, 16, 15]. The benchmarks that we con-

sider involve three input modalities and span a larger variety

of tasks and data sources, ensuring generality of the conclu-

sions drawn. A summary can be found in Table 1.

4.1. Multimodal Benchmark Tasks

Action recognition on EPIC-Kitchens. EPIC-Kitchens is

the largest egocentric video dataset consisting of 39,596

video clips [7]. The objective is to predict the action taking

place in the video, which is composed of one verb and one

noun out of 126 and 331 classes respectively. Three modal-

ities are available from the original dataset: visual informa-

tion (RGB frames), motion information (optical flow), and

audio information.

Object Detection on KITTI. KITTI is an autonomous driv-

ing dataset [9] that contains stereo camera and LIDAR in-

formation for 2D object detection, where the objective is to

draw bounding boxes around objects of interest from pre-

defined classes, i.e., car, pedestrian, cyclist, etc. Existing

works use different combinations and processed versions

of the available data modalities for object detection. For

the proposed benchmark, we consider the following three

modalities based on common use in the literature: (1) RGB

frames, which are used by the majority of detection meth-

ods, (2) LIDAR points projected to a sparse depth map and

(3) a depth map estimated from the stereo views [36].

Sentiment Analysis on CMU-MOSI. Multimodal

Opinion-level Sentiment Intensity Corpus (CMU-MOSI)

[40] is a multimodal dataset for sentiment analysis consist-

ing of 93 video clips of movie reviews, each of which are

divided into an average of 23.2 segments. Each segment

is labeled with a continuous sentiment intensity between

[−3, 3]. The objective is to predict the sentiment on a

binary scale (i.e., negative v. positive) or 7-class scale

(i.e., rounding to the nearest integer). MOSI contains three

modalities: text, video and audio.

4.2. Implementation Details

Model Architecture and Training. For each task, we con-

sider mid- to late- multimodal models that use the architec-

tures summarized in column 4 of Table 1. We first train

baseline multimodal models for each task on clean data to

obtain fnaive. We then augment these models with the odd-

one-out network and robust feature fusion layer as described

in Section 3 to obtain frobust, and perform robust training ac-
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Fusion Clean
Visual

Perturbation

Motion

Perturbation

Audio

Perturbation

Verb Noun Action Verb Noun Action Verb Noun Action Verb Noun Action

Oracle (Upper Bound) - - - 55.8 31.4 21.9 50.0 37.2 23.8 53.9 39.2 25.6

Concat Fusion 59.0 42.1 30.2 0.1 0.0 0.0 0.2 0.0 0.0 0.1 0.0 0.0

Mean Fusion 56.8 40.4 27.6 0.3 0.8 0.0 0.3 0.3 0.0 0.4 0.3 0.0

LEL+Robust [17] 61.2 43.1 30.5 22.3 11.6 6.6 25.4 24.6 12.0 20.4 17.7 8.0

Gating+Robust [16, 15] 60.9 43.0 30.6 26.0 10.9 6.2 35.9 26.9 14.3 21.3 16.2 7.0

Ours 61.5 42.5 31.4 48.0 24.2 16.8 48.5 35.6 22.1 46.5 33.3 22.1

∆-Clean 2.5 0.3 1.2 47.7 23.4 16.8 48.2 35.3 22.1 46.1 33.0 22.1

∆-Robust 0.3 -0.6 0.8 22.0 13.3 10.2 12.6 8.7 7.8 25.2 15.6 14.1

Table 2. Top-1 classification accuracy results on EPIC-Kitchens dataset under clean data and single-source adversarial perturbations on

each modality. Higher is better. Due to space constraints, we defer Top-5 accuracy to Supplementary Materials.

Fusion Clean
Visual (RGB)

Perturbation

Depth (Velo)

Perturbation

Depth (Stereo)

Perturbation

Car Pedest. Cyclist Car Pedest. Cyclist Car Pedest. Cyclist Car Pedest. Cyclist

Oracle (Upper Bound) - - - 90.4 80.1 86.4 93.2 79.3 85.3 92.8 80.5 87.4

Concat Fusion 93.5 81.5 87.7 14.3 10.7 12.3 1.58 11.1 8.82 3.57 4.64 7.23

Mean Fusion 93.6 77.7 86.7 12.6 15.2 10.5 3.16 12.9 7.88 3.08 8.03 7.77

LEL+Robust [17] 71.4 64.2 80.0 3.95 15.4 13.9 6.83 20.6 24.8 9.39 24.2 24.7

Gating+Robust [16, 15] 89.4 74.7 84.6 57.2 54.2 56.0 46.5 45.7 45.6 41.6 47.4 48.8

Ours 90.6 79.9 85.4 85.1 73.9 82.3 87.8 71.1 85.8 89.8 76.8 84.7

∆-Clean -3.0 -1.6 -2.3 70.8 58.7 70.0 74.6 58.2 77.0 86.2 68.8 76.9

∆-Robust 1.2 5.2 0.8 27.9 19.7 26.3 41.3 25.4 40.2 48.2 29.4 35.9

Table 3. Evaluation of Average Precision for 2D object detection on the KITTI dataset under clean data and single-source adversarial pertur-

bations on each modality. Higher is better. Due to space constraints, only performance at medium difficulty is shown. See Supplementary

Materials for full table with easy/medium/hard difficulties.

cording to Algorithm 1. Additional details are deferred to

Supplementary Materials.

Adversarial Attacks. The adversarial perturbations for

each task are summarized in column 5 of Table 1. We at-

tack individual modalities using projected gradient descent

(PGD) [21], except text, for which we use word replacement

[28]. Note that these perturbations are white-box adaptive

attack, i.e., attacks are generated with full knowledge of

frobust. In the Supplementary Materials, we also describe

and show results for other types of attacks, such as transfer

attacks, targeted attacks, and feature-level attacks [38].

Evaluation Metric. The metrics used for each task are

summarized in column 6 of Table 1. For the action recogni-

tion, we consider classification accuracy of verbs, nouns,

and actions. For object detection, we consider the aver-

age precision of car, pedestrian, and cyclist detection at

intersection-over-union (IoU) thresholds shown in the ta-

ble, and at three difficulty levels following the KITTI eval-

uation server [9]. For sentiment analysis, we consider bi-

nary and 7-class prediction accuracy. For each metric, we

consider clean performance as well as performance under

single-source attacks.

4.3. Baselines

In addition to our approach, we evaluate two types of

methods: standard multimodal models trained with clean

data (standard training), and state-of-the-art robust multi-

modal models [17, 16, 15] with robust training.

Concatenation Fusion with Standard Training (“Concat

Fusion”). We use multimodal models with the same feature

extractors and concatenate features before the final layers,

which is a standard method for fusing features.

Mean Fusion with Standard Training (“Mean Fusion”).

For each modality, we train a unimodal model with the same

feature extractor and final layers as the multimodal model

on clean data. Then we fuse the unimodal model outputs

by taking their mean, i.e., zoutput =
∑

i∈[k] zi. For action

recognition and sentiment analysis, we perform mean fu-

sion on the logits layer. For object detection, we perform

the fusion prior to the YOLO layer. Mean fusion is a com-

mon fusion practice used in late fusion models, and in the

context of defenses against perturbations, it is equivalent to

a soft voting strategy between the different modalities.

Latent Ensembling Layer with Robust Training

(“LEL+Robust” [17] ). This approach involves (1)

training on clean data and data with each single-source

corruption in an alternating fashion, and (2) ensembling the

multimodal features using concatenation fusion followed

by a linear network. We adapt their strategy to our model

by training our multimodal models with their fusion layer

on data augmented with single-source perturbations.

Information-Gated Fusion with Robust Training

(“Gating+Robust”[16, 15]). This approach applies a

multiplicative gating function to features from different

modalities before ensembling them. The adaptive gating

function is trained on clean data and data with single-source

corruptions. We adapt their robustness strategy to our mod-

els by training our multimodal models with their gated
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Fusion Clean
Audio

Perturbation

Video

Perturbation

Text

Perturbation

2-class 7-class 2-class 7-class 2-class 7-class 2-class 7-class

Oracle (Upper Bound) - - 78.64 49.10 73.36 47.84 69.82 40.28

Concat Fusion 79.82 49.69 56.92 21.38 51.23 19.75 39.50 9.97

Mean Fusion 78.09 46.14 52.63 20.75 49.37 17.02 35.50 8.88

LEL+Robust [17] 79.09 49.92 69.21 39.51 63.15 35.17 58.14 21.23

Gating+Robust [16, 15] 78.82 46.37 69.31 38.26 64.23 31.88 59.39 25.14

Ours 82.03 50.89 73.18 42.06 69.94 38.20 66.13 30.20

∆-Clean 2.21 1.20 16.26 20.68 18.71 18.45 26.53 20.23

∆-Robust 1.94 0.97 3.87 2.55 5.71 3.03 6.74 5.06

Table 4. Binary and seven-class classification results (%) on MOSI. Higher is better. Random guess is 50% for binary and 14.3% for seven

class classification.

feature fusion layer on data augmented with single-source

adversarial perturbations.

Upper Bound (“Oracle (Upper Bound)”). To obtain an

empirical upper bound for robust performance under attacks

against each modality, we train and evaluate 2-modal mod-

els that exclude the perturbed modality. We refer to this

model as the oracle because it assumes perfect knowledge

of which modality is attacked (i.e., a perfect odd-one-out

network), which is not available in practice.

5. Results

How robust are standard multimodal models to single-

source perturbations? A key motivation for building mul-

timodal models that fuse features from several modalities,

beyond improving model performance, is to improve the ro-

bustness of the model to perturbations at any given modal-

ity. To this end, we first ask how well multimodal mod-

els trained on clean data that use concatenation fusion (a

standard mid-fusion approach) or mean fusion (a standard

late fusion approach) fare against a worst-case perturbation

on any single modality. Since these models utilize features

from three input modalities (k = 3), we hypothesized that

ensembling the perturbed features from one modality with

the clean features from two other modalities could boost

the robust performance of the model, at least compared to a

unimodal model that receives the same attack.

Our empirical results suggest that standard multimodal

models trained on clean data that use concatenation fusion

(“Concat Fusion”) or mean fusion (“Mean Fusion”) are sur-

prisingly vulnerable against single-source adversarial per-

turbations. Across the benchmark tasks, we observe dras-

tic drops in performance of both types of models when

any one of the modalities receives a worst-case perturbation

(see Rows 2-3 of Table 2, 3, 4). For the more challeng-

ing tasks with larger output spaces, such as action recogni-

tion on EPIC-Kitchens and object detection on KITTI, the

multimodal models are not significantly better than a uni-

modal model under the same attack, and their performance

is often close to zero. In the Supplementary Materials, we

show that similar results hold when we use other types of

adversarial perturbations, such as transfer attacks, targeted

attacks, and feature-level attacks [38]. An alarming con-

clusion drawn from the unimodal transfer attacks is that an

attacker can successfully perturb a single modality of the

multimodal model even without knowledge of how the dif-

ferent modalities are fused or what the inputs from unper-

turbed modalities are. Overall, these results show that stan-

dard multimodal fusion practices are not sufficiently robust

against worst-case perturbations on a single modality and

demonstrate the need for robust strategies.

How effective is the proposed approach at defending

against single-source adversaries? Our proposed ap-

proach focuses on designing and training a robust feature

fusion, using odd-one-out learning to leverage the corre-

spondence between unperturbed modalities to detect and

defend against any perturbed modality. We achieve sig-

nificant gains in single-source adversarial robustness across

all benchmarks and tasks under white-box adaptive attacks,

i.e., perturbations were generated with full knowledge of

frobust. The main results are shown in Tables 2, 3, 4.

Across the board, our method significantly improves the

robustness of the standard models (see “∆-Clean”). Our

approach also significantly outperforms the state-of-the-

art robust fusion methods, including the “Gating+Fusion”

method which combines an adaptive gating function with

robust training (see “∆-Robust”). In the Supplementary

Materials, we show that our fusion strategy is also more ro-

bust against other single-source perturbations such as trans-

fer attacks, targeted attacks, and feature-level attacks [38].

Comparing our method to the “Oracle (Upper Bound)” row,

which always fuses the modalities that are unperturbed, we

can see that our method is within -20% of this empirical up-

per bound. We conclude that our approach outperforms the

state-of-the-art in robust multimodal fusion and is close to

empirical upper bound that can be achieved without learn-

ing robust features using end-to-end adversarial training.

Detection accuracy of odd-one-out network. We hy-

pothesize that our approach is effective because odd-one-

out learning enables the model to compare features from

the different modalities, recognize consistent information

between the unperturbed modalities, and exclude any per-
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Action Recognition on EPIC-Kitchens

Odd-one-out

network
Clean

Visual

Perturb

Motion

Perturb

Audio

Perturb

Unaligned features 66.8 73.4 88.6 84.7

Aligned Features 55.9 54.7 41.3 52.8

Object Detection on KITTI

Odd-one-out

network
Clean

RGB

Perturb

Velo

Perturb

Stereo

Perturb

Unaligned features 96.2 93.5 98.2 98.0

Aligned Features 91.9 86.8 94.4 90.4

Sentiment Analysis on MOSI

Odd-one-out

network
Clean

Audio

Perturb

Video

Perturb

Text

Perturb

Unaligned features 94.8 95.3 91.2 86.4

Aligned Features 80.3 90.4 87.3 78.5

Table 5. Detection rate (%) of odd-one-out networks that use un-

aligned vs. aligned representations of features from each modality.

Higher is better. Random guess is 25%.

turbed modality that is inconsistent with the others. To de-

termine if this is the case, we ask how well the odd-one-

out network performs in detecting adversarial perturbations

from each modality. The results in Table 5 (see “Unaligned

features”) suggest that the odd-one-out network is highly

effective at filtering out features from the perturbed modal-

ities, and performs better when there is more redundant in-

formation between the two unperturbed modalities.

In relative comparison between the three tasks, we ob-

serve that the odd-one-out network is more successful at

filtering out perturbed modalities on the KITTI and MOSI

benchmarks than on the EPIC-Kitchens benchmark. This is

consistent with our observation that the three modalities in

the KITTI benchmark are highly redundant, which enables

the odd-one-out network to detect the perturbed modality

more easily. For the MOSI benchmark, the text modality

contains the most information for the task, and audio and vi-

sion provide partly redundant information with text, which

is also reflected in the results. In contrast, the three modal-

ities in the EPIC-Kitchens benchmark (e.g., vision, motion,

audio) contain a relatively higher degree of complementary

(i.e., non-redundant) information, which increases the diffi-

culty of odd-one-out learning. For example, if there is less

shared information between the motion and audio inputs for

a particular sample, then it may be harder to detect that the

visual input is inconsistent.

Since the performance of the odd-one-out network in Ta-

ble 5 translates to the robust performance of the full model

in Tables 2, 3, 4, we asked if we could improve the detec-

tion accuracy using features that are already aligned, rather

than the unaligned representations from individual feature

extractors. For example, for action recognition and senti-

ment analysis, one can compute differences between logits

output by unimodal models; similarly, for object detection,

one can compute differences between bounding box coor-

dinates and object confidences output by unimodal models.

We found that such strategies (Table 5, “Aligned features”)

were generally less effective than using the unaligned fea-

# Parameters (Approx in Millions)

Task
Feature Extractors

(Not Trained)

Fusion Network

(Trained)

EPIC-Kitchens 30.8 57.9

KITTI 201.1 6.8

CMU-MOSI 253.4 12.3

Table 6. Number of parameters (in millions) in the feature extrac-

tors and fusion networks of our multimodal models.

tures. This suggests that the context information available

in the unaligned features from the feature extractors may be

helpful for detecting the perturbed modality. We defer the

full robust performance of our models based on different

odd-one-out networks (including a random baseline) to the

Supplementary Material.

What are the advantages over learning robust features

for each modality (i.e., end-to-end adversarial training)?

Clean performance: Robust features that are trained on per-

turbed data are known to perform significantly worse on un-

perturbed data [21]. In contrast, our approach is built on

top of feature extractors pretrained on clean data and does

not notably degrade clean performance. Across all three

benchmarks, our performance on clean (unperturbed) data

is comparable with fusion models with standard training

(see the “Clean” column of the “∆-Clean” rows in Tables

2, 3, 4). Resource utilization: End-to-end adversarial train-

ing on perturbed data is resource-intensive [30] and may

not be feasible for large multimodal models. In contrast,

our Algorithm 1 for robust fusion only requires training the

parameters in the odd-one-out network and the fusion net-

work and not the parameters in the feature extractors. This

can drastically reduce the number of parameters that need to

be trained on perturbed data. Table 6 shows the number of

parameters in the feature extractors vs. the fusion network

for our different models. Note that on KITTI, our approach

achieves single-source robustness by robustly training only

∼3.3% of the model parameters.

6. Conclusion

This paper presents, to our knowledge, the first empirical

study of multimodal robustness under single-source worst-

case (adversarial) perturbations. We show across multi-

ple benchmarks that standard multimodal fusion models

are surprisingly vulnerable to single-source adversaries and

provide an effective solution based on a robust feature fu-

sion that leverages multimodal consistency through odd-

one-out learning. The methods and experiments are fo-

cused on digital attacks on a single modality in the case

where k ≥ 3. Important directions for future work include

physically-realisable attacks, as well as attacks on multiple

modalities at once, which would require scaling up our ro-

bust fusion approach and training strategy. We believe that

this first work on single-source adversarial attack and de-

fense can serve as a basis for these future directions.
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