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Abstract

This paper presents an end-to-end neural network for

multiple rotation averaging in SfM. Due to the manifold

constraint of rotations, conventional methods usually take

two separate steps involving spanning tree based initial-

ization and iterative nonlinear optimization respectively.

These methods can suffer from bad initializations due to the

noisy spanning tree or outliers in input relative rotations.

To handle these problems, we propose to integrate initial-

ization and optimization together in an unified graph neural

network via a novel differentiable multi-source propagation

module. Specifically, our network utilizes the image context

and geometric cues in feature correspondences to reduce

the impact of outliers. Furthermore, unlike the methods that

utilize the spanning tree to initialize orientations according

to a single reference node in a top-down manner, our net-

work initializes orientations according to multiple sources

while utilizing information from all neighbors in a differen-

tiable way. More importantly, our end-to-end formulation

also enables iterative re-weighting of input relative orienta-

tions at test time to improve the accuracy of the final estima-

tion by minimizing the impact of outliers. We demonstrate

the effectiveness of our method on two real-world datasets,

achieving state-of-the-art performance.

1. Introduction

Multiple Rotation Averaging (MRA) [20, 47, 31, 2]

aims to estimate the absolute orientations R1,R2, ....,R= ∈

($ (3) for a set of = cameras from the measurements of

their relative orientations {R̃8 9 }. It is a fundamental prob-

lem in 3D Vision and is important to many applications.

For example, MRA is commonly used in Structure-From-

Motion (SfM), especially in global SfM algorithms [8, 24]

to determine camera orientations. MRA is also widely used

in pose graph optimization in visual SLAM [10, 30, 43] or

sensor networks [45, 46].

*Corresponding authors

The code is available at github.com/sfu-gruvi-3dv/msp rot avg.

The MRA problem is commonly formulated on a view-

graph � = {+, �}, where each vertex represents the un-

known absolute orientation and an edge connecting two ver-

tices if their relative orientation is known. Typically, the op-

timal results {R∗8 } are computed by minimizing the discrep-

ancy between the observed relative orientations {R̃8 9 } and

the estimated relative orientations from {R∗8 9 } = {R
∗
9R
∗−1
8 },

which can be written as:

arg min
{R∗

8
}

∑

(8, 9) ∈�

d(3 (R̃8 9 ,R
∗
8 9 )), (1)

where the function 3 defines the distance between two rota-

tion matrices and the d is a robust cost function.

There are several challenges in MRA. Firstly, the 3 × 3

rotation matrices form a 3D nonlinear manifold in a 9D lin-

ear space. Ignoring this manifold constraint leads to in-

ferior results [27]. However, enforcing the manifold con-

straint in optimization is non-trivial, which often involves

local linearization by Taylor expansion and iterative opti-

mization [6]. Secondly, due to the non-linear optimization,

many methods [6, 19, 32, 37] often rely on a Shortest Path

Tree (SPT) or a Minimum Spanning Tree (MST) for initial-

ization, which could be imprecise due to noisy input rela-

tive orientations, leading to poor initialization and inferior

results. Thirdly, in many real applications, solving MRA

needs to deal with incorrect relative orientations [33], i.e.,

outliers, typically due to feature matching ambiguities. A

robust MRA method, therefore, has to handle all these prob-

lems simultaneously.

A neural network approach was recently proposed in

[32]. It utilizes a two-stage neural network architecture in

which the first stage cleans outliers in the view-graph and

builds a SPT to initialize the global orientations and the

second stage further improves this initialization via a fine-

tuning network. However, the whole network is not end-to-

end trainable, and the separate stages leave a gap between

the initialization and final prediction, which makes the sec-

ond stage sensitive to the quality of initialization from the

SPT. If the initialization is poor due to the failure of outliers

removal, the second stage normally also fails to refine it and

generate good estimation.
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This work presents the first end-to-end trainable neural

network for MRA. At the core of our method, a graph-

convolution-based Multi-Source Propagator (MSP) com-

putes initial absolute orientations for all nodes by apply-

ing graph convolution on a view-graph iteratively. Un-

like SPT-based methods that determine the orientations of

child nodes from only their parent nodes, at each iteration,

our method calculates the absolute rotation of a node as

a weighted sum over all neighbours. This allows neigh-

bouring nodes with reliable edges (inliers) to be favoured

in order to minimize the impact of outliers. Moreover,

our graph-convolution-based method can propagate infor-

mation from multiple reference nodes, which further im-

proves our robustness to outliers to initialization.

Furthermore, we design a graph-based Appearance-

Geometry Fusion (AGF) network that uses information

from image context and corresponding corner points to

evaluate the quality of each edge in the view-graph, which

is used in the MSP for better initialization. Exploiting se-

mantic information, the AGF can effectively learn to weight

each edge to reflect the error in the measured relative ori-

entation. In comparison, conventional methods usually use

man-crafted features and/or loop consistency constraints for

the same purpose and often have limited performance.

After obtaining the initial camera orientations using

MSP, we refine them with the FineNet introduced in [32].

As it is impossible to distinguish outliers and inliers per-

fectly even with the well designed AGF, at test time, with

our differentiable MSP module, we iteratively refine the

edge weights, i.e., the confidence of input pairwise mea-

surement, using the Adam optimizer by fixing the parame-

ters of MSP and FineNet and minimizing the discrepancy in

Equ. (1). This iterative edge re-weighting further improves

results accuracy and the robustness against outliers.

Our contributions can be summarized as follows:

• An end-to-end neural network for multiple rotation av-

eraging and optimization.

• A fully differentiable module, i.e., MSP, to initialize

rotation averaging, which enables outlier refinement at

test time.

• An Appearance-Geometry Fusion (AGF) network that

fuses image context and corresponding keypoints to

detect outliers in relative rotations.

• Outperforming both traditional and learning-based

state-of-the-art methods on two real-world datasets.

2. Related Work

MRA has been extensively studied and two approaches

have been explored, optimization based and deep learning

based, with the vast majority of methods being optimization

based.

Govindu first introduced MRA with his linear motion

model [15], and then in [16] with lie-group based averaging.

Robust optimization algorithms such as [6, 19, 48] have re-

cently been proposed, and they could suppress the influence

of outliers. Most of these algorithms are iterative methods,

optimizing a robust cost function. Hartley et al. [19] use

the Weiszfeld algorithm of !1 averaging [5], and update the

absolute orientations of each camera using the median of

those computed from its neighbors in each iteration. Wang

et al. [48] introduced Least Unsquared Deviation (LUD) as

robust cost function and then solve the non-convex problem

by using Semi-Definite Programming (SDP) with Convex

Relaxation [39]. Chatterjee and Govindu [6] use an iterative

re-weighted least squares (IRLS) minimization with a more

robust loss function to fine-tune the initialization obtained

by a spanning-tree. Recently, Shi and Lerman[37] use

message-passing based MPLS for an alternative paradigm

to IRLS and further improves the results. Arrigoni et al.

[3] transfer the rotation averaging problem to a low-rank

and sparse matrix decomposition task, the outliers and miss-

ing data are take into account when solving decomposition

problem. Crandall et al. [7] first build a rough initialization

with loopy belief propagation by ignoring the twist compo-

nent of rotations to reduce solution space. They then refine

the initialization by continuous Levenberg-Marquardt opti-

mization. Fredriksson and Olsson [12] convert the original

problem to a dual problem with Lagrangian Duality, and

then solve it by SDP. This approach helps obtain globally

minimum solutions. Multiple methods have been proposed

and work on optimizing this pipeline [9, 11, 34, 48]. These

methods, however, focus more on overcoming complexity

of optimization, and dealing with outliers remains an open

problem in such methods, as they either assume no noise or

make mild assumptions on the noise distribution [9].

Rotation averaging has recently been studied with

learning-based methods. [23, 14] take multiple 3D scans

as input and learn to solve the rotation and translation syn-

chronization for point cloud registration task. Purkait et al.

[32] proposed a two-stage graphical neural networks based

on the message passing neural network (MPNN) [13]. The

first stage is a view-graph cleaning network to detect outlier

edges. The second stage is a fine-tuning network to refine

the absolute orientations. This method has the same limita-

tion as the optimization-based methods that it is limited by

the quality of the initialization, since its two stages are sep-

arated and the whole network is not end-to-end trainable.

Furthermore, its first stage for outlier detection is limited

to using only the noisy input relative rotations. In compar-

ison, we further include image features to facilitate outlier

detection.

Robust rotation averaging needs to identify and discard

outlier relative rotations. Extensive works[17, 18, 24, 29,

36, 42, 51, 4] have been proposed for this purpose. How-
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Figure 1. The pipeline of our method. For simplification, we demonstrate extracting node and edge features using example nodes >, ?.

Three different reference nodes are used to generate 3 initial candidates in the Multi-Source Propagator module. An initial candidate is

then selected to be refined by the FineNet. Please refer to the main text for specific details.

ever, most of these methods rely on loop consistency to

identify outliers and recover absolute camera poses. Yi et

al. [28] proposed a CNN-based method utilizes semantic in-

formation and 2D correspondence distribution to score the

quality of 2D correspondences on a pair of image. Our AGF

module uses neural network to extract similar features from

images and feature correspondences, however, with a differ-

ent aim of cleaning and refining the view-graph. Moreover,

thanks to the differential MSP module, we can interactively

refine the outlier detection.

3. Method

Fig. 1 shows an overview of our pipeline. The input is a

view-graph, where each node represents a camera and two

nodes are connected by an edge if their relative rotation is

known. An image is attached to each node, while an edge

contains pairwise relative rotations and the corresponding

2D corner points. The output of our system is the optimal

absolute orientations of each node that minimizes the dis-

crepancy defined in Equ. (1).

As shown in Fig. 1, our end-to-end pipeline consists of

four modules including: 1) a Feature Extraction Module

that extracts features for the graph nodes and edges from

the input images and matched correspondences; 2) a graph-

based Appearance-Geometry Fusion (AGF) Module that

takes the node and edge features, along with the relative

rotation measurements as input, and predicts a weight for

each edge that indicates whether the edge is reliable or not;

3) a Multi-Source Propagation (MSP) Module that takes

the weighted view-graph and the relative rotations as input

and generates initial camera orientations by iterative prop-

agation; 4) an Orientation Refinement Module that pro-

duces refined orientations. Thanks to the differential MSP

module, we propose an Iterative Edge Weight Refinement

strategy during test that re-weights the edge confidence it-

eratively by minimizing the discrepancy in Equ. (1) and en-

hances final results. We will explain each module in detail

in the following sections.

3.1. Node and Edge Feature Extraction

We seek to extract features on the nodes and edges to

facilitate the estimation of absolute orientations while min-

imizing the impact of noisy relative rotations and outliers.

Conventional methods, e.g. [8, 25, 33, 41], often use the

number of matched corner points to measure the quality of

a relative rotation. However, such a man-crafted measure-

ment ignores high level image semantics and may not best

reflect the quality of relative motions. Therefore, we use a

neural network to extract features on the nodes and edges.

The node feature captures global semantic information

from the image. In particular, we use VGG16 [38] to ex-

tract feature map F4
8 from VGG16’s Layer group 4 when

constructing node features.

The edge feature encodes 2D corner points locations and

their appearance information. Formally, given an image pair

{I8 , I 9 } with = pairs of matched keypoints {(x0
8
, x1

9
)} where

x0
8
, x1

9
are 2D coordinates of matched keypoints (0, 1) de-

fined in frames 8 and 9 respectively. We first reduce the

channels of the feature maps F4 with a 1 × 1 convolution

layer, resulting in F̂4 with 64 channels. Subsequently, we

gather the features for each pair of correspondence,

{f8 9 }= = {[x̃08 , x̃
1
9 , f

0
8 , f

1
9 ]}=, (2)

where f0
8

= F̂4
8 (x

0
8
) and f1

9
= F̂4

9 (x
1
9
) are the features of

points 0, 1 in the feature map F̂4
8 , F̂

4
9 respectively, and x̃0

8
, x̃1

9

are normalized 2D coordinates. Then, we use two layers

of MLP q(·) to generate a vector encoding these features:

{f̂8 9 }= = {q(f8 9 )}=.

There is a problem we need to address to apply these fea-

tures in real data. Both the node and edge features should

have a fixed dimension regardless of the input image size

and the number of matched corner points between image
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pairs. To deal with different image resolutions, we use the

VLAD pooling[1] operation on F4
8 and get a fixed-size fea-

ture g8 . The number of channels are then reduced for mem-

ory efficiency using 1 × 1 convolution to produce node fea-

ture ĝ8 of size 32 × 64.

Similarly, we employ a clustering method to deal with

the different numbers of correspondences in image pairs.

Specifically, we apply :-means clustering to the positions

of keypoint {x8}= on frame 8, resulting in  different

groups. For each group < with features {f̂8 9 }
<
= , we then

use Maxpool to aggregate this set of features to a sin-

gle feature vector and get the edge feature as: e8 9 =

{maxpool({f̂8 9 }
<
= ) |< <  }. This results in features with

fixed  × 64, where an edge feature e8 9 encodes the coordi-

nates and appearance of matched corner points.

At the end of this module, we obtain a set of node fea-

tures ĝ8 and edge features e8 9 for the input view graph �.

3.2. Appearance­Geometry Fusion

With the node and edge features, we design a graph-

based Appearance-Geometry Fusion (AGF) network to pre-

dict the reliability F8 9 , 0 < F8 9 < 1 for each edge (i.e. a

relative rotation) of the view-graph �.

Our AGF consists of 6 layers of Edge Convolution

from the Message Passing Neural Network (MPNN) [13]

followed by a shared MLP for all edges. Consider an edge

connecting the node 8 and 9 with edge feature e8 9 and rel-

ative rotation q̃8 9 . Our AGF takes the concatenated vector

[e8 9 , q̃8 9 ] as the edge feature for MPNN. The node feature

for the MPNN is simply ĝ8 .

At each layer of the MPNN, features are updated and

passed to the next layer. The message through an edge (8, 9)

to the node 8 is computed from the features of nodes 9 and

the feature of the edge (8, 9). The output node feature is then

computed by aggregating over all neighboring messages

while the output edge feature is the message passed through

the edge. Finally, we apply a one-layer MLP to the edge

features from the last Edge Convolution layer to com-

pute a normalized weight for each edge {F8 9 | (8, 9) ∈ E, 0 <

F8 9 < 1} with the sigmoid function. These weights mea-

sure the quality of the relative orientations, which will be

used in the following modules. Please refer to our supple-

mentary material for more details of the AGF.

3.3. Differentiable Multi­Source Propagation

Given the view-graph � and the edge weights F8 9 , we

now initialize the camera orientations according to the rela-

tive rotations. Conventional methods often use a SPT/MST

to initialize camera orientations in a top-down manner.

Specifically, these methods set the reference coordinate

frame at the root node, and iteratively determine the orien-

tation of remaining nodes according to their parent nodes in

the SPT/MST tree. In comparison, we use a parameter-free

Algorithm 1: Single-Source Propagation

Input : G = {V, E}, {F4 , q̃8 9 | for 48 9 ∈ E}, V, C<0G , n

Output: Initial absolute rotation q8 for 8 ∈ +

Initialization:

1 A ← argmax8∈V (
∑

9∈N (8) F98) ⊲ select reference node

2 ;0A ← 1; ;0= ← 0.1, ∀= ∈ V, = ≠ A ⊲ set initial visit status

3 q0
A ← qI ⊲ set initial rotation to identity

Iterative Propagation:

4 C ← 1

while (C < C<0G or |lC−1 − lC | > n ) do

for 8 ∈ + do

5 sC ← {F8 9 · ;
C−1
9
|∀ 9 ∈ N (8) }

6 WC ← softmax(V · sC ) ⊲ compute kernel

7 qC
8
←

∑
9∈N (8) W

C
98
· (q̃ 98 · q

C−1
9
) ⊲ weighted sum

8 qC
8
← normalize(qC

8
) ⊲ normalize to unit

9 ;C
8
←

∑
9∈N (8) W

C
98
· ;C−1

9
⊲ update node confidences

end

10 C ← C + 1

end

graph convolution to initialize camera orientations, mak-

ing the initialization process differentiable and hence, the

full pipeline end-to-end trainable. Graph convolution is

also advantageous since it considers information from all

neighboring nodes instead of just the parent node in the

SPT/MST.

Iterative Graph Convolution: We apply the graph convo-

lution multiple times. At each iteration C, we update the

camera orientation at node 8 using its neighbors according

to the following equation,

qC+1
8 =

∑

9∈N (8)

WC98 (q̃ 98q
C
9 ). (3)

Here, the superscript C is an iteration index, N (8) is the

neighborhood of the node 8. We follow NeuRoRA[32] and

use quaternion to represent rotation, the term q̃ 98q
C
9

com-

putes the orientation of node 8 according to that of the neigh-

boring node 9 and the relative rotation q̃ 98 from 9 to 8. The

result qC+1
8

is a weighted sum over all neighboring nodes ac-

cording to the kernel weight WC
98

, and further normalized to

a unit vector by qC+1
8

=
qC+1
8

| |qC+1
8
| |

.

We now explain the computation of the kernel WC
8

=

{WC
98
, 9 ∈ N (8)}. For this purpose, we introduce a confi-

dence score, ;C
8
, 0 < ;C

8
< 1, for each node 8, representing

our ‘confidence’ of the orientation at that node. For each

node 8, we compute,

WC8 = softmax({V(;
C
9 · F 98) |∀ 9 ∈ N (8)}). (4)

Intuitively, a kernel weight WC
98

is large only when both F 98

and ;C
9

are large, i.e. the edge between 8, 9 is an inlier and

the orientation of node 9 is reliable. The kernel is further

normalized by softmax with a fixed temperature factor
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V = 30, which makes the distribution peak near the reli-

able neighbors [22]. Similarly, the confidence of node 8 is

updated with the kernel WC
98

:

;C+18 =

∑

9∈N (8)

WC98 ;
C
9 (5)

Stopping Criteria: The iteration stops either a maximum

iteration count C<0G is reached or there are no changes in

the confidence of all nodes for a threshold: |;C+1
8
− ;C

8
| < n

where n = 1.0 × 10−4.

Graph Convolution Initialization: To begin this itera-

tive graph convolution, we first choose a reference node A

and set the world coordinate frame aligned with its cam-

era frame, i.e. the node A has identity quaternion q0
A = qI.

Similar to [32], the reference node A is chosen as the node

with the highest sum of adjacent edge weights, which repre-

sents the ‘mass center’ of a view-graph and other nodes can

be easily reached with fewer steps [20]. Accordingly, the

confidence of the reference node A is set to ;0A = 1.0 while

all the remaining nodes is set to 0.1. The quaternion at all

other nodes are set to random values. The described graph

convolution will propagate the camera orientation from the

reference node to all other nodes. All steps are summarized

in Algorithm 1.

Multi-Source Propagation: To make our result more ro-

bust to the selection of the reference node A , we design a

multi-source propagation by using multiple reference nodes

at once and performing the propagation in batch-style.

Specifically, we select the top-" nodes with the highest

sums of adjacent edge weights as reference points. In this

way, at the end of this MSP, we get multiple initial orienta-

tions {q<
8
|< < "} for each node 8 in the view-graph �.

3.4. Orientation Refinement

We further use the FineNet in [32] to improve the orien-

tations obtained by the MSP module. Since MSP generate

" results, we randomly select one of them to make the net-

work less sensitive to the reference node selection.

FineNet is based on the MPNN architecture, with 4 lay-

ers of Edge Convolution. We set the node features as the

camera orienations q8 , and edge features as the residual of

the estimated and measured relative rotations:

58 9 = q−1
9 q̃8 9q8 .

Here 58 9 is the feature for edge (8, 9). The output node fea-

tures are the refined camera orientations. For more details,

we refer the reader to the supplementary material and [32].

3.5. Iterative Edge Weight Refinement

Given the MSP and FineNet modules, our network can

compute the absolute orientation at each camera from the

weighted view-graph and the input relative rotations. We

can regard this two network modules as the following func-

tion,

{q
5

8
} = F

(
w;�, {q̃8 9 }, \

)
, (6)

where w is a matrix formed by all the edge weights F8 9 , \ is

the network parameters of the FineNet, and the superscript

5 indicates the result generated by the FineNet.

However, the weights w generated by the AGF might

be imprecise. Similar to the edge re-weighting in [6], we

therefore apply an iterative weight refinement scheme to

improve the results. In principal, we can start with the the

AGF module computed weights w0 and optimize them it-

eratively by minimizing the discrepancy error in Equ. (1).

Note this refinement of w is possible because both the MSP

and FineNet modules are differentiable. Once the optimal

weights w∗ are obtained, we compute the final result by ap-

plying the MSP and FineNet one more time as in Equ. (6).

In practice, we minimize the following energy term to

refine w for better performance,

� = �8=8 + �A4 5 , (7)

where the two energy terms are defined for the orientations

generated by the MSP module and the FineNet module re-

specitvely. Specifically, they are,

�8=8 =
1

|" | |� |

∑

<∈"

∑

(8, 9) ∈�

F8 9 d(3@ (q̃8 9 , q
<
8 9 )), (8)

and

�A4 5 =
1

|� |

∑

(8, 9) ∈�

F8 9 d(3@ (q̃8 9 , q
5

8 9
)). (9)

The function 3@ (·) is the distance of two quaternions and

d denotes smooth !1 cost. The quaternions q<
8 9

and q
5

8 9
are

the relative orientations computed from the outputs of MSP

& FineNet respectively.

For this optimization of w, we fix the parameters in

FineNet (note the MSP module is parameter-free) and ap-

ply the Adam optimizer[26] with learning rate ;A = 1.0. For

more details, please refer to supplementary document.

3.6. Training Loss Function

We train our network in a supervised manner with known

ground truth camera orientations to measure the error in the

results by the MSP module {q<} and the FineNet {q 5 }.

We also define an additional loss function to facilitate the

extraction of edge features.

To extract useful edge features for AGF, we provide su-

pervision with binary cross-entropy loss. The edge features

are passed through a one-layer MLP k(·) and sigmoid to

predict the probability of the edge being an inlier (relative

rotation error ≤ 20°). Therefore, an loss !e can be defined

on edges:

!e =
1

|� |

∑

(8, 9) ∈�

`8 9!bce (k(e8 9 ), Ĥ8 9 ), (10)
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Datasets MPLS[37] Chatterjee[6] NeuRoRA[32]
NeuRoRA[32]

+ Refine.
Ours

#image #edges Names mn md mn md mn md mn md mn md

1881 4.2% colosseum exterior failed 7.21 4.16 25.09 2.48 22.81 3.06 2.7 1.66

228 28.2% piazza san marco failed 2.31 1.2 8.08 4.01 3.53 2.28 2.02 1.55

163 66.6% big ben 2 14.54 3.20 14.56 2.96 7.56 2.36 5.58 1.38 5.77 1.43

182 41.7% palazzo pubblico 6.78 2.39 5.69 1.91 3.58 1.58 3.49 1.21 3.22 1.4

624 12.4% louvre failed 7.69 2.69 8.55 4.82 6.48 1.47 5.04 0.9

188 59.5% big ben 1 13.90 3.82 12.57 2.59 5.22 2.60 9.01 2.60 3.42 1

104 63.2% petra jordan 8.32 1.56 8.68 1.76 5.15 3.19 4.19 0.75 2.85 0.5

100 53.7% statue of liberty 2 13.05 3.85 10.06 4.17 5.80 2.23 4.90 1.99 2.93 1.2

269 23.1% st peters basilica interior 2 failed 7.43 2.72 6.24 2.44 4.91 1.08 4.63 1.43

90 66.0% statue of liberty 1 7.05 2.35 6.79 2.45 5.71 2.34 4.43 1.99 3.22 1.35

103 55.9% florence cathedral side 9.30 2.31 8.56 3.46 2.87 1.19 2.91 0.78 1.55 0.62

136 43.6% palace of versailles chapel failed 13 2.76 2.98 0.96 5.01 1.13 3.12 0.64

496 14.6% notre dame rosary window 7.14 1.3 7.41 1.94 7.06 3.83 4.41 1.67 2.79 0.96

745 10.8% lincoln memorial statue 7.89 1.16 8.08 1.54 2.87 1.48 3.74 1.19 1.95 0.96

Table 1. Comparison of results on the YFCC100 dataset. We compare our method with various SOTA MRA methods, mean(mn) and

median(md) angular errors on the estimated absolute rotations are compared. The entries with the best performance are bolded.

where for each edge (8, 9), Ĥ8 9 is the ground truth label and

the weight `8 9 is set to 0.75 when (8, 9) is an outlier edge

and 0.1 otherwise. This weighting helps to deal with the

unbalanced distribution of inlier and outlier edges, where

outlier edges are rare.

Similar to NeuRoRA [32], the loss for the initial orien-

tations by the MSP module is calculated on all " initializa-

tion candidates {{q8}
< |8 ∈ +, < < "} as:

!init =
1

|" | |� |

∑

<∈"

∑

(8, 9) ∈�

d(3@ (q̂8 9 , q
<
8 9 ))+

l01B

1

|" | |+ |

∑

<∈"

∑

8∈+

d(3@ (q̂8q̂
−1
A<
, q<

8 )). (11)

Here, the first term enforces consistency of relative orien-

tations, where q̂8 9 is the ground-truth relative rotation com-

puted as q̂8 9 = q̂ 9 q̂
−1
8 and q<

8 9
denotes the relative pose com-

puted from the results of the MSP module. The second term

measures the absolute rotation error for all nodes. To fix the

gauge freedom, the ground truth orientations are aligned to

the reference frame attached to the node A< by multiplying

with q̂−1
A<

. The weight l01B = 0.5 balances the two terms.

For the refined orientation {q
5

8
|8 ∈ +}, we can define

a similar loss function as !init. Specifically, suppose the

reference node is A , this loss is defined as:

!opt =
1

|� |

∑

(8, 9) ∈�

d(3@ (q̂8 9 , q
5

8 9
))+

l01B

1

|+ |

∑

8∈+

d(3@ (q̂8q̂
−1
A , q

5

8
)). (12)

Finally, our training loss is

! = !e + !init + !opt. (13)

More training details are in the supplementary document.

4. Experiments

Datasets: We evaluate our method and compare it

with some SOTA algorithms on the YFCC100 [21] and

1DSfM [50] datasets. The YFCC100 dataset consists of

internet images at 72 city-scale scenes. We use the au-

thor’s reconstructed camera poses as the ground-truth and

run the COLMAP [35] to obtain missing view-graphs and

relative poses. The 1DSfM contains 14 outdoor scenes with

‘ground-truth’ camera poses obtained using Bundler [40].

Comparison: We compare our approach with var-

ious optimized-based methods including Chatterjee[6],

MPLS [37], Arrigoni[3] and a recent deep learning based

method NeuRoRA [32] using a publicly available evalu-

ation script1. In our experiments, we use the latest im-

plementation with the default parameters and cost function

of the shared scripts123 on [6, 32, 37]. As the pre-trained

model is not released, we train the NeuRoRA [32] by feed-

ing the full view-graphs of the YFCC100 scenes with de-

fault parameters and cite their results on 1DSfM directly.

Implementation Details: We use a GTX 1080Ti with 11G

memory to train and test our model. The MSP module is

implemented using the DGL library[49]. For FineNet, we

use the author’s shared implementation directly.

To train our model on YFCC100, we randomly split all

the 72 models into two sets, one for training (58 models)

while the other for testing (14 models). Due to the GPU

memory limitation, we first train our full pipeline on sub-

graphs with 30 nodes, which are sampled from the original

view-graph. We then fix the node and edge feature extrac-

tor and train subsequent modules over sampled sub-graphs

1http://www.ee.iisc.ac.in/labs/cvl/research/rotaveraging/
2https://github.com/pulak09/NeuRoRA
3https://github.com/yunpeng-shi/MPLS
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Datasets Chatterjee[6] Arrigoni[3] NeuRoRA[32] MPLS[37] Ours

#image #edge Names mn md mn md mn md mn md mn md

577 59.5% Alamo 4.2 1.1 6.2 1.6 4.94 1.16 3.44 1.16 2.89 1.07

227 66.8% Ellis Island 2.8 0.5 3.9 1.2 2.59 0.64 2.61 0.88 1.88 0.83

677 17.5% Gendarmenmarkt 37.6 7.7 41.6 13.3 4.51 2.94 44.9 8.0 6.29 3.69

341 30.7% Madrid Metropolis 6.9 1.2 6.0 1.7 2.55 1.13 4.65 1.26 2.96 1.09

450 46.8% Montreal Notre Dame 1.5 0.5 4.8 0.9 1.2 0.6 1.04 0.51 0.91 0.5

338 39.5% Piazza del Popolo 4 0.8 10.8 1.2 3.05 0.79 3.73 1.93 2.68 0.76

1084 10.9% Roman Forum 3.1 1.5 13.2 8.2 2.39 1.31 2.62 1.37 2.04 1.19

472 18.5% Tower of London 3.9 2.4 4.6 1.8 2.63 1.46 3.16 2.2 2.55 1.25

5058 4.6% Trafalgar 3.5 2 48.6 13.2 5.33 2.25 - Out of Memory

789 5.9% Union Square 9.3 3.9 9.2 4.4 5.98 2.01 6.54 3.48 4.37 1.85

836 24.6% Vienna Cathedral 8.2 1.2 19.3 2.39 3.9 1.5 7.21 2.83 3.91 1.1

437 26.5% Yorkminster 3.5 1.6 4.5 1.6 2.52 0.99 2.47 1.45 2.27 0.91

2152 10.2% Piccadilly 6.9 2.9 22.0 9.7 4.75 1.91 3.93 1.81 3.63 1.8

332 29.3% NYC Library 3 1.3 3.9 1.5 1.9 1.18 2.63 1.24 1.75 1.12

Table 2. Comparison of results on the 1DSfM dataset. We compare our method with various SOTA MRA methods. Mean(mn) and

median(md) angular errors on the estimated absolute rotations are compared. The entries with the best performance are bolded.

with 80 nodes. In the end, we train our model on sub-graphs

with 180 nodes. For this sub-graph sampling, we randomly

sample 10–200 sub-graphs from each view-graph, depend-

ing on its total number of nodes. Typically, this generates

3,000–4,000 sub-graphs for training.

With 1DSfM, limited by the number of scenes, we train

and test our network in a leave-one-out manner which is

also applied in NeuRoRA[32]. We employ the same sub-

graph sampling approach used with YFCC100, and the

network parameters are initialized with those trained on

YFCC100. During training, the number of initial candidates

is set to " = 15 in MSP.

During testing, GPU memory prevents us from loading

all the nodes and edges of the view-graph at once. There-

fore, we also sample sub-graphs with 80 nodes, until ev-

ery edge is covered. We then feed these sub-graphs into

the feature extractor and AGF module one by one, caching

the output edge weights w. At last, we build a complete

weighted view-graph where the weight for an edge is the av-

erage of its weights in all the sub-graphs containing it. This

complete weighted view-graph is subsequently fed into our

MSP module with " = 15, which is then followed by the

FineNet. More details about the implementation and train-

ing & testing parameters are in the supplementary material.

4.1. Results on Internet Dataset

YFCC100: We evaluate the performance in terms of

mean (mn) and median (md) angular error of estimated

camera rotations. The comparison results are listed in Ta-

ble 1. Our approach (Ours) outperforms Chatterjee [6],

MLPS [37] and NeuRoRA [32] in most scenes. NeuRoRA

generates large error in the colosseum exterior ex-

ample, because of poor initialization generated by a SPT

while MPLS[37] also suffers from bad initialization and

produces large error on some examples as marked as failed

Methods avg. mn avg. md Methods avg. mn avg. md

M = 1 4.65 1.19 SPTW 9.37 5.75

M = 5 4.66 1.24 Ours (NEFO) 4.18 1.34

M = 10 4.1 1.22 Ours (RMO) 3.98 1.47

Ours (M=15) 3.23 1.11

Table 3. The averaged mean and median angular error over all test

sets of YFCC100 on different baseline methods. Note that both

Ours (NEFO) and Ours (RMO) are trained with " = 15. Please

refer to Section 4.2 for more details.

in the table. On the other hand, our end-to-end trainable

approach (Ours) avoids such issues and shows great per-

formance, especially on colosseum exterior. Lastly,

our method’s performance is only slightly inferior to Neu-

RoRA on palace of versailles chapel.

1DSfM: Comparison results on the 1DSfM dataset are listed

in the Table 2 where the numbers are cited from the ref-

erence papers. In most scenes, our method outperforms

[3, 6, 32, 37] in terms of the mean angular error and me-

dian angular error. Our method is only slightly inferior to

NeuRoRA[32] on Madrid Metropolis, and performs

comparably on Vienna Cathedra. Our method per-

forms inferior than NeuRoRA on Gendarmenmarkt, but

better than the other two methods. Note that Trafalgar

has a large number of nodes (5k) and edges (600k) and re-

quires GPU memory that exceeds our current configuration

(GTX 1080Ti, 11GB) even with only " = 1 in MSP.

4.2. Ablation Study

Effectiveness of Node and Edge Feature: To verify the ef-

fectiveness w.r.t different types of input features, we mod-

ified the AGF module with two different types of inputs

as baseline methods: Node/Edge Features Only (NEFO)

and Relative Measurements Only (RMO) respectively. For

RMO, we replace each node feature by a 1 × 4 zero vec-

tor while the input edge only takes relative measured rota-
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Figure 2. Histograms of the edge weight F w.r.t relative orientation

error (≤ 10° and ≥ 45° respectively) on Madrid. The distribu-

tion of F before and after iterative refinement are compared. For

each figure, the horizontal axis represents the value of F while the

vertical axis represents the number of edges.

tion as input. As for the NEFO baseline, we only remove

the relative measurement from the input edge features. We

compare those two baselines with our full-version model

(Ours) and the results are listed in Table 3. The two base-

line methods, Ours(NEFO) and Ours(RMO), yield compa-

rable results while our full-version performs notably bet-

ter. The results indicate that both Node&Edge features and

relative rotations are necessary in our pipeline and subse-

quently, produce better absolute orientations.

Effectiveness of Multi-Source Propagation: We evaluate

the Multi-Source Propagation module by training and test-

ing with various " = {1, 5, 10, 15}. Furthermore, we com-

pare with a SPT-based baseline (SPTW) by replacing the

MSP module in our pipeline with a SPT, which is built with

the inverse edge weight 1 − F8 9 as distance [44]. We train

a separate FineNet with initialization generated by the SPT

accordingly. Table 3 reports the averaged mean(mn) and

median(md) angular error on all 14 test sets of YFCC100.

The model with most source nodes " = 15 in MSP

achieves the best performance among all settings, while

" = 10 yields slightly better results than " = 1 and " = 5.

The model trained with only " = 1 and " = 5 are compa-

rable. The SPT-based baseline method (SPTW) is dramati-

cally inferior to our complete pipeline regardless of differ-

ent " in MSP module. This verifies the effectiveness that

our MSP module which is benefit from both using multiple

reference nodes and the graph convolution that using multi-

ple neighbors instead of one.

Effectiveness of Iterative Edge Refinement: The iterative

refinement of edge weight w (Section 3.5) is important for

our system performance. We seek to implement this scheme

to the method NeuRoRA [32] to further investigate the ori-

gin of this performance improvement.

Specifically, the FineNet in NeuRoRA [32] can be re-

garded as the following function,

{q
5

8
′} = F ′ (q8=8C ;�, \

′) . (14)

Here, q8=8C is the initial camera orientations generated by

its SPT-based method, � is the view-graph, and \ ′ is the

network parameters of the FineNet.

We design a similar energy function as Equ. (9) to itera-

tively refine q8=8C as

�NeuRoRA =
1

|� |

∑

(8, 9) ∈�

F8 9 d(3@ (q̃8 9 , q
5

8 9
′)) (15)

where the weight F8 9 is edge weight produced by CleanNet

in [32], q
5

8 9
′ is the relative orientation computed from the

FineNet results. Note, while the CleanNet also produces a

weight for each view-graph edge, these weights cannot be

refined as the SPT-based initialization is not differentiable.

The results of this improved NeuRoRA are listed in Ta-

ble 1 as (NeuRoRA + Refine). Although this improved ver-

sion brings better results over NeuRoRA, its performance

is still inferior to our pipeline. Moreover, the results of

scene palace of versa chapel and big ben 1 de-

teriorated (in terms of mean or median error).

To better demonstrate the ‘re-weighting’, we visualize

two histograms of edge wegiths on the data Madrid in

Fig. 2, where (a) and (b) are the histogram of the inlier (rel-

ative error less than 10°) and outlier edges (relative error

larger than 45°) respectively. These histograms show the

number of edges with specific weights F before and after

refinement. In histogram (a), the bin at F = 1 indicates true-

positives. Similarly, in histogram (b), the bin at F = 0 indi-

cates true negatives. After the edge weight refinement, both

the number of true positive and true negative increase. Fur-

thermore, false positive in histogram (b) (the bins at F > 0)

are filtered out.Note that the number of false negatives in

histogram (a) increases a bit (the bin at F = 0). Although

not ideal, it does not deter from our purpose of removing

outliers. As the model successfully exclude false positives,

as a side benefit, it increases false negatives. This verifies

the effectiveness of iterative edge refinement.

Additional execution time and outlier impact study are

included in supplementary document.

5. Conclusion

This paper presents an end-to-end trainable neural net-

work for Multiple Rotation Averaging. Our network takes

image context and corresponding keypoints into considera-

tion to weight each edge of the view-graph according to the

reliability of the relative rotation defined on that edge. We

then design a differentiable Multi-Source Propagator (MSP)

module to initialize the camera orientations by graph con-

volution, which is further refined in the FineNet. Eventu-

ally, the view-graph edge weights are iteratively refined to

exclude unreliable edges and improve the results. Experi-

ments demonstrate that our method achieves state-of-the-art

performance on two Internet datasets.
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