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Abstract

We describe an unsupervised method to detect and seg-

ment portions of images of live scenes that, at some point in

time, are seen moving as a coherent whole, which we refer

to as objects. Our method first partitions the motion field by

minimizing the mutual information between segments. Then,

it uses the segments to learn object models that can be used

for detection in a static image. Static and dynamic models

are represented by deep neural networks trained jointly in a

bootstrapping strategy, which enables extrapolation to pre-

viously unseen objects. While the training process requires

motion, the resulting object segmentation network can be

used on either static images or videos at inference time. As

the volume of seen videos grows, more and more objects

are seen moving, priming their detection, which then serves

as a regularizer for new objects, turning our method into

unsupervised continual learning to segment objects. Our

models are compared to the state of the art in both video

object segmentation and salient object detection. In the six

benchmark datasets tested, our models compare favorably

even to those using pixel-level supervision, despite requiring

no manual annotation.

1. Introduction

The ability to segment the visual field into coherently

moving regions is among the traits most broadly shared

among visual animals [2, 17, 18]. Even camouflaged, mov-

ing objects are easy to spot (Fig. 1). During early develop-

ment, humans spend considerable amounts of time interact-

ing with a single moving object before losing interest [4],

which may help prime object models and learn invariances

[59]. In contrast, the mature visual system can learn an ob-

ject with a few static examples; objects do not need to move

in order to be detected. This suggests using motion as a cue

to bootstrap object models that can be used for detection

in static images, with no need for explicit supervision. Ob-

∗Also ArXiv:2008.07012, August 16, 2020
†Equal contributions. Our implementation and trained models are avail-

able at: https://github.com/blai88/unsupervised_segmentation

Figure 1. Dynamic-static bootstrapping. (a) A lizard is hard to

detect when still thanks to camouflage (top left). However, it is

easy to see once it moves (bottom left; optical flow visualized using

the inset color wheel). Once learned the lizard, a never-before-seen

sloth (b) can be easily detected in a static image, exploiting the

static model learned from the moving lizard.

jects that have never been seen moving are considered part

of whatever background they are part of, at least until they

move. As time goes by, more and more objects are seen

moving, thus improving one’s ability to detect and segment

objects in static images (Tab. 6). The more objects are boot-

strapped in a bottom-up fashion, the easier they are to detect

top-down, priming better motion discrimination, which in

turn results in more accurate object detection. This synergis-

tic loop gradually improves both the diversity of objects that

can be detected and the accuracy of the detection.

We present a method to learn object segmentation using

unlabeled videos, that at test time can be used for both mov-

ing objects in videos and static objects in single images. The

method uses a motion segmentation module that performs

temporally consistent region separation. The resulting mo-

tion segmentation primes a detector that operates on static

images, and feeds back to the motion segmentation module,

reinforcing it. We call this method Dynamic-Static Boot-

strapping, or DyStaB. During training, the dynamic model

minimizes the mutual information between partitions of the

motion field, while enforcing temporal consistency, which

yields a state-of-the-art unsupervised motion segmentation

method. Putative regions, along with their uncertainty ap-

proximated during the computation of mutual information

in the dynamic model, are used to train a static model. The
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Figure 2. System overview. Dynamic: motion segmentation model described in Sec. 3.1; Static: object model described in Sec. 3.2. The

training (“dynamic-static bootstrapping” in Sec. 3.3) iterates between these two models. In particular, once χ (static object model) is trained,

it can be used as a “top-down” object prior to bias the motion segmentation network φ (dynamic model) in a feedback loop. ψ is the

adversarial inpainting network that enforces minimal mutual information between motion field partitions (two ψ’s are identical), and losses

are represented using dashed lines/boxes.

static model is then fed back as a regularizer in a top-down

fashion, completing the synergistic loop.

One might argue that every pixel in the image back-

projects to something in space that we could call an object.

However, the training data biases the process towards objects

that exist at a scale that is detectable relative to the size of

the pixel and the magnitude of the motion. For instance,

individual leaves in an outdoor video might not be seen at a

resolution that allows detecting them as independent objects.

Instead, the tree may be detected as moving coherently. So,

the definition of objects is conditioned on the training data

and, in particular, the scale and distribution of their size and

relative motion.

With this caveat, our contribution is two-fold: First, a

deep neural network trained with unlabeled videos that

achieves state-of-the-art performance in motion segmenta-

tion. It exploits mutual information separation and temporal

consistency to identify candidate objects. Second, a deep

neural network to perform object segmentation in single im-

ages, bootstrapped from the first. The static model uses as

input both the output of the dynamic model and its uncer-

tainty, to avoid self-learning. The two models are trained

jointly in a synergistic loop. The resulting object segmenta-

tion models outperform the state of the art by 10% in average

precision in both video and static object segmentation across

six standard benchmarks. Despite not requiring any manual

annotation, our method also outperforms recent supervised

ones by almost 5% on average.

2. Related Work

Motion segmentation aims to identify independently

moving regions in a video. Background subtraction as-

sumes a static camera [60, 12, 52], while scene dynamic

models compensate for camera motion [45, 49, 53]. One

could directly segment or cluster pixel-wise motion vectors

[69, 56, 31, 48], but this approach is prone to errors due to

occlusions, singularities and discontinuities of the motion

field. To increase robustness, some employ pixel trajecto-

ries accumulated over multiple frames [6, 27, 71, 54] or

patches, losing discriminative power. The hard trade-off be-

tween discriminability and robustness is a key challenge in

unsupervised motion segmentation. Manual pixel-level an-

notations help set the trade-off, but in a non-scalable manner

[16, 63, 70, 21, 11]. Contextual Information Separation [76]

aims to bypass this trade-off without the need for human

annotation, using a segmentation network to minimize the

mutual information between the inside and the outside of

putative motion regions. In the absence of temporal con-

sistency, this procedure can be sensitive to motion errors

(Fig. 5). Furthermore, [76] cannot detect stationary objects

as it relies on motion segmentation (Fig. 6). Note, [75] ap-

plies [76] with perceptual cycle-consistency to separating

multiple objects, but they focus on learning object-centric

representations.

Saliency prediction aims to detect the most salient ob-

jects relative to their background or “context.” Saliency can

be computed locally in a bottom-up fashion [29, 24, 44] or

globally [78, 1, 9], at multiple scales [39, 41] and top-down

[64]. [20] constructs the saliency map from the spectral

residual and [55] performs low-rank matrix decomposition

to detect salient objects. Separation can also be achieved

by increasing the divergence of the feature distributions

[28]. Despite advancements in the optimization for salient

region segmentation [10, 15, 34], the quality of the predicted

saliency depends highly on the features selected. Currently,

the best performing methods employ deep neural networks

trained on labeled datasets [80, 43, 40, 38, 37]. Recently,

[8, 5] proposed unsupervised adversarial salient object dis-
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Figure 3. A single image I, renders possible motion fields u of an indepen-

dently moving object as if they are sampled from the conditional distribution

p(u|I). Thus, given the image, one can complete partial observations of the

flow fields in Fig. 4.
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Figure 4. With image I in Fig. 3, only the mask

in (c) minimizes mutual information between

flow fields of the object (inside mask) and the

background (outside mask).

covery models in single images. Due to the variability of

object appearance, these models are hard to train and the

process is not scalable. On the other hand, [79, 46] propose

training deep networks using the pseudo-labels generated

by conventional unsupervised methods. While an improve-

ment over adversarial methods, performance still hinges on

human prior knowledge through the selection of handcrafted

features. We wish to avoid specifying features by instead

articulating a criterion, namely that anything similar to what

we have previously detected as objects should be salient.

The model trained with this simple criterion outperforms the

state of the art on unsupervised saliency prediction.

Video object segmentation comprises a vast literature

[13, 22, 33, 67, 68]; we focus on unsupervised methods that

are more related to our work. It should be noted that the term

“unsupervised” in video object segmentation only reflects

absence of annotations at test time, whereas we reserve the

name for methods that involve no manual annotation dur-

ing training, as well as testing. To segment moving objects,

[63] trains a network to directly output the segmentation

from motion, which is then augmented by an appearance

channel in [25]; [62] proposes a layered model for detach-

able objects using occlusion as primary cue. [83] incorpo-

rates salient motion detection with object proposals; [30]

segments video into “primary” objects. A pyramid dilated

bidirectional ConvLSTM is proposed in [58] to extract spa-

tial features at multiple scales, and [42] introduces a global

co-attention mechanism to capture scene context. [81] pro-

poses an architecture that allows interaction between motion

and appearance during the encoding process, while [77, 32]

focuses on learning discriminative features for segmentation

propagation and assumes the first frame been annotated.

3. Method

An object that is detached from its surroundings induces

an independent motion when projected onto a moving image

[3]. Here, we utilize this independence principle by minimiz-

ing the mutual information between the motions of an object

and its context in Sec. 3.1. In contrast to the Contextual

Information Separation (CIS) criterion [76], we enforce that

the separation is temporally consistent in a sequence, which

directly improves [76] by an average of 7%. In Sec. 3.2, we

instantiate a static model that enables perception of station-

ary objects utilizing the detection of moving ones and the

confidence measure computed from the mutual information.

The interaction or mutual bootstrapping between motion seg-

mentation and static perception is described in Sec. 3.3. The

overall method is illustrated in Fig. 2.

3.1. Dynamic Model with Temporally Consistent
Mutual Information Minimization

Given an image I ∈ R
H×W×3, the motion field u de-

fined on I is a random variable distributed according to

p(u|I), which is determined by a dataset of image sequences

D = {Iti}i≤N,t≤T , where N is the cardinality of the dataset

and T is the maximum number of images in a sequence.

Particularly, for an instance u ∈ R
H×W×2, sampled from

p(u|I), there exists an image Î such that for any pixel x on

I, I(x) = Î(x + u(x)) holds up to noise and occlusions, as

shown in Fig. 3.

To detect objects that move independently in the scene,

a motion segmentation network φ should generate masks

m = φ(u) ∈ {0, 1}H×W , such that the motions inside the

mask m⊙u and outside the mask (1−m)⊙u are mutually

independent conditioned on the image I. More explicitly,

the conditional mutual information I(m⊙u, (1−m)⊙u|I)
should be minimal. Since the mutual information measures

the difference between the Shannon entropy of the inside and

its conditional entropy (conditioned) on the outside, simply

minimizing the mutual information yields a trivial solution

(empty set). One solution is to normalize the conditional

mutual information by the entropy H(m⊙ u|I),

argmin
m

I(m⊙ u, (1−m)⊙ u|I)

H(m⊙ u|I)

= argmax
m

H(m⊙ u|(1−m)⊙ u, I)

H(m⊙ u|I)
(1)

which is equivalent to maximizing the un-informativeness

measured by the ratio on the right. Again, this ratio can be

maximized by simply setting m as the whole image domain,

which results in over detection (Fig. 4 (a)). Thus, if the

detection is not accurate as in Fig. 4 (c), the context will be
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Figure 5. Temporally consistent mutual information minimization

prevents label flipping (2nd and 3rd columns), and also improves

segmentation accuracy (the motorbike).

rendered informative, vice versa. Therefore it is necessary

to add a symmetric term:

L(m; I) =
H(m⊙ u|(1−m)⊙ u, I)

H(m⊙ u|I)

+
H((1−m)⊙ u|m⊙ u, I)

H((1−m)⊙ u|I)
(2)

whose value is upper bounded by 2, and can be maximized

only when m accurately segments the object.

Similar to [76], we make the loss in Eq. (2) computable

by assuming Gaussian conditionals, and instantiating an ad-

versarial inpainting network ψ that computes the conditional

means, e.g., ψ(m, (1−m)⊙ u, I) estimates the conditional

mean of m⊙u under p(m⊙u|(1−m)⊙ u, I). Both φ and

ψ can be trained adversarially:

max
φ

min
ψ

LA(φ, ψ; I) =

∑
u∼p(u|I) ‖m⊙ u− ψ(m, (1−m)⊙ u, I)‖

∑
u∼p(u|I) ‖m⊙ u‖+ ǫ

+

∑
u∼p(u|I) ‖(1−m)⊙ u− ψ(1−m,m⊙ u, I)‖

∑
u∼p(u|I) ‖(1−m)⊙ u‖+ ǫ

(3)

with m = φ(u), and ‖ · ‖ the l2-norm. The constant 0 <
ǫ ≪ 1 is to prevent numerical instability, and ψ(m, ∅, I) is

default to zeros.

Since Eq. (3) characterizes moving objects solely using

motion, it is sensitive to variations in the motion field, result-

ing in label flipping and irregular segments due to failures of

motion estimation shown in Fig. 5. To resolve these issues,

we introduce a temporal consistency constraint to reduce the

instability in the motion segmentation model.

Temporal consistency. Given two consecutive images

I1, I2 from the same video sequence, we can compute the for-

ward and backward optical flow u12, u21, and the predicted

masks m1 = φ(u12),m2 = φ(u21). We would like the in-

dividually predicted masks to be temporally consistent, in

the sense that if we deform one onto the other using the flow

fields, the two should look similar as they are the projections

of the same object. Thus, we penalize the following warping

difference to enforce temporal consistency:

LTC(φ; u
12, u21) =

∑

x/∈o

|m1(x)−m2(x + u12(x))|

+ |m2(x)−m1(x + u21(x))| (4)

with x the pixel index, and o the union of occlusions within

the image domain, which can be easily estimated using the

forward-backward identity criterion [23]. The reasoning is

that inconsistencies of the predictions should only be pe-

nalized in the co-visible region. Without introducing extra

networks, Eq. (4) effectively reduces instabilities in the mo-

tion segmentation compared to Eq. (3), as shown in Fig. 5.

Initial training for the dynamic model: By enforcing

temporal consistency, the dynamic model for independently

moving object segmentation can be obtained through the

following adversarial training:

max
φ

min
ψ

LD(φ, ψ; I
1, u12, u21)

= LA(φ, ψ; I
1) + λTCLTC(φ; u

12, u21) (5)

with λTC = −0.1 (λTC < 0 as φ maximizes LD). The ef-

fectiveness of optimizing Eq. (5) is also numerically demon-

strated in Tab. 1. Next, we describe the confidence-aware

training for the static object model.

3.2. Static Model with Confidence­Aware Update

In Sec. 3.1, we describe a model that detects moving

objects in a temporally coherent manner. However, what

if the objects stop moving or they have been moving in an

indistinctive way? These present challenges for the dynamic

model φ, which relies on motion to signal the existence of

an object (Fig. 6). Note in Fig. 6, the motion varies between

frames, but the appearance of an object is temporally per-

sistent, and when motion fades away, the image array still

depicts the same object.

Our position is that, once a moving object is detected,

we ought to be able to find it even in a still image. Thus,

we propose to train a static object model to complement the

dynamic model when there is no significant motion. We

could directly train a segmentation network χ to predict

objects from a single image, utilizing the output of φ as the

pseudo labels, by maximizing the F-measure [46] commonly

used for salient object detection:

Fα(χ(I),m) = (1 + α2)
ρ(χ(I),m)γ(χ(I),m)

α2ρ(χ(I),m) + γ(χ(I),m)
(6)

with ρ, γ the precision and recall between the prediction χ(I)
and the motion mask m generated by φ. And α2 is default

to 1.5 if not explicitly mentioned.

However, directly learning from all motion masks is

counter-productive, as these are quite noisy especially when
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Figure 6. Comparison between the dynamic and static object models. After the first round of learning from noisy motion segmentations

(φ(u), second row) with the proposed confidence-aware adaptation, the static object model (χ(I), fourth row) improves over the dynamic

model on all cases where the motion is noisy (a), the object is partially static (b) or fully static (c).

motion is uninformative (Fig. 6). To address this issue, we

propose to use the loss LA (Eq. (3)) as a confidence mea-

sure on the reliability of the motion masks: if the motion is

uninformative, the reconstruction from the context will be

accurate, thus LA will be small and vice versa, if the motion

is distinctive, LA will be large due to a bad reconstruction

(See Fig. 7 and Fig. 8 for a demonstration.) We propose

using the difference between the values of LA to perform a

confidence-aware adaptation via the following:

Lχ(χ; I,m, χ
′) = λFFα(χ(I), χ

′(I))

+ max(LA(m)− LA(χ
′(I))− δ, 0)Fα(χ(I),m) (7)

Note that the pseudo-label m is only effective when it has a

larger LA than the one predicted by χ′, which is a copy of an

earlier χ. In other words, if the output of the dynamic model

is not confident enough, χ retains its own prediction, and

the first term (moving average) is to ensure that χ is updated

smoothly. We set LA(χ
′(I)) = 0 and λF = 0 the first time

χ is trained, then λF = 1.0.

When updated, χ learns a model of objects based on

their appearance, so we would expect χ to detect stationary

objects which have been seen moving before. Indeed, we

find that χ is able to detect static object that has never been

observed moving as shown in Fig. 6 (3rd column), which

confirms that a general concept of objects can be learned

through the observations of moving ones. Next we detail the

proposed dynamic-static bootstrapping scheme for a contin-

uous learning of objects.

3.3. Dynamic­Static Bootstrapping

Once the static object model is learned by χ, it can be

used to modulate the detection in general scenes, even where

the motion of the objects is unknown. It is also possible that

the predictions of φ, which employs motion information are

imperfect. The output of χ can then provide complementary

information to strengthen the dynamic model. We feed χ

back into the training of the dynamic model as an experiential

prior of objectness based on the photometric information.

The dynamic model reinforced by the objectness prior is:

max
φ

min
ψ

LJ(φ, ψ; I
1, u12, u21, χ) =

LD(φ, ψ; I
1, u12, u21) + λobjFα(φ(u

12), χ(I1)) (8)

with LD the adversarial motion segmentation loss in Eq. (5),

and the second term measures the similarity between the mo-

tion mask and the static object prior (λobj = 1.0). Besides

learning from motion information to detect moving objects,

φ is now able to leverage photometric cues that facilitate

the detection under circumstances where objects become

stationary or move extremely slowly.

Moreover, improved dynamic model could yield better

pseudo-labels that help training a more accurate static object

model (Eq. (7)), which can then be used to facilitate the

learning of the former in a synergistic loop (Eq. (8)), thus the

name “Dynamic-Static Bootstrapping.” The overall training

procedure is presented in Algorithm 1.

Algorithm 1: Dynamic-Static Bootstrapping

Result: φ: dynamic model; χ: static object model;

ψ: conditional inpainting network

Initialize φ, ψ by optimizing LD (Eq. (5)), set k=0;

while k<3 do

k = k+1;

Update the static model χ using Lχ (Eq. (7));

Update the dynamic model φ using LJ (Eq. (8));

4. Implementation

Dynamic model φ uses the Deeplab architecture [7], with

the initialization weights as in [79, 46]. φ takes as input the

estimated flow between two randomly chosen frames from

the same video with the maximum interval equals to three.

Optical flow is produced by PWCNet [61], which is trained

on synthetic data. The output of φ is a two channel softmax

score. In total, φ has 23M trainable parameters and can run

in 19 fps during inference.
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Figure 7. Distribution of LA computed using the output of the

dynamic model φ (orange) and the static model χ (blue) on the

birdfall sequence, which shows that LA is a good indicator of

reliable masks when the motion field is informative, as verified

by the gap between the distributions of LA.

image

flow

Figure 8. Distribution of LA for the dynamic model φ (orange)

and the static model χ (blue) on the frog sequence, which shows

that when the motion is not informative or erroneous, the static

model can work better, thus the difference in the values of LA

is small.

Static model χ uses similar architecture as the dynamic

model, but takes a single RGB image as input. The output

is also a two channel softmax score. The total number of

parameters is 21 M, and χ can run at 22 fps at inference.

Training details. For the initial training of the dynamic

model φ, we alternate between updating φ for three steps

and updating ψ for one step, up to 30 epochs on the training

set of each dataset, using an Adam optimizer with lr=1e-4,

beta1=0.9, and beta2=0.999. The static model is then trained

up to 15 epochs, using an Adam optimizer with lr=2e-5,

beta1=0.9, and beta2=0.999. As described in Algorithm 1,

the dynamic-static bootstrapping runs for three iterations.

On average, each iteration takes six hours to converge, and

the whole training procedure can be finished within a day.

5. Experiments

Datasets: For video object segmentation, we train and

test our model on three commonly used video object segmen-

tation datasets: DAVIS [50], FBMS [47], and SegTrackV2

[35] (Tab. 3). We also test our trained model on two other

datasets, DAVIS17 [51] and Youtube-VOS [72], to check

how well our method generalizes (Tab. 7).

DAVIS consists of high-resolution videos (30 for training

and 20 for validation) depicting the primary object moving in

the scene with pixel-wise annotations for each frame. FBMS

contains videos of multiple moving objects, providing test

cases for multiple object segmentation. FBMS has sparsely

annotated 59 video sequences, with 30 sequences for vali-

dation. SegTrackV2 contains 14 densely annotated videos.

These videos constitute the only source of training data for

our unsupervised motion perception module φ. Youtube-

VOS contains 4,453 videos and 94 object categories, and

DAVIS17 consists of 150 videos.

To evaluate χ on static object segmentation, we test on

three major saliency prediction datasets: MSRA-B [26]

(5000 images), ECCSD [57] (1000 images) and DUT [74]

(5168 images). All three datasets are annotated with pixel-

wise labels for each image. These saliency datasets contain

objects from a much broader span of categories, such as

road signs, statues, flowers, etc., that are never seen moving

in the training videos We evaluate the static object model

learned from only video objects on these saliency bench-

marks, to check its transferability to different instances from

seen categories and unseen categories.

5.1. Effectiveness of Temporally Consistent Mutual
Information Minimization

To verify the effectiveness of the temporally consistent

mutual information minimization proposed in Sec. 3.1 for

bottom-up motion segmentation, we compare to the base-

line CIS [76] that trains a segmentation network using only

Eq. (3). We train both CIS [76] and our model described in

Eq. (5) on the unlabeled videos from DAVIS, and then test

on the validation set of DAVIS. We also report the scores

by directly applying the model trained on DAVIS to FBMS

and SegTrackV2 in Tab. 1 to check the generalization on

different domains. The performance is measured by mean-

Intersection-over-Union (mIoU), and the relative weights

used in our model are λTC = 1.0. As shown in Tab. 1,

our dynamic model (Eq. (5)) consistently outperforms CIS

(Eq. (3)) on all three video object segmentation benchmarks

by 7%, which confirms that temporal consistency is a critical

component in our dynamic model.

DAVIS FBMS SegTV2

CIS [76] 59.2 36.8 45.6

Ours 62.4 40.0 49.1

Table 1. Our temporally consistent dynamic model v.s. CIS [76].

5.2. Effectiveness of Confidence­Aware Adaptation

Here we check the effectiveness of the confidence-aware

adaptation scheme proposed in Sec. 3.2 in precluding

counter-productive self-learning. We first train a motion

model φ on the training data from DAVIS. Then we train

two static models χ: χ(Fα) using Eq. (6) (not confidence-

aware), the other χ(Lχ) using Eq. (7) (confidence-aware).

We set δ in Eq. (7) to 0.2 and λF to 1.0, which are fixed

for the future experiments. We compare the performance of
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Figure 9. Qualitative comparison to the top two methods from each

category on the DAVIS benchmark. MatNet [81], AnDiff [77]

(supervised) and ARP [30], CIS [76] (unsupervised).

the static models on the DAVIS validation set using mIoU.

Further, we perform the same evaluation on both FBMS and

SegTrackV2, and report the scores in Tab. 2. As shown, with

the confidence-aware adaptive bootstrapping loss Eq. (7), the

static object model χ consistently improves over its counter-

part on the three benchmarks, confirming the importance of

uncertainty estimation in self-supervised learning.

DAVIS FBMS SegTV2

χ(Fα) 73.8 65.5 65.7

χ(Lχ) 78.2 68.7 69.3

Table 2. Static model χ(Fα) vs. χ(Lχ). The latter is trained with

confidence-aware adaptation.

5.3. Improvement from Bootstrapping

In Tab. 5, we show the improvement after multiple rounds

of bootstrapping for each model as described in Algorithm 1

(dynamic-static bootstrapping). The reported score is the

mIoU of the segmentation on the three video object segmen-

tation benchmarks. This demonstrates the effectiveness of

training in a synergistic loop with our dynamic-static boot-

strapping strategy.

5.4. Static Model Improves with the Number of
Training Videos

One characteristic of our method is that the static model χ

improves over time as more and more objects are seen mov-

ing through the bottom-up motion detection module φ. To

verify, we construct a collection of videos S by combining

the three aforementioned video object segmentation datasets

(in total there are 123 video sequences). We randomly parti-

tion them into 10 subsets {sk}
10
k=1, each contains around 12

video sequences. Correspondingly, we train 5 static object

models {χi}
4
i=0 by performing Algorithm 1. The training

set for each χi is {sk}
2i+1
k=1 , such that χi with a larger i is

exposed to more video sequences. Each χ is evaluated on the

Figure 10. Visual results on the saliency prediction benchmarks.

CHS [73], HS [84] (unsupervised), SBF [66] (unsupervised

learning-based), SR [65] (supervised).

union of the three saliency datasets mentioned above (in total

11,000 testing images). In Tab. 6, we report the performance

of χi’s, measured in terms of mIoU (with standard deviation

computed across five runs). As shown in Tab. 6, when the

number of the observed videos increases, the performance of

the static object model also improves, which is consistently

observed across multiple runs.

5.5. Video Object Segmentation Benchmarks

To check the effectiveness of the proposed dynamic-static

bootstrapping in learning better motion segmentation, we

evaluate on the benchmarks for video object segmentation.

Since video object segmentation focuses on moving objects,

we weigh the predictions from the dynamic model with the

predictions from the static model to emphasize the detec-

tion of moving ones. Similar to [76], CRF postprocess-

ing is performed to get our final results. We compare to

top-performing unsupervised (no annotations are involved)

and supervised (annotations are involved during the training

phase) methods. The performance is measured by mIoU. As

shown in Tab. 3, our method achieves the top performance on

all three video object segmentation benchmarks among fully

unsupervised methods. To compare with methods that utilize

manual annotations (Supervised), we finetune our model on

the DAVIS training set with 2000 annotations. We have also

listed the number of annotations used by other supervised

methods in Tab. 3. Again, our model achieves the top perfor-

mance using the least amount of manual annotations among

all the supervised methods. In Tab. 7 we show the results by

testing our trained models on two other video object segmen-

tation benchmarks DAVIS17 and Youtube-VOS. Our model

still achieves competitive performance compared to the state

of the art and demonstrates good generalization.

5.6. Unsupervised Salient Object Detection

In Tab. 4, we evaluate the learned object prior (static ob-

ject model) through the task of salient object detection in

images. Note that the top-performing methods on unsuper-

vised salient object detection all rely on handcrafted methods
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Supervised Methods Unsupervised Methods

# Annot. DAVIS FBMS(J/F) SegTV2 DAVIS FBMS SegTV2

MATNet [81] 14,000 82.4 76.1 / —– 50.2 ARP [30] 76.2 59.8 57.2

AnDiff [77] 2,000 81.7 —– / 81.2 48.3 ELM [33] 61.8 61.6 –

COSNet [42] 17,000 80.5 75.6 / —– 49.7 FST [48] 55.8 47.7 47.8

EPONet [13] 2,000+ 80.6 – 70.9 NLC [14] 55.1 51.5 67.2

PDB [58] 17,000 77.2 74.0 / 81.5 60.9 SAGE [67] 42.6 61.2 57.6

LVO [63] 2,000+ 75.9 65.1 / 77.8 57.3 STP [22] 77.6 60.8 70.1

FSEG [25] 10,500 70.7 68.4 / —– 61.4 CIS [76] 71.5 63.6 62.0

Ours 2,000 82.8 75.8 / 82.0 74.2 Ours 80.0 73.2 74.2

Table 3. Quantitative comparison on video object segmentation benchmarks with both supervised and fully unsupervised methods.

Supervised Methods Unsupervised Methods

DSS [19] NDF [43] SR [65] RBD [82] DSR [36] HS [84] CHS [66] SBF [73] USD [79] DUSPS [46] Ours

ECCSD 87.9 89.1 82.6 65.2 63.9 62.3 68.2 78.7 87.8 87.4 88.1

MSRA-B 89.4 89.7 85.1 75.1 72.3 71.3 79.8 – 87.7 90.3 89.7

DUT 72.9 73.6 67.2 51.0 55.8 52.1 – 58.3 71.6 73.6 73.9

Table 4. Quantitative results on saliency prediction (or salient object detection) benchmarks.

# of Rounds DAVIS FBMS SegTV2

1 73.8 65.5 65.7

2 79.2 71.7 73.1

3 80.0 73.2 74.2

Table 5. The mIoU improves over multiple rounds of dynamic-static

bootstrapping.

# of videos 12 36 60 84 108

mIoU 48.3 52.4 54.9 58.8 61.4

Std. Dev. 1.99 2.37 2.30 1.17 1.56

Table 6. Static model χ improves over time as more videos are

observed.

MATNet [81] Andiff [77] ARP [30] CIS [76] Ours

DAVIS17 58.6 57.8 50.2 53.1 58.9

YTVOS – 46.1 28.7 15.6 47.2

Table 7. Results on DAVIS17 [51] and Youtube-VOS [72] datasets.

either as the primary procedure, or as a subprocess. Among

all top-performing ones, we are, to the best of our knowledge,

the only one that does not rely on any handcrafted features.

We refine the static model χ by performing CRF on its pre-

dictions, and by one round of self-training with the CRF

refined masks [46]. By leveraging the object prior learned

through videos, we can approach and surpass the state of the

art. Even when compared with top-performing supervised

methods (DSS, NDF, SR in Tab. 4), our method still achieves

competitive performance with no explicit annotation.

6. Discussion

We have presented a method to learn how to segment

objects in images that exploits temporal consistency in their

motion, observed in training videos, to bootstrap a top-down

model. The definition of what constitutes an object is im-

plicit in the method and in the datasets used for training.

This may appear to be a limitation, as training on differ-

ent datasets may yield different outcomes. However, what

constitutes an object, or even a segment of an image, is ulti-

mately not objective: In Fig. 5, is the object a person? Or the

motorcycle they are riding? The union of the two? The hel-

met they are wearing? All of the above? We let the evidence

bootstrap the definition: If the motion at the resolution of

the first video shows the human and bike moving as a whole,

we do not know any better than to consider them one object.

If, in later video, a human is seen without a motorcycle, they

will be an independent object thereafter. Admittedly, our

model does not capture the fact that a proper object model

should segment instances and enable multiple memberships

for each point: A pixel on the helmet is part of the object, but

also of the person, and the rider, and so on. We also do not

exploit side information from other modalities. Nonetheless,

despite the complete absence of annotation requirements, our

method edges out methods that exploit manual annotation,

so we believe it to be a useful starting point for further de-

velopment of more complete object segmentation methods.
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