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Abstract

Recent study on detecting facial action units (AU) has

utilized auxiliary information (i.e., facial landmarks, rela-

tionship among AUs and expressions, web facial images,

etc.), in order to improve the AU detection performance. As

of now, no semantic information of AUs has yet been ex-

plored for such a task. As a matter of fact, AU semantic de-

scriptions provide much more information than the binary

AU labels alone, thus we propose to exploit the Semantic

Embedding and Visual feature (SEV-Net) for AU detec-

tion. More specifically, AU semantic embeddings are ob-

tained through both Intra-AU and Inter-AU attention mod-

ules, where the Intra-AU attention module captures the rela-

tion among words within each sentence that describes indi-

vidual AU, and the Inter-AU attention module focuses on the

relation among those sentences. The learned AU semantic

embeddings are then used as guidance for the generation of

attention maps through a cross-modality attention network.

The generated cross-modality attention maps are further

used as weights for the aggregated feature. Our proposed

method is unique in that the semantic features are exploited

as the first of this kind. The approach has been evaluated on

three public AU-coded facial expression databases, and has

achieved a superior performance than the state-of-the-art

peer methods.

1. Introduction

Facial action units (AUs) defined in the Facial Action

Coding System (FACS)[5] has been widely used for de-

scribing and measuring facial behavior. Automatic action

unit detection has been an essential task for facial analysis,

with a variety of applications in psychological and behav-

ioral research, mental health assessment and human-robot

interaction.

Benefited from the great progress in deep learning re-

search, the performance of AU detection has been im-

Figure 1. An example of the individual AUs, related facial ar-

eas and the corresponding AU semantic descriptions. Red: facial

area/position, Green: action, Yellow: motion direction, and Blue:

motion intensity. As we can see, the AU related facial areas and

their actions are clearly explained in each AU semantic descrip-

tion. The facial area/position, action, motion direction and inten-

sity, and relation of AUs will be automatically encoded in the AU

semantic embedding, as described in Section 3.2.

proved using the deep-model based methods in recent years

[28][30][12][3][19][22][15]. However, the deep-model

based methods are starved for labeled data, whereas AU

annotation is a highly labor intensive and time consum-

ing process, thus many existing works seek to exploit the

auxiliary information for AU detection, which include, for

example, domain knowledge (e.g., probabilistic dependen-

cies between expressions and AUs as well as dependencies

among AUs) [17][18][26]; facial landmarks and expression

labels [13][15], and freely web face images [29]. Although

the performance has a certain improvement when utilizing

those auxiliary information, the AU semantic descriptions

have not yet been explored by any of the previous methods.
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FACS provides a complete set of textual descriptions for

AU definition, such a set of AU descriptions provide rich

semantic information, such as which facial area is related

to the individual AU, what intensity and type of action can

be considered as the occurrence of an AU, and what is the

relation among AUs, etc. Such a unique finding motivates

us to explore the textual descriptions as an auxiliary infor-

mation along with the visual information for AU detection.

Figure 1 illustrates an example of AU semantic descriptions

on three AUs. As we can find that two facial areas (chin boss

and lower lip) and two corresponding actions (wrinkle chin

boss and push up the lower lip) involve in the occurrence

of AU17. Besides, we can also obtain the potential relation

among AUs. For example, AU23 occurs in the area of lips,

which share the lower lip with AU17, but they rarely appear

together as different actions applied to the lip (tighten vs

push up). A similar example is AU12 (lip corner puller) vs

AU15 (lip corner depressor). Those semantic information

(i.e., facial area/position, action, motion direction/intensity,

and relation of AUs) will be automatically encoded in the

AU semantic embedding, which will be described in Sec-

tion 3.2.

Two recent works [2][24] have been developed to explic-

itly model the label relationships from the semantic label

embeddings using a graph convolutional network (GCN)

based method for multi-label image recognition. These two

works have demonstrated that explicitly modeling the label

relationships from the label embeddings is beneficial for the

discovery of meaningful locations and discriminative fea-

tures. However, both of them rely on the manually defined

label relation graph, as used in the GCN module, making

them incapable of applications without the ground truth la-

bel relation graph.

Inspired by the self-attention mechanism from trans-

former [20] and Inter/Intra attention modules in [7], we pro-

pose a novel framework to exploit the Semantic Embedding

and Visual feature (SEV-Net) for AU detection, which will

automatically learn the AU relations from the AU semantic

descriptions. First of all, in order to capture the seman-

tic relations among AUs, we introduce two new attention

modules, which are so-called Intra-AU and Inter-AU atten-

tion module, where the Intra-AU attention module targets

at the word-level attention among the AU semantic descrip-

tions (i.e., <lip corner> −<raised>), while the Inter-AU

attention module focuses on the relation among sentences

(i.e., both AU12 and AU15 occur at the lip corner, but they

cannot happen concurrently because opposite actions are

associated with the corresponding AUs (puller vs depres-

sor)). Second, the learned AU semantic embeddings are fur-

ther combined with the visual features to generate the atten-

tion map through a cross-modality attention module. Unlike

the traditional self-attention methods, the cross-modality at-

tention module benefits from the rich semantic information

(i.e.,facial area/position, action, motion direction/intensity,

and relation of AUs), hence being able to learn more useful

and discriminative features from more meaningful facial ar-

eas. The attention maps are further utilized as weights for

the aggregated feature for AU classification.

In summary, the contributions of this work are two-fold:

1. We proposed a unified framework that applying the

attention into three different levels to capture differ-

ent AU semantic relations: Intra-AU attention (Words

level: location, action type/intensity, etc), Inter-AU at-

tention (Sentence level: AU relations, can two AUs

happen concurrently?) and cross-modality attention

(Modality level: connecting the AU semantic embed-

ding to visual features). As a result, the model is able

to learn more discriminative features from more mean-

ingful areas.

2. To the best of our knowledge, this is the first work to

introduce AU semantic description as an auxiliary in-

formation for AU detection, achieving significant im-

provement for AU detection than SOTA in three widely

used datasets.

2. Related works

AU detection with auxiliary information Current works

on facial action (AU) recognition typically rely on fully AU-

annotated training data. However, as compared to the other

computer vision tasks, the publicly available AU-labeled

datasets are quite small due to the labor-intensive work on

AU annotation. Therefore, the research community started

to utilize the auxiliary information for robust AU detection.

Zhao et al.[29] proposed a weakly spectral clustering ap-

proach to use freely downloaded web images for learning

action units. An embedding space is learned by exploiting

web images with inaccurate annotations, and then a rank-

order clustering method is applied to re-annotate these im-

ages for training AU classifiers. Peng and Wang[17] utilized

the domain knowledge for AU detection. Here, the domain

knowledge refers to the probabilistic dependencies between

expressions and AUs as well as dependencies among AUs.

To train a model from partially AU-labeled and fully ex-

pression labeled facial images, Peng and Wang[18] used the

dual learning method to model the dependencies between

AUs and expressions for AU detection. By leveraging prior

expression-independent and expression-dependent proba-

bilities on AUs, Zhang et al.[26] proposed a knowledge-

driven method for jointly learning multiple AU classifiers

without AU annotations, and achieved a good performance

on five benchmark databases. Li et al.[11] designed an

attention map and facial area cropping network based on

facial landmarks. Niu et al.[15] proposed to use the fa-

cial landmarks as person-specific shape regularization for
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Figure 2. The overall framework of the proposed method. The visual features are first extracted by a backbone network. The AU embed-

dings are obtained through feeding the AU description sentence to an Intra-AU attention module to capture the relation among words in

each sentence, followed by an Inter-AU attention module to capture the relation among AU sentences. The learned AU embeddings and

visual features are combined together to generate the attention map through a cross-modality attention module, and the attention maps will

be further utilized as weights for the aggregated feature. Finally, the classifier is applied for AU detection.

AU detection, where the features extracted from the facial

landmarks guide the extraction of visual features through

an orthogonal regularization, thus the model is subject-

independent, as well it is generalizable to unseen subjects.

Note that AU textual descriptions provide rich AU se-

mantic information about facial area/position, action, mo-

tion direction/intensity, and relation of AUs, but there is no

reported work that utilizes such an auxiliary information for

AU detection.

Learning label relation from label semantic embedding

Several previous methods are proposed to explicitly model

the label relationship from the the label semantic repre-

sentation for multi-label classification. Chen et al.[2] pro-

posed to explicitly model the label dependencies through

a GCN from prior label representations for multi-label im-

age recognition. As a result, the proposed method can ef-

fectively alleviate over-fitting and over-smoothing issues.

You et al.[24] proposed a GCN based method to learn se-

mantic label embeddings for multi-label classification. The

semantic label embeddings explicitly model the label re-

lationships, and further used as a guidance for learning

cross-modality attention maps. As to AU detection, Li

et al.[10] proposed to incorporate a GCN based AU rela-

tionship model to the visual features for the representation

learning. To the best of our knowledge, there is no reported

method that exploits the AU semantic description for AU

detection so far.

[2] and [24] are the most related works, even though

they target on the task of image classification. Our method

differs significantly in following facts: (1) both [2] and

[24] rely on a manually constructed label relation graph,

while our method does not. Instead, our method automati-

cally learn the AU relations from the AU semantic descrip-

tions. (2) In contrast to [2][24] that utilize a graph neu-

ral network to model the label dependencies, our method

utilizes the attention mechanism at three different levels:

Intra-AU(Words level), Inter-AU(Sentence level) and Cross-

modality(Modality level), thus capturing the rich semantic

information for AU detection. The ablation studies in sec-

tion 4.4 has demonstrated that our method is move effective

than [2][24] in capturing the AU relations.

3. Proposed method

Fig 2 gives an overview of our proposed framework. It

consists of three parts: image feature encoder, Intra-AU and

Inter-AU attention-based encoders, and cross-modality at-

tention network. As shown in the top part of Fig 2, a CNN-

based backbone is used to encode the g iven image into

visual features V. The bottom part shows the textual fea-

ture encoding process. The Inter-AU attention and Intra-AU

attention encoders are Transformer-based encoders, which
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capture the intra-AU relations and inter-AU relations re-

spectively. The cross-modality attention network, followed

by a classifier, captures the cross-modality relations be-

tween visual features and textual features. In the follow-

ing, we describe the individual modules of our framework

as well as the loss functions.

3.1. Image Encoding

We first encode the given image I to the spatial visual

features V = {V1, . . . ,Vw×h},Vi ∈ R
dv with a backbone

model, where w × h is the size of feature, and dv is the

dimension of each feature channel in Vi.

3.2. AU Semantic Encoding

The overall AU semantic encoding contains both an

Intra-AU encoder and an Inter-AU encoder, where the Intra-

AU encoder is shared by words among AU description sen-

tence, and the Inter-AU encoder is shared by AU sentence

embeddings.

Input Embeddings The purpose of Intra-AU encoder is

to model the intra-relations among the words in AU se-

mantic description. The input to the Intra-AU encoder in-

cludes AU descriptions S = {S1, . . . , SNS
}, where NS is

the number of AU descriptions. For each AU description

Si, we use the WordPiece tokenizer [21] to split it into to-

kens {si,1, . . . , si,Ni
}, where Ni is the number of tokens for

each AU description. Apart from the token embeddings, we

also assign positional encoding psi,j to each word si,j . In

particular, for token si,j , its input representations wi,j is the

sum of its trainable word embedding, segment embedding,

and positional embedding:

wi,j = fLN

(
WordEmb(si,j) + SegEmb(j) + psi,j

)
(1)

where fLN(·) stands for layer normalization [1].

Intra-AU Encoder Following the embedding layers, we

apply the multi-layer transformer encoder to encode each

AU description Si. Like BERT [4], our Inter-AU encoder

is used to encode contextual information for tokens within

each sentence. Each layer of the Intra-AU encoder is the

same as the vanilla transformer encoder layer [20]. Let

W
l = (w1, · · · ,wNi

) be the encoded features at the l-th

transformer layer, W 0 being the input layer. The features at

the (l + 1)-th layer are obtained by applying a transformer

block defined as:

H
l+1 = f l

LN

(
W

l + f l
Self-Att(W

l)
)

(2)

W
l+1 = f l

LN

(
H

l+1 + f l
FF(H

l+1)
)

(3)

where fSelf-Att(·) is the multi-headed self-attention module

introduced in [1], which makes each token attend the other

tokens with attention weights. The feed-forward (FF) sub-

layer fFF(·) in Eq. 3 is further composed of two fully-

connected (FC) sub-layers: f l
FC2

(fGELU(f
l
FC1

(·))), where

fGELU represents the GeLU activation [9].

To obtain a fixed-length sentence representation for each

AU, we get the AU representation w
LIntra

i by computing

the mean of all outputs among each sentence: w
LIntra

i =
1

Ni

∑Ni

j w
Intra
j , where LIntra is the final layer of Intra-AU

encoder, Ni is the number of tokens in each AU sen-

tence description. After the Intra-AU encoding, for AU

descriptions {S1, . . . , SNS
}, we have a set of embeddings:

{wLIntra

1 , . . . ,wLIntra

NS
}.

Inter-AU Encoder The Inter-AU encoder is designed

to exchange information across multiple AU embeddings.

Like Intra-AU encoder, we also apply the multi-layer trans-

former network to encode the input embeddings. Note that,

the input to the Inter-AU encoder is the set of embeddings

from the Intra-AU encoder, not tokens. The final output of

Inter-AU encoder represents as {wLInter

1 , . . . ,wLInter

NS
}, where

LInter is the final layer of Inter-AU attention encoder, NS is

the number of AUs.

3.3. Cross­Modality Attention

From the AU semantic learning, we can obtain the

AU embeddings, which encodes information of both Intra-

/Inter-AU relation and area of interest. To fully utilize the

rich information encoded in AU semantic embedding, we

let the AU embeddings guide the generation of attention

maps through the cross-modality attention module, defined

as:

zik = ReLU
( VT

i w̄
LInter

k

||Vi|| · ||w̄
LInter

k ||

)
(4)

where k ∈ {1, 2, ..., Ns},i ∈ {1, 2, ..., w × h}, || · || rep-

resents the norm function, w̄LInter

k is the linear projection of

w
LInter

k from R
dw to R

dv , and Vi ∈ R
dv . We can obtain the

category-specific cross-modality attention map zik for AUk

at location i, which is further normalized to:

αi
k =

zik∑w×h

i=1
zik

(5)

The normalized cross-modality attention map can be further

utilized as weight for the aggregated feature, because the

high value in a specific location i of AUk can be interpreted

as the location i is more important than other locations for

recognizing AUk, thus the model needs to pay more atten-

tion to that location when detect AUk.

xk =
w×h∑

i=1

αi
kVi (6)
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where, xk ∈ R
dv is the final feature vector for AUk. From

this step, we can obtain Ns features for each input image.

3.4. AU detection

A classifier fC : Rdv → R
1 is then shared by the Ns

image features for estimating probability of AUs. A binary

cross-entropy (BCE) loss function is used as the final loss

function for AU recognition:

LBCE = −
1

N

N∑

i=1

Ns∑

k=1

(
yik × log(ŷik)+

(1− yik)× log(1− ŷik)
)

(7)

where N is the total number of training images, Ns is the

number of AU, yik and ŷik represent the ground truth label

and prediction for AUk in image i respectively.

4. Experiments

To evaluate our proposed method, we perform exper-

iments on three public benchmark datasets: BP4D[25],

DISFA[14] and BP4D+[27]. By comparing with the GCN

based methods[2][24], we validate the effectiveness of the

proposed Intra-AU and Inter-AU attention modules for au-

tomatically learning of the AU relations from AU semantic

description. We also demonstrate that AU semantic embed-

ding is beneficial for the discovery of more meaningful fa-

cial areas through visualization of the cross-modality atten-

tion maps.

4.1. Data

BP4D[25] is a widely used dataset for evaluating AU

detection performance. The dataset contains 328 2D and

3D videos collected from 41 subjects (23 females and 18

males) under eight different tasks. As mentioned in the

dataset, the most expressive 500 frames (around 20 sec-

onds) are manually selected and labeled for AU occurrence

from each one-minute long sequence, resulting in a dataset

of around 140,000 AU-coded frames. For a fair compari-

son with the state-of-the-art methods, a three-fold subject-

exclusive cross validation is performed on 12 AUs.

DISFA[14] is another benchmark dataset for AU detec-

tion, which contains videos from left view and right view of

27 subjects (12 females, 15 males). 12 AUs are labeled with

AU intensity from 0 to 5, resulting in around 130,000 AU-

coded images. Following the experimental setting in [10], 8

of 12 AUs with intensity greater than 1 from the left camera

are used. F1-score is reported based on subject-exclusive

3-fold cross-validation.

BP4D+[27] is a multimodal spontaneous emotion

dataset, where high-resolution 3D dynamic model, high-

resolution 2D video,thermal (infrared) image and physio-

logical data were acquired from 140 subjects. There are

58 males and 82 females, with ages ranging from 18 to 66

years old. Each subject experienced 10 tasks corresponding

to 10 different emotion categories, and the most facially-

expressive 20 seconds from four tasks were AU-coded from

all 140 subjects, resulting in a database contains around

192,000 AU-coded frames. Following a similar setting in

BP4D dataset, 12 AUs are selected and performance of 3-

fold cross-validation is reported.

4.2. Implementation details

All the face images are aligned and cropped to the size of

256×256 using affine transformation based on the provided

facial landmarks, randomly cropped to 224× 224 for train-

ing, and center-cropping for testing. Random horizontal flip

is also applied during training. To analyze the impact of our

proposed method, we use the ResNet-18[8] architecture as

the backbone and baseline.

Based on the FACS manual, we have summarized 15

AU semantic descriptions (i.e., AU1, AU2, AU4, AU6, AU7,

AU9, AU10, AU12, AU14, AU15, AU17, AU23, AU24,

AU25, AU26). The details are listed in the supplemental

material.

The Intra-AU encoder has the same configuration as

BERTLarge. More specifically, we set the number of lay-

ers LIntra to 24, the hidden size to 1,024, and the number

of heads to 16. The parameter of the Intra-AU encoder is

initialized with pre-trained parameter1, and freezed during

training. For the Inter-AU encoder, we build upon the en-

coder block as used in transformer[20]. Note that the input

here is the sentence embedding, rather than tokens. We set

the number of layers LInter to 2, the hidden size to 1024, and

the number of heads to 6. The size of final AU semantic

embedding is 768, which is then projected to 512 through a

linear function, and the visual features from ResNet-18 we

used is 7× 7× 512.

All the modules, except Intra-AU encoders, are ran-

domly initialized. We use an Adam optimizer with initial

learning rate of 0.001, and the learning rate is decayed after

each epoch with momentum 0.85. The batch size is 100,

and we train the model for 50 epochs with early stopping.

We implement our method with the Pytorch [16] framework

and perform training and testing on the NVIDIA GeForce

2080Ti GPU.

To evaluate the performance, we use the F1-score for

comparison study with the state of the arts. F1-score is de-

fined as the harmonic mean of the precision and recall. As

the distribution of AU labels are unbalanced, F1-score is a

preferable metric for performance evaluation.

4.3. Comparison with related methods

We compare our method to alternative methods, includ-

ing Liner SVM (LSVM) [6], Joint Patch and Multi-label

1https://github.com/UKPLab/sentence-transformers

10486



Table 1. F1 scores in terms of 12 AUs are reported for the proposed method and the state-of-the-art methods on the BP4D database. Bold

numbers indicate the best performance; bracketed numbers indicate the second best.

Method AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 Avg

LSVM [6] 23.2 22.8 23.1 27.2 47.1 77.2 63.7 [64.3] 18.4 33.0 19.4 20.7 35.3

JPML[28] 32.6 25.6 37.4 42.3. 50.5 72.2 74.1 65.7 38.1 40.0 30.4 42.3 45.9

DRML[30] 36.4 41.8 43.0 55.0 67.0 66.3 65.8 54.1 33.2 48.0 31.7 30.0 48.3

EAC-net[11] 39.0 35.2 48.6 76.1 72.9 81.9 86.2 58.8 37.5 59.1 35.9 35.8 55.9

DSIN [3] [51.7] 40.4 56.0 76.1 73.5 79.9 85.4 62.7 37.3 [62.9] 38.8 41.6 58.9

JAA [19] 47.2 44.0 54.9 [77.5] 74.6. [84.0] 86.9 61.9 43.6 60.3 42.7 41.9 60.0

OF-Net [22] 50.8 [45.3] [56.6] 75.9 75.9 80.9 88.4 63.4 41.6 60.6 39.1 37.8 59.7

LP-Net [15] 43.4 38.0 54.2 77.1 [76.7] 83.8 87.2 63.3 45.3 60.5 48.1 54.2 61.0

SRERL [10] 46.9 [45.3] 55.6 77.1 78.4 83.5 [87.6] 63.9 [52.2] 63.9 [47.1] [53.3] [62.9]

Ours (SEV-Net) 58.2 50.4 58.3 81.9 73.9 87.8 87.5 61.6 52.6 62.2 44.6 47.6 63.9

Table 2. F1 scores in terms of 8 AUs are reported for the proposed method and the state-of-the-art methods on DISFA dataset. Bold

numbers indicate the best performance; bracketed numbers indicate the second best.

Method AU1 AU2 AU4 AU6 AU9 AU12 AU25 AU26 Avg

LSVM[6] 10.8 10.0 21.8 15.7 11.5 70.4 12.0 22.1 21.8

DRML[30] 17.3 17.7 37.4 29.0 10.7 37.7 38.5 20.1 26.7

EAC-net[11] 41.5 26.4 66.4 [50.7] 80.5 89.3 88.9 15.6 48.5

DSIN[3] 42.4 39.0 [68.4] 28.6 46.8 70.8 90.4 42.2 53.6

JAA[19] 43.7 46.2 56.0 41.4 44.7 69.6 88.3 58.4 56.0

OF-Net[22] 30.9 34.7 63.9 44.5 31.9 [78.3] 84.7 [60.5] 53.7

LP-Net[15] 29.9 24.7 72.7 46.8 [49.6] 72.9 [93.8] 65.0 [56.9]

SRERL [10] [45.7] [47.8] 59.6 47.1 45.6 73.5 84.3 43.6 55.9

Ours (SEV-Net) 55.3 53.1 61.5 53.6 38.2 71.6 95.7 41.5 58.8

(JPML) [28], Deep Region and Multi-label (DRML) [30],

Enhancing and Cropping Network (EAC-net)[11], Deep

Structure Inference Network (DSIN) [3], Joint AU Detec-

tion and Face Alignment (JAA) [19],Optical Flow network

(OF-Net) [22], Local relationship learning with Person-

specific shape regularization (LP-Net) [15], and Seman-

tic Relationships Embedded Representation Learning ( SR-

ERL) [10].

Table 1 shows the results of different methods on the

BP4D database. We can see that our method achieves the

best accuracy in recognizing AU1, AU2, AU4, AU6, AU10,

and AU15, and outperforms all of the SOTA methods. Com-

pared with the patch or region-based methods: JPML and

DRML, our method achieves 18.0% and 15.6% higher per-

formance on BP4D database. Compared with JAA and LP-

Net, which used facial landmarks as a joint task or regu-

larization for AU detection, our method still shows 3.9%

and 2.9% improvement in terms of F1-score on the BP4D

database. SRERL is the previous state-of-the-art method,

and related to our method in terms of the use of AU relation-

ships. But our method is significantly different with the SR-

ERL: First, SRERL only use the visual modality, while our

method not only use both the visual and textual modalities,

but also consider the correlation through the cross-modality

attention network; Second, a manually constructed AU re-

lation graph from label distribution is needed for the GCN

module in SRERL; while our model does not rely on the

pre-defined AU relation graph, instead, it will automatically

learn the AU relations from the AU semantic description

through the Intra-AU and Inter-AU attention modules. With

regard to the performance, our method is 1.0% higher in

terms of F1-score than the SRERL.

The performance comparison in terms of 8 AUs on the

DISFA database are reported in Table 2. As we can see, our

method achieves 58.8% F1-score, outperforming all of the

related works. Our method shows 32.1%, 2.8% and 1.9%

improvement than DRML, JAA and LP-Net respectively.

As compared to the related work of SRERL, our method

shows 2.9% improvement.

Our method is also evaluated on the BP4D+ database,

which contains more AU-labeled frames from more sub-

jects, and the results are shown in Table 3. Except us-

ing the reported results from [23], we also report the re-

sults of ML-GCN[2] and MS-CAM[24] based on our own

implementation. Note that both ML-GCN and MS-CAM

are not originally designed for AU detection, we extend
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Table 3. F1 scores in terms of 12 AUs are reported for the proposed method and the state-of-the-art methods on the BP4D+ database. Bold

numbers indicate the best performance; bracketed numbers indicate the second best; * indicate the result from our own implementation.

Method AU1 AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU24 Avg

FACS2D-Net[23] 34.6 32.6 [44.1] 82.1 85.3 87.6 87.2 65.9 44.0 44.3 44.8 [29.6] 56.8

FACS3D-Net[23] [43.0] [38.1] 49.9 82.3 85.1 87.2 87.5 66.0 48.4 [47.4] 50.0 31.9 59.7

ML-GCN[2]* 40.2 36.9 32.5 84.8 [88.9] 89.6 89.3 81.2 [53.3] 43.1 55.9 28.3 60.3

MS-CAM[24]* 38.3 37.6 25.0 [85.0] 90.9 90.9 [89.0] [81.5] 60.9 40.6 [58.2] 28.0 [60.5]

ResNet18 34.6 34.6 33.1 84.9 87.0 [90.0] 88.9 80.4 [53.3] 38.7 54.7 13.4 57.8

Ours (SEV-Net) 47.9 40.8 31.2 86.9 87.5 89.7 88.9 82.6 39.9 55.6 59.4 27.1 61.5

and re-implement the two methods during our experiments,

more details will be described in Section 4.4. Our method

achieves 61.5%, the highest F1-score when compared with

related methods. It is worth noting that although FACS3D-

Net[23] detects the AUs from the image sequence, our

method still shows 1.8% improvement.

4.4. Ablation study

Self-attention based vs GCN based semantic encoding:

ML-GCN[2] and MS-CMA[24] are the two recently pro-

posed methods that leverage the label semantic embedding

for multi-label classification. In ML-GCN[2], the authors

proposed to explicitly model the label dependencies through

a GCN from prior label representations for multi-label im-

age recognition. MS-CAM[24] is an extension of the ML-

GCN, which not only explicitly models the label relation-

ships, but also adds a cross-modality attention module be-

tween the visual features and label embeddings. It is worth

noting that a manually constructed graph (label relation) is

necessary for both ML-GCN and MS-CAM. Although they

are not originally designed for AU detection, the framework

can be extended for AU detection. To demonstrate the ef-

fectiveness of the proposed Intra-AU and Inter-AU atten-

tion encoding module of our proposed method, we extend

and re-implement the ML-GCN and MS-CAM methods for

comparison. As a pre-defined graph is needed for the GCN

module in both the ML-GCN and MS-CAM, we manually

construct such a graph that starts from computing the Pear-

son correlation coefficient (PCC) between each pair of the

AUs in the dataset, and then converts the AU relationship

into positive and negative connections based on two thresh-

olds (we use 0.2 and -0.03 for positive and negative thresh-

olds respectively in our experiment, the same setting can be

found in [10] as well).

The result is reported in Fig.3. As we can see, ML-GCN

clearly shows improved performance than the ResNet-18

baseline in three datasets, demonstrating the effectiveness

of adding the GCN modeled label relations for detection.

Compared to the ML-GCN, MS-CAM achieves even bet-

ter performance. Except the extra cross-modality attention

module, MS-CAM is similar to ML-GCN in terms of the

GCN based label relation encoding, so the improved perfor-

mance can be used to demonstrate that the cross-modality

attention mechanism is beneficial for the combination of se-

mantic embedding and visual features.

Our method also contains a cross-modality attention

module, however, it is significantly different with MS-

CAM in how to encoder the semantic information: our

method does not rely on the manually constructed AU re-

lation graph, instead, it automatically learns the AU relation

from the AU semantic descriptions through our Intra-AU

and Inter-AU attention modules. The highest performance

in three datasets demonstrates the effectiveness of the self-

attention based AU semantic encoding.

40

45

50

55

60

65

BP4D DISFA BP4D+

ResNet-18 ML-GCN* MS-CAM* Ours

Figure 3. The comparison between Resnet-18, ML-GCN*[2], MS-

CMA*[24], and our method on three datasets. * indicates the re-

sult from our own implementation.

Visualization of the cross-modality attention maps We

visualize the learned cross-modality attention maps for sev-

eral AUs to illustrate the ability of capturing meaningful

regions for AU detection. We also compare with the at-

tention maps learned in MS-CAM [24] in Fig.4. We can

observe that our proposed method concentrate more on se-

mantic regions, thus it is capable of exploiting more dis-

criminative and meaningful information. For example, both
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Figure 4. Visualization of the learned cross-modality attention maps for several AUs (as examples) of different subjects on BP4D, DISFA,

and BP4D+ datasets, respectively. Each row shows the results of the same method; the first and third rows show the attention maps

obtained through MS-CAM [24], and the second and the last rows represent the attention maps obtained by our method. Attention maps

are visualized using heat-map and projected on the original images as well.

AU24: Lip Pressor (third column) and AU12:Lip Corner

Puller (sixth column) occur around the lip area, our model

shows a much better focus on the specific area than the cor-

responding attention maps in MS-CAM. As to the reason

for the difference, we suspect that MS-CAM relies on the

manually constructed AU relation graph, which is usually

constructed using a statistic model from the AU label dis-

tribution; however the distribution is likely to be biased due

to only part of the videos being selected and AU labeled

(for example only 30% frames are AU labeled in the BP4D

dataset). On the other hand, the AU relation is clearly il-

lustrated in the AU semantic description. Our model does

not rely on the statistic metric based AU relation graph, in-

stead it will automatically learn the AU relations through

Intra-AU and Inter-AU attention modules, thus resulting in

a better result.

5. Conclusion

In this paper, we have proposed a novel framework by

combining the visual features and AU semantic embeddings

for the task of AU detection. There exist a number of works

that have applied a variety of auxiliary information (such

as facial landmarks, relation among AUs and expressions,

web facial images, etc.) for AU detection. However, there

is no AU semantic information from the textual domain that

has ever been explored. Our new framework exploits the

AU semantic description, which is believed to have much

more rich information than the traditional binary AU labels,

thus becomes the first of this kind for improving the perfor-

mance of AU detection. In order to make full use of AU

semantic information, we propose two new modules (so-

called Intra-AU and Inter-AU attention modules) to capture

the AU semantic embedding, which is further combined

with the visual features for computing the cross-modality

attention maps. Our proposed method is evaluated on three

widely used facial expression databases, and has achieved

superior performance over the peer SOTA methods.
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