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Figure 1: We propose an adversarial method, AdvStyle, to interpret the latent space of GANs for semantics editing. It allows

manipulation of arbitrary semantics, beyond the restriction of binary attributes. Our method, to the best of our knowledge,

is the first latent space exploration method enables style editing. Meanwhile, we discover disentangled semantic directions,

leading to accurate multi­attribute manipulation.

Abstract

Generative adversarial networks (GANs) learn to map

noise latent vectors to high-fidelity image outputs. It is

found that the input latent space shows semantic correla-

tions with the output image space. Recent works aim to

interpret the latent space and discover meaningful direc-

tions that correspond to human interpretable image trans-

formations. However, these methods either rely on explicit

scores of attributes (e.g., memorability) or are restricted

to binary ones (e.g., gender), which largely limits the ap-

plicability of editing tasks, especially for free-form artis-

tic tasks like style/anime editing. In this paper, we pro-

pose an adversarial method, AdvStyle, for discovering in-

terpretable directions in the absence of well-labeled scores

or binary attributes. In particular, the proposed adversar-

ial method simultaneously optimizes the discovered direc-

tions and the attribute assessor using the target attribute

data as positive samples, while the generated ones being

negative. In this way, arbitrary attributes can be edited

by collecting positive data only, and the proposed method

learns a controllable representation enabling manipulation

*Corresponding author (hesfe@scut.edu.cn).

of non-binary attributes like anime styles and facial char-

acteristics. Moreover, the proposed learning strategy atten-

uates the entanglement between attributes, such that multi-

attribute manipulation can be easily achieved without any

additional constraint. Furthermore, we reveal several in-

teresting semantics with the involuntarily learned negative

directions. Extensive experiments on 9 anime attributes and

7 human attributes demonstrate the effectiveness of our ad-

versarial approach qualitatively and quantitatively. Code is

available at https://github.com/BERYLSHEEP/AdvStyle.

1. Introduction

Generative adversarial networks (GANs) [6, 11, 19,

20] have been demonstrated power in generating high­

resolution photo­realistic images by training with massive

diverse data. The rationale of GANs is to learn a non­

linear mapping function from the input noise latent codes to

output images that conform to real data distributions. Sev­

eral works reveal the vector arithmetic property of the latent

space, e.g., adding a learned vector to the latent code [29]

or combining the latent code of two images [20], result

in modifying image semantics. Although it is still uncer­
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(a) Origin (b) [30] (c) Ours

Figure 2: The state­of­the­art method [30] can only deal

with distinct binary attributes. Non­binary attributes like

comic style violate its binarily separable hyperplane as­

sumption, leading to unsuccessful or entangled semantic

manipulation. Our method does not suffer from these prob­

lems.

tain how semantics are structured in the latent space, these

prior works drive researches to interpret the latent space of

GANs.

A few very recent works aim to discover the meaning­

ful directions that correspond to interpretable image trans­

formations in the way of unsupervised or supervised learn­

ing. Despite unsupervised methods can discover directions

of simple image transformations like zooming or transla­

tion [17, 28], or heuristically searching for unexpected ones

like background removal [33], they cannot precisely locate

user­desired target attributes.

On the other hand, supervised approaches possess better

controllability. This line of study leverages a target attribute

accessor to help tracing back the corresponding direction

in the latent space. Specifically, Goetschalckx et al. [10]

use the evaluator [21, 23] trained by well­scored attribute

datasets to obtain the directions of memorability, aesthetic,

etc. Tewari et al. [32] leverage annotated 3D data for map­

ping the control space of a 3D morphable face model to

the latent space of GANs, so that they can control three se­

mantic face parameters (pose, expressions, and scene illu­

mination). However, well­scored attributes or 3D data (see

Tab. 1 for an example) are expensive to obtain and there­

fore the practicability is limited. Shen et al. [30] extend the

accessor to a pretrained binary classifier to construct a hy­

perplane in the latent space for discovering binary attributes

like gender or eyeglasses. Notwithstanding the success of

this method in editing binary attributes, there are many more

attributes that are not binarily separable, and therefore their

assumption on the constructed binary hyperplane is invalid

for non­binary attributes. If we apply binary­based method

by simply classifying the target attribute as positive (e.g.,

comic style) while leaving all the others as negative, the

learned directions will correspond to incorrect and entan­

Method Annotation type
Annotation example

(attribute: value)

[10] Scored attribute Memorability:

[32] 3D annotation 3D vertices

[30] Binary attribute Young and Old: 0/1

Ours Positive attribute only Supermodel style : 1

Table 1: Different types of annotations required by super­

vised latent space exploration methods.

gled semantics (see the second column of Fig. 2), as the

manually classified negative samples provide ambiguous, or

even misleading guidance.

In this paper, we aim at interpreting the latent space of

GANs beyond binary attributes. To this end, we propose an

adversarial method, AdvStyle, that takes only target posi­

tive samples for training, and the attribute assessor is trained

to distinguish the target positive samples and the generated

negative samples. In this way, our approach focuses only on

finding the positive direction that the generated images are

indistinguishable from the target data, producing disentan­

gled directions of various semantics. As a result, AdvStyle

can perform multi­attribute editing without any orthogonal

constraint. Moreover, we dynamically update the attribute

assessor, rather than using the pre­trained ones. This helps

to bridge the domain gap between the generated images and

the training data of the attribute assessor. The involuntarily

learned negative directions, on the other hand, reveal some

interesting and unexpected semantics. Some results of our

method are shown in Fig. 1.

Our contributions are summarized as follows:

• We propose an adversarial method to discover the di­

rections of arbitrary attributes in the latent space of a

pre­trained GAN, leading to intuitive editing on non­

binary attributes beyond the limitation of manual an­

notations.

• We show that the adversarially learned directions are

well­disentangled, therefore multi­attribute manipula­

tion can be done without additional constraint.

• We further study the interesting and unexpected se­

mantics which are involuntarily captured by our neg­

ative directions, it helps revealing how the latent space

is organized.

• We extend our method to real image editing with GAN

inversions methods, it can serve as a flexible and prac­

tical editing tool for users.

2. Related work

As latent space exploration methods are discussed above,

we focus on unconditional and conditional GANs in here.
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Figure 3: Overview of the proposed adversarial method AdvStyle. Given a pre-trained GAN model, our goal is to discover

the shifting direction θ in the latent space, so that it can transform the original generated image xr to xf to contain user-

desired attributes. Adversarial loss, distribution loss, and identity loss are proposed to preserve the features of the attribute,

image quality, and identity, respectively.

2.1. Generative Adversarial Networks

Generative Adversarial Network [11] is composed of

two parts. One is the generator which maps the simple

latent space distribution to arbitrarily complex data distri-

bution of a dataset, the other is the discriminator that is

to distinguish the real distribution from the generated fake

data. Various works have been made to improve the perfor-

mance of GANs from different aspects, e.g., by improving

the discriminator [9], or by carefully designing the genera-

tor network structure [14, 35] or the loss function [5, 18].

The state-of-the-art models like StyleGAN [20] and Big-

GAN [6] can produce high-fidelity and high-resolution im-

ages. Among them, one important feature of StyleGAN is

that it maps the input vector z ∈ Z to the intermediate la-

tent vector w ∈ W , which can “unwarp” W and the factors

of variation become much more linear in the intermediate

latent space. This mapping not only helps the generator to

produce realistic images but also for better analyzing the

property of the linear subspace. More importantly, it pro-

vides the possibility to further conduct semantic editing in

the latent space. In this paper, we focus on the latent space

W but we also show the comparison in the latent space Z .

2.2. Semantic Editing with Conditional GANs

Unconditional GANs can only generate images ran-

domly. To control the generation of GANs, it is required

to carefully design the loss function, network structure, or

introduced additional prior knowledge [7, 8, 13, 34]. For

example, Lu et al. [25] output the high-resolution image

for the low-resolution input that satisfies the given semantic

attributes. Most models can only manipulate several spe-

cific attributes once the models are trained. Beyond that,

the generated image quality is still far behind the uncon-

ditional GANs like StyleGAN [20] and BigGAN [6]. Dif-

ferent from the above conditional methods, exploring the

attributes directions in the latent space is more straightfor-

ward for semantic editing, and different attributes can be

manipulated without re-training the network. Besides, the

learned directions can be applied to real images using GAN

inversion method [2, 12, 31].

3. Approach

3.1. Problem Formulation

Fig. 3 illustrates the overall framework of the proposed

AdvStyle. We use the pre-trained model of StyleGAN [20],

which is composed of the mapping network Gmap and the

synthesis network Gsyn. Given a random generated latent

code z ∈ Z from the standard normal distribution, the map-

ping network Gmap maps the latent code z to the interme-

diate latent code w ∈ W . The synthesis network Gsyn em-

ploys the latent code w and output a high-resolution image

xr. Our goal is to find the direction θ that corresponds to

the target attribute in the latent space of a pre-trained GAN,

such that a newly edited image xf can be obtained by

w = Gmap(z),

xf = Gsyn(w + αθ),
(1)

where α ∈ U[−β, β] is a metaphorical knob to control the

changing degree of the target attribute.

The direction is learned using the attribute data

Sdata(x) = {xi|i = 1, ..., N} ∈ R, where N is the number
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of target attribute images in the training set. Note that no

negative sample is needed in the training set. To train the

target attribute direction, three components play an impor-

tant role. First, an attribute assessor Dattr which is trained

to distinguish the generated images from the target attribute

dataset. An identity classifier Cid is used to match iden-

tity information of the generated images using the original

latent code and the newly edited one. Lastly, the discrimina-

tor Dsyn of the pre-trained model is involved to determine

whether the input image conforms to the training dataset

distribution.

In our method only the attribute assessor Dattr and iden-

tity classifier Cid are trainable , all the other components re-

main fixed (yellow blocks in Fig. 3). The most critical com-

ponent of our method is the attribute assessor Dattr which

is trained for driving the direction θ to reach its attribute

manipulation purpose. It is done by adversarially enhanc-

ing the quality of transformed images concerning the target

attribute distribution and optimizing the attribute direction

θ. Our objective function is to solve a min-max problem:

Lθ = arg min
θ,Cid

max
Dattr

L(θ, Cid, Dattr). (2)

3.2. Architecture

3.2.1 Attribute Assessor Dattr

The attribute assessor Dattr is designed to discriminate the

target attribute from the transformed images. The attribute

assessor Dattr contains three inputs: real target attribute

image x, transformed image xf , and shifting degree α. xf

is transformed from the original generated image xr, by fol-

lowing the attribute direction αθ.

3.2.2 Identity Classifier Cid

Users typically desire to edit images on specific semantics

without changing the original identity. To retain identity

of the transformed image, we design the identity classi-

fier Cid to learn the identity features of the original gener-

ated image xr and the transformed image xf . We consider

the original generated image xr as source identity image.

For each training step, we first initialize K latent vectors,

each latent vector z ∈ N(0, I). For each iteration, the k-

th latent vector z is randomly selected to generate the im-

ages xrk and xfk , where xrk = Gsyn(Gmap(zk)), xfk =
Gsyn(Gmap(zk) + αθ)). We formulate Cid as a 1-of-K

classification problem, with the purpose of classifying both

xrk and xfk to the k-th class, by using the cross-entropy

loss:

φ(x, k) =
∑

j

−{yx}j log({Cid(x)}j),

arg min
ΘCid

LCid
= φ(xrk , k) + λφ(xfk , k),

(3)

where λ is a loss weight coefficient to balance the contri-

bution of different generated images, {yx}j is 1 if the pre-

dicted category of sample x is k and 0 otherwise, {Cid(x)}j
is the predicted probability of Cid that for observation sam-

ple x belongs to class j. We train the identity classifier Cid

together with the training of interpretable direction θ, and

it serves as a feature generator for measuring the identity

similarity between two images.

3.3. Training Objectives for Direction Discovering

The loss function L(θ, Cid, Dattr) in Eq. (2) consists of

three parts: (1) the adversarial loss Ladv , which pushes the

direction to achieve the target manifold transformation, (2)

the identity loss Lid that preserves the face identity, and (3)

the distribution loss Ldis, which maintains the generated

image quality. We use a weighted additive form for the loss

function:

L(θ, Cid, Dattr) = Ladv + λ1Lid + λ2Ldis, (4)

where λ1, λ2 are different weights to balance three

losses. In all our experiments, we empirically set λ1 = 100,

λ2 = 1, and found this setting balances the target attribute

characteristic, identity information, and image quality well.

3.3.1 Adversarial Loss

The adversarial loss is applied to both the target direction θ

and attribute assessor Dattr, as it is a min-max game that

drives the direction to target attribution, which value indi-

cates the degree of the given image belonging to the tar-

get attribute. Specifically, we use the Relativistic Average

HingeGAN (RaHingeGAN) loss function [18] to calculate

the adversarial loss. Different from the standard discrimina-

tor which simply judges the possibility of whether the given

image is a real image, the Relativistic average Discriminator

(RaD) estimates the probability that the given data is more

realistic than opposite type samples on average. We can

formulate RaD as D(x) = f(Dattr(x)− E(Dattr(xopp))),
where E is the average for all opposite type images xopp in

the mini-batch. We found that the RaHingeGAN loss helps

to learn better attribute representations. The concrete adver-

sarial loss is defined as follow:

Ladv(θ,Dattr) =

Ex∼R[f1((Dattr(x) + α)− Exf∼Q(Dattr(xf )))]+

Exf∼Q[f2(Dattr(xf )− Ex∼R(Dattr(x) + α))],

(5)

where f1, f2 are scalar-to-scalar functions, and x, xf be-

longs to the target attribute real image distribution R and

target attribute generated image distribution Q, respectively.

3.3.2 Identity Loss

Editing on the original faces is an essential requirement for

editing tools, either for real faces or anime ones. Our goal
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is that when users manipulate the attributes, the identity in­

formation of faces can be preserved to the greatest extent.

We adopt high­level features of the identity classifier Cid to

calculate the identity loss

Lid = dcos(fr
id, f

f
id), (6)

where dcos(., .) is the cosine distance function, and fr
id,f

f
id

are the features of the original generated images xr and the

transformed images xf , produced by the identity classifier

Cid.

3.3.3 Distribution Loss

To prevent the learned directions go too far from the origi­

nal image distributions, we also introduce the discriminator

Dsyn to retain the quality of the transformed image. The

discriminator Dsyn is pre­trained and part of the standard

GAN. Similar to the adversarial loss, we also choose the

RaHingeGAN to calculate the distribution loss. By using

RaHingeGAN, the discriminator Dsyn is to estimate the

possibility that the given image is more realistic than the

opposite type image. The distribution loss function is de­

fined as follow:

Ldis =Ex∼R[g1(Dsyn(x)− Exf∼Q(Dsyn(xf )))]+

Exf∼Q[g2(Dsyn(xf )− Ex∼R(Dsyn(x)))],
(7)

where g1(x) = ReLU(1 + x) , g2 = ReLU(1− x).

3.4. Implementation Details

3.4.1 Training Details

We use the Adam solver [22] to jointly optimize the direc­

tion θ, identity classifier Cid, and attribute assessor Dattr

with batch size of 1. The learning rate of the direction θ is

set to 0.0005, and the identity classifier Cid and the attribute

assessor Dattr are trained with a learning rate of 0.0001.

We perform 3 · 104 steps to obtain the attribute direction

θ. The attribute assessor architecture is the same as the dis­

criminator Dsyn, and we use the Resnet­18 [16] model for

the identity classifier Cid.

3.4.2 Layer­wise Editing

StyleGAN [20] naturally provides coarse control via

the intermediate latent space. For example, the low­

resolution(42−82), middle­resolution(162−322), and high­

resolution(642 − 10242) features bring controllability on

high­level structure, facial features, and fine styles, respec­

tively. For better disentanglement, we apply layer­wise edit­

ing with our trained direction: wi = w + mi · αθ, where

mi = 1 when i layer is editable and mi = 0 otherwise.

Itomugi­Kun

[4]

Comic

[3, 26]

Maruko Super

Model [1]

Chinese

Celebrity [1]

Figure 4: Examples of our collected 3 anime styles and 2

human styles.

4. Experiments

We implement the proposed AdvStyle in Pytorch [27] on

a PC with an Nvidia GeForce RTX 2070 GPU. AdvStyle is

able to edit generated images in real­time, which takes 22ms

for producing a 1024 × 1024 image. Finding the direction

is also fast, it takes about 4 hours to locate the desired at­

tribute. Next, we introduce how we collect the training data

with a single label, and thoroughly evaluate our approach

on the collected datasets in terms of quantitative and quali­

tative results, by mainly comparing with the state­of­the­art

supervised method InterFaceGAN [30].

4.1. Attribute Datasets

We evaluate the proposed method on 9 anime attributes

and 7 human attributes. For animate attributes, we collect 6

character properties (open mouth, blunt bangs, hair length,

black hair, blonde hair, pink hair) and 1 style (Itomugi-

Kun) from the Danbooru2018 dataset [4]. The other two

styles are, comic style from Manga109 [3, 26], Maruko style

from a manually collected dataset of Japanese anime Chibi

Maruko­chan. All the images are resized to 512 × 512 for

training.

For human face editing, five binary attributes (pose, old,

female, smile, eyeglasses) are trained using the CelebA

datasets [24] and two style attributes (supermodel style and

Chinese celebrity style) are trained on datasets collected

from [1] with 1024× 1024.

We show five style attributes in Fig 4 for a better under­

standing of the target style. Editing results for all attributes

can be found in supplementary materials.

4.2. Binary Attribute Manipulation

We first evaluate the proposed method on traditional bi­

nary attributes. Fig. 5 shows the manipulation results. For

anime attribute editing in Fig. 5 (a) to (b), we can see that In­

terFaceGAN is severely entangled with hair color, for both

two attributes. This is because the anime datasets like Dan­

booru [4] do not provide a “closed mouth” label, and thus

InterFaceGAN can be only trained on non­open mouth data

(i.e., all images without the open mouth label) which results
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(a) ­ ←− Open Mouth −→ + (b) ­ ←− Short Hair −→ + (c) ­ ←− Old −→ + (d) ­ ←− Female −→ +

Figure 5: Manipulation on binary attributes. Images are generated by moving in positive or negative directions.

(a) Origin (b) A vs. non­A

in W
(c) A vs. B

in W
(d) A vs. B

in Z
(e) Ours

Figure 6: Exploration of non­binary settings of InterFace­

GAN [30] on blonde hair and supermodel attributes. A

vs. non­A means InterFaceGAN is trained with A attribute

samples as positive while all the non­A samples as negative.

In another setting A vs. B, in which B represents a manually

selected attribute, i.e., blonde hair and Chinese celebrity in

this example.

in entangled directions. Although the hair length attribute

of InterfaceGAN is trained on long hair vs. short hair, this

attribute is indeed continuous and the boundary is not dis­

tinct. As a consequence, the resulted direction is entangled

with hair color and open mouth attributes. On the contrary,

our editing results are highly disentangled from all the other

attributes and maintain the original identity well.

A similar problem of InterFaceGAN can be found in

human face editing. As shown in Fig. 5(c) and (d), the

old direction of InterfaceGAN is entangled with eyeglasses,

and the female direction is entangled with beard, smile, and

hairstyle. Our proposed AdvStyle not only focuses on the

target attribute but also the identity information, resulting in

changes in local target attribute while preserving identity.

4.3. Non­binary Attribute Manipulation

Binary­based method like InterFaceGAN [30] relies on

highly distinctive positive/negative attribute pair, such as

the binary attributes of male vs. female, without ambiguous

association with other properties. However, many attributes

cannot find clear opposites, like supermodel style attribute.

There are two ways to collect pseudo­binary attribute pairs

for InterFaceGAN: 1) we can consider attribute A as posi­

tive while leaving all non-A images as negative (Fig. 6(b));

2) given an attribute A, we select another related attribute B

as negative (Fig. 6(c) and (d)). We examine these solutions

in Fig. 6.

When training InterFaceGAN with A vs. Non-A, we can

see in Fig. 6(b) that the network is confused by the ambigu­

ous negative samples, e.g., mixes blonde hair with blonde

face color or wrongly extracted supermodel features. On

the other hand, InterFaceGAN performs relatively better

(Fig. 6(c)) if we manually select a more distinct attribute

pair, in this case, blonde hair vs. black hair and super-

model vs. Chinese celebrity. However, it still cannot dis­

entangle the blonde hair attribute from the open mouth and

cannot capture distinctive supermodel attribute. In contrast,

the proposed method in Fig. 6(e) shows the best disentan­

glement. In addition, we examine the performance of In­

terFaceGAN in the latent space Z (Fig. 6(d)). Unsurpris­

ingly, the latent space Z is more entangled as stated in

StyleGAN [20], resulting in large variations of the identity.

As the performance of InterFaceGAN trained with A vs. B

varies largely depending on B attribute, we use A vs. Non-A

to train InterFaceGAN in all the comparisons.

We further compare our AdvStyle with InterFaceGAN

on more different style attributes. As shown in Fig. 7, In­

terFaceGAN fails to capture the unique style features (see

Fig. 4 for comparison). Particularly, for anime style edit­

ing (a) and (b), InterFaceGAN emphasizes on global color

distributions only. While in (c) and (d), enforcing style

attributes to become binary ones making the training dis­

tracts from unique facial characteristics, e.g., supermodel

attribute direction of InterFaceGAN can only learn cool ex­

pressions but yellowish colors. On the contrary, our method

captures representative features for both anime and human

face styles. For example, the edited result of Itomugi-Kun

style shows vivid color shading, and the results of both su-

permodel and Chinese celebrity directions exhibit typical

facial characteristics of two different types of faces, while

they are disentangled from other attributes like hairstyle or

smile.

4.4. Involuntarily Learned Negative Directions

An interesting feature of our AdvStyle is that we do not

manually assign negative labels for training. This is im­

portant for discovering the correct positive direction. For

non­binary attributes, the opposites of them are usually am­

biguous, and thus a wrongly assigned negative label may
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(a) ­ ←− Itomugi­Kun −→ + (b) ­ ←− Comic −→ + (c) ­ ←− Supermodel −→ + (d) ­ ←− Chinese Celebrity −→ +

Figure 7: Manipulation on non­binary attributes. Images are generated by moving in positive or negative directions.

prevent the network from finding the correct direction. In

here, we study the latent space by exploring the involun­

tarily learned negative directions, and reveal how the latent

space is organized.

Negative Directions of Binary Attributes. As shown in

Fig. 5, the involuntarily learned negative binary attributes

are consistent with our common sense. Specifically, the

learned negative directions of open mouth, short hair, old,

female, correctly correspond to the reverse attributes closed

mouth, long hair, young, male, without any entanglement.

Negative Directions of Non­binary Attributes. For

non­binary attributes, it would be interesting to figure out

the semantics correspond to their reverse directions in the

latent space. As shown in Fig. 7, the reverse directions of

styles are surprisingly interpretable. The positive direction

of the Itomugi-Kun style is to strengthen the color shad­

ing of the image, while its negative direction doing the op­

posite to produce plain shading anime. For human style,

the negative direction of Chinese celebrity yields the oppo­

site characteristic of Chinese faces (e.g., deep eye socket).

All these directions are unexpected but meaningful, demon­

strating the effectiveness of the proposed learning strategy.

4.5. Multi­attribute Manipulation

4.5.1 Attributes Correlation

It is of great importance to allow users to control multiple

attributes at the same time. However, this is impossible if

different attributes are entangled with each other. To eval­

uate whether the learned directions are disentangled, we

first compute the correlation matrix between different at­

tributes. We use cosine similarity to measure the correla­

tion: cos(θ1, θ2) = θ1·θ2
|θ1||θ2|

, where θ1 and θ2 are two dif­

ferent attribute direction vectors. We also compute the cor­

relation matrix of the binary attribute­based method Inter­

FaceGAN [30]. For a fair comparison, we mainly evaluate

identity attributes as they are easier to perform binary clas­

sification (we add two styles for reference). We construct

the binary datasets of InterFaceGAN by dividing the target

attribute samples as positive and all the others as negative.

Fig. 8 shows the correlation matrices of the two meth­

ods. As can be seen, most directions of our AdvStyle are

highly disentangled, i.e., they are orthogonal to each other.

(a) Our Correlation Matrix (b) InterFaceGAN Correlation Matrix

Figure 8: Correlation matrices between different at­

tributes. Unlike the binary attribute­based method Inter­

FaceGAN [30] produces entangled directions, the direc­

tions we found are more uncorrelated.

Some interesting facts can be found in our correlation ma­

trix. For example, black hair correlates to comic style, as

both of them tend to generate black edges. On the con­

trary, the learned directions of InterFaceGAN are highly en­

tangled. More importantly, their correlations are not inter­

pretable, indicating that their learning strategy cannot deal

with mixed and ambiguous attribute data.

4.5.2 Manipulating Multi­attribute

Because of the highly disentangled attributes, we can si­

multaneously manipulate multiple attributes while still re­

taining the identity features. We modify multiple attributes

by a simple arithmetic operation: θmul =
∑N

i=1
αiθi, x =

Gsyn(Gmap(z) + θmul), θmul ∈ R
1×512, where N is the

number of attribute directions applies to a vector w =
Gmap(z) at the same time and αi is the shifting degree for

direction θi. As shown in Fig. 9(a), the proposed method

can manipulate up to 4 attributes at the same time, while

still preserving identity information.

We further compare with an unsupervised method [15]

in Fig. 9(b) for human face editing. Their method can un­

supervisedly find out 3 human attributes, therefore we only

compare to these three attributes in Fig. 9(b). While the two

competitors can produce well­disentangled results in single

attribute editing, the combined results contain unexpected

facial variations. Our results, on the contrary, are disen­

tangled from all the other factors. Note that multi­attribute

manipulation is achieved using separately learned direc­
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(a) Multi­attribute anime editing
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Figure 9: Results of multi­attribute manipulation.

tions, without additional constraint like conditional manip­

ulation [30].

4.6. Ablation Study

In our method, only the adversarial loss takes the respon­

sibility for finding the correct direction. Fig. 10(b) shows

that in the model with only the adversarial loss, we can

still locate the corresponding attribute. However, without

the constraints of other losses, the network only focuses

on fooling the attribute discriminator, driving the manipu­

lation on the target attribute too far from the original. The

identity loss, as shown in Fig. 10(c), preserves the charac­

ter identity well after editing. Without the distribution loss,

we observe that the generated characters throw away some

details like hair shading or face effects compared with the

original synthesis. Fig. 10(d) adds these details back and

we believe they are important to conform to the original

data distributions. Finally, our all losses model produces

images that faithful to target attributes while maintaining

the identity and image quality of the original synthesis. Our

layer­wise editing strategy also contributes to the final per­

formance, as it can produce semantic­specific latent code in

each layer. We can see that with layer­wise editing (left part

of Fig. 10(f)) maintains the original skin color better than

without it (right part of Fig. 10(f)).

4.7. Real Image Manipulation

To allow editing on the real image, we adopt a GAN in­

version method [2] to obtain the latent code of a real im­

(a) Origin (b) Ladv (c) w/oLdis (d) w/oLid (e) All losses

(f) + ←− with layer­wise editing without layer­wise editing −→ +

Figure 10: (a) to (e) are the ablation study of our loss func­

tions with the open mouth attribute. (f) evaluates our layer­

wise editing strategy on Chinese celebrity style.
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Figure 11: Real image manipulation of age attribute. Note

that our direction is only trained with old samples.

age. Although the GAN inversion method cannot perfectly

recover the original input, the obtained latent code can be

used by the proposed method for editing. Similar obser­

vations with synthesis image editing can be found that In­

terfaceGAN [30] is entangled with the eyeglasses attribute.

The first column of Fig. 1 shows two additional results on

real image style editing and multi­attribute manipulation.

5. Conclusion

We propose an adversarial method, AdvStyle, to inter­

pret the latent space of GANs for image attribute manipu­

lation. Our method can get rid of the dependence on bi­

nary data, to explore directions of non­binary attributes. We

show extensive results on AdvStyle, demonstrating its ef­

fectiveness on both single and multi­attribute manipulation.

The proposed method can also discover unexpected nega­

tive directions involuntarily.
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