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Abstract

Blind face restoration (BFR) from severely degraded face

images in the wild is a very challenging problem. Due to

the high illness of the problem and the complex unknown

degradation, directly training a deep neural network (DNN)

usually cannot lead to acceptable results. Existing genera-

tive adversarial network (GAN) based methods can produce

better results but tend to generate over-smoothed restora-

tions. In this work, we propose a new method by first learn-

ing a GAN for high-quality face image generation and em-

bedding it into a U-shaped DNN as a prior decoder, then

fine-tuning the GAN prior embedded DNN with a set of

synthesized low-quality face images. The GAN blocks are

designed to ensure that the latent code and noise input to

the GAN can be respectively generated from the deep and

shallow features of the DNN, controlling the global face

structure, local face details and background of the recon-

structed image. The proposed GAN prior embedded net-

work (GPEN) is easy-to-implement, and it can generate

visually photo-realistic results. Our experiments demon-

strated that the proposed GPEN achieves significantly su-

perior results to state-of-the-art BFR methods both quan-

titatively and qualitatively, especially for the restoration of

severely degraded face images in the wild. The source code

and models can be found at https://github.com/

yangxy/GPEN .

1. Introduction

Face images are among the most popular types of im-

ages in our daily life, while face images are often degraded

due to the many factors such as low resolution, blur, noise,

compression, etc., or the combination of them. Face image

restoration has been attracting significant attentions, aiming

at reproducing a clear and realistic face image from the de-

graded input. Traditional face image restoration methods

∗This work is partially supported by the Hong Kong RGC RIF grant

(R5001-18).

[50, 3, 2, 36] usually solve an inverse problem based on the

degradation model and handcrafted priors, which demon-

strate limited performance in practice. Recently, deep neu-

ral networks (DNNs) have shown superior results in a vari-

ety of computer vision tasks [24, 48, 13, 25, 30], and many

DNN based face restoration methods [49, 29, 16] have also

been developed and they have demonstrated much better

performance than traditional ones.

Though much progress has been made for face restora-

tion, blind face restoration (BFR) remains a challenging

research problem because of the unknown and complex

degradation of low quality (LQ) face images in the wild.

In order to recover a high-quality (HQ) face image with

photo-realistic textures from an LQ face image, a number of

BFR methods have been proposed by resorting to the spatial

transformer networks [49], exemplar images [29, 28, 9], 3D

facial priors [16], and facial component dictionaries [27].

Yang et al. [47] proposed a collaborative suppression and

replenishment (CSR) approach to progressively replenish

facial details. These methods exhibit impressive results on

artificially degraded faces; however, they fail to tackle real-

world LQ face images. The conditional generative adver-

sarial network (cGAN) based methods such as Pix2Pix [18]

and Pix2PixHD [43] learn a direct mapping from input im-

age to output image. These methods achieve more realistic

results but tend to over-smooth the images (see Figures 5

and 7), which is commonly blamed to the high illness of

real-world BFR tasks.

With the rapid advancement of GAN techniques [21, 22],

recently some methods have been proposed to reconstruct

faces from extremely low resolution inputs [12, 34, 38].

Richardson et al. [38] employed an encoder network to

generate a series of style vectors before feeding them into a

pre-trained generator, achieving a generic image-to-image

translation framework. However, such methods can only

work on non-blind image super-resolution problems. Fur-

thermore, they kept the pre-trained GAN unchanged in

training for the consistency and convenience of face ma-

nipulations. This however leads to unstable quality of re-

stored faces when dealing with real-world LQ face images
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with complex background, because it is hard to accurately

project a face image with limited resolution to a desired la-

tent code (e.g., a vector of size 512 in StyleGAN [21, 22]).

In this work, we revisit the problem of BFR and target at

restoring HQ faces from degraded face observations in the

wild. Our idea is to seamlessly integrate the advantages of

GAN and DNN. We first pre-train a GAN for HQ face im-

age generation and embed it into a DNN as a decoder prior

for face restoration. The GAN prior embedded DNN is then

fine-tuned by a set of synthesized LQ-HQ face image pairs,

during which the DNN learns to map the input degraded im-

age to a desired latent space so that the GAN prior network

can reproduce the desired HQ face images. We carefully

design the GAN blocks to make them well suited for a U-

shaped DNN, where the deep features are used to generate

the latent code for global face reproduction, while the shal-

low features are used as noise to generate local face details

and keep the image background. In this way, our learned

model can reconstruct HQ faces with photo-realistic details

from even severely degraded face images in the wild, avoid-

ing over-smoothed results caused by the high illness of the

BFR problem. Figure 1 shows an example. One can see that

our model reconstructs the face images of those great scien-

tists with clear details from the old photo taken in 1927.

The main contributions of this work are summarized as

follows:

• We learn and embed a GAN prior network into a DNN,

and fine-tune the GAN embedded DNN for effective

BFR in the wild. It is worthy to note that previous

works only transfer the pre-trained GAN into a net-

work without fine-tuning.

• The GAN blocks are designed so that they can be eas-

ily embedded into a U-shaped DNN for fine-tuning.

The latent code and noise input of the GAN are respec-

tively generated from the deep and shallow features of

the DNN to reconstruct the global structure, local face

details and background of the image accordingly.

• Our model sets new state-of-the-art in BFR. It is capa-

ble of tackling severely degraded face images taken in

real-world scenarios.

2. Related Work

Face Image Restoration. As a specific but important

branch of image restoration, face image restoration has been

widely studied for many years. In the early stage, Zhang

et al. [50] presented a joint blind image restoration and

recognition method by using sparse representation to han-

dle face recognition from LQ images. Nishiyama et al. [36]

proposed to improve the recognition performance of blurry

faces by using a pre-defined set of blur kernels to restore

them. With the unprecedented success of DNNs in solv-

ing image restoration tasks such as denoising [13], deblur-

Figure 1: Restored face images from the group photo taken

in the Solvay Conference, 1927. Best viewed by zooming

to 200% in the screen.

ring [24, 40], inpainting [48, 31] and image super-resolution

[25, 30], many DNN based face image restoration methods

have also been proposed [7, 23, 33], which advance the tra-

ditional methods by a large margin. Considering the fact

that facial images have specific structures, it is interesting

to investigate whether we can restore a clear face image

from severely degraded ones without knowing the degra-

dation model. The so-called blind face restoration (BFR)

problem has been attracting intensive research attentions in

recent years [29, 9, 27, 47], while it is still a challenging

task due to the complex image degradations in the wild.

Huang et al. [17] presented a wavelet-based approach

that can ultra-resolve a very low-resolution (LR) face im-

age. Chen et al. [7] learned the facial geometry prior to

recover the high-resolution (HR) faces. Ma et al. [33]

performed face super-resolution with iterative collaboration

between two recurrent networks on facial image recovery

and landmark estimation, respectively. Li et al. [29] used a

guiding image and a wrapper subnetwork to cope with ap-

pearance variations between the LR input and the HR guid-

ing image. This work was further extended by using an

unconstrained HR face image [9], multi-exemplar images

[28], and multi-scale component dictionaries [27]. Hu et

al. [16] explicitly incorporated 3D facial priors to grasp the

sharp facial structures. A collaborative suppression and re-

plenishment approach was proposed by Yang et al. [47] to

progressively replenish facial details. Existing works have

generated impressive results on artificially degraded faces,

but often failed in real-world scenarios due to the complex

unknown degradation. Furthermore, their performance de-

pends heavily on the accurate facial prior knowledge which

however is hard to obtain from severely degraded face im-

ages in the wild, leading to unpredictable failures.

Generative Adversarial Network (GAN). Since the
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seminal work by Goodfellow et al. [11], great progress has

been accomplished on learning GAN models [20, 4, 21, 22].

GAN has been widely used for various computer vision

applications due to its powerful ability to generate photo-

realistic images. Some typical applications include image

inpainting [48], super-resolution [25, 44], image coloriza-

tion [18, 42], texture synthesis [41], etc. Particularly, to

provide more user controls for image synthesis, conditional

GAN (cGAN) has been proposed [35]. By feeding the gen-

erator with different conditional information [37, 18, 52],

cGANs succeed in handling various image-to-image trans-

lation problems. Isola et al. [18] showed that the condi-

tional adversarial networks can be used as a general-purpose

solution to image-to-image translation problems. Many fol-

lowing works, such as unsupervised learning [52], disentan-

gled learning [26], few-shot learning [32], high resolution

image synthesis [43], multi-domain translation [8], multi-

modal translation [53], have been proposed to extend cGAN

to different scenarios. The cGAN learns a direct mapping

from the input domain to the output one. Unfortunately, the

generated results by cGANs are usually over-smoothed in

highly ill-posed tasks such as BFR.

GAN Prior for Image Generation. Deep generative

models are popular in solving many inverse problems, e.g.

deblurring [24], image inpainting [48], phase retrieval [14],

etc. Recently, many works have been developed for the task

of GAN inversion, i.e., reversing a given image back to a

latent code with a pre-trained GAN model. Existing meth-

ods either optimize the latent code [1] or learn an extra en-

coder to project the image space back to the latent space

[12, 38]. Abdal et al. [1] embedded images into an ex-

tended latent space of StyleGAN, allowing further semantic

image editing operations. Gu et al. [12] employed multiple

latent codes to generate multiple feature maps to output the

final image. These optimization-based methods, however,

are slow and improper for real-world applications. To ad-

dress this issue, Pixel2Style2Pixel (pSp) [38] embeds real

images into extended latent space without additional op-

timization, which can be used in a wide range of image-

to-image translation tasks. Menon et al. [34] proposed a

self-supervised approach that traverses the HR natural im-

age manifold, searching for images that can downscale to

the original LR image. GAN inversion is an important step

for applying GANs to real-world applications. However, it

is difficult to perfectly project the image space back to the

latent space. Moreover, it is hard, if not possible, to invert a

blindly degraded face into a latent space.

Some works were proposed to transfer GAN priors.

Wang et al. [46] applied domain adaptation to image gener-

ation with GANs. They further proposed a novel knowledge

transfer method for generative models by using a knowl-

edge mining network [45]. Frégier and Gouray [10] intro-

duced a novel approach for transfer learning with GAN ar-
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Figure 2: Illustration of the motivation and framework of

our GAN prior embedded network (GPEN).

chitecture. These works target at transferring the knowl-

edge from the source domain to different target domains,

while in our work, the source and target domains are the

same. We embed the GAN prior learned for face generation

into a DNN for face restoration, and jointly fine-tune the

GAN prior network with the DNN so that the latent code

and noise input can be well generated from the degraded

face image at different network layers.

3. Proposed Method

3.1. Motivation and Framework

BFR is a typical ill-posed inverse problem. Denote by X

the space of degraded LQ faces, and by Y the space of orig-

inal HQ face images. Given an input LQ face image x ∈ X ,

BFR aims to find its corresponding clear face image y ∈ Y .

Most of the DNN based methods learn a mapping function

Φ to achieve this goal, i.e., Φ(x) → y. However, this is

a one-to-many inverse problem, and there are many possi-

ble face images (e.g., y1,y2, ...,yn) in Y that can match

to the input x. Existing methods [5, 29, 9] usually train

DNNs to perform mapping between x and y using some

pixel-wise loss functions. As a result, as we illustrated in

Figure 2, the final solution Φ(x) tends to be the mean of

those HQ faces, which is over-smoothed and loses details.

This coincides with the visual perception global-first the-

ory [6]. The cGAN methods [18, 43] can partially dilute

this issue by adversarial training to reduce the uncertainty

in mapping. However, when the degradation is severe, the

problem remains and cGANs can hardly generate clear face

images with realistic textures and details (see Figure 5 for

example).

Different from previous methods [5, 29, 9, 43, 47], we

first train a GAN prior network, and then embed it into a

DNN as decoder for HQ face image restoration. We call

our method GAN prior embedded network (GPEN). As il-

lustrated in Figure 2, the first part of our GPEN is a CNN

encoder, which learns to map the input degraded image x

to a desired latent code z in the latent space Z of the GAN.

The GAN prior network can then reproduce the desired HQ

face image via G(z) → y, where G refers to the learned

generator of GAN. The generation process is basically a

one-to-one mapping, largely alleviating the uncertainty of

one-to-many mapping in previous methods. It should be
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Figure 3: The architecture of GPEN. (a) The GAN prior network; (b) detailed structures of a GAN block; and (c) the full

network architecture of GPEN. The definition of “Mod” and “Demod” can be found in [22].

noted that the GAN inversion methods [12, 34, 38] share

a similar idea with our GPEN; however, they keep the pre-

trained GANs unchanged for consistent and convenient face

manipulations. While in GPEN, we carefully design and

pre-train the GAN blocks and fine-tune the GAN priors for

effective BFR. The architectures of GPEN and GAN blocks

are shown in Figure 3 and will be explained in detail in the

following sections.

3.2. Network Architecture

The GAN prior network. U-Net [39] has been suc-

cessfully and widely used in many image restoration tasks

[43, 13] and demonstrated its effectiveness in preserving

image details. Therefore, our GPEN overall follows a U-

shaped encoder-decoder architecture (see Figure 3(c)). Ac-

cordingly, the GAN prior network should be designed to

meet two requirements: 1) it is capable of generating HQ

face images; and 2) it can be readily embedded into the U-

shaped GPEN as a decoder. Inspired by the state-of-the-

art GAN architectures, e.g., StyleGAN [21, 22], we use a

mapping network to project latent code z into a less entan-

gled space w ∈ W , as illustrated in Figure 3(a). The in-

termediate code w is then broadcasted to each GAN block.

Since the GAN prior network will be embedded into a U-

shaped DNN for finetuning, we need to leave room for the

skipped feature maps extracted by the encoder of the U-

shaped DNN. We thus provide additional noise inputs to

each GAN block.

For the structure of GAN block, there are several op-

tions. In this work, we adopt the architecture in StyleGAN

v2 (see Figure 3(b)) due to its high capability to gener-

ate HQ images. (Alternative GAN architectures such as

StyleGAN v1 [21], PGGAN [20] and BigGAN [4] can also

be easily adopted into our GPEN.) The number of GAN

blocks is equal to the number of skipped feature maps ex-

tracted in the U-shaped DNN (and the number of noise in-

puts), which is related to the resolution of input face image.

StyleGAN requires two different noise inputs in each GAN

block. To enable the GAN prior network to be readily em-

bedded into the U-shaped GPEN, different from StyleGAN,

the noise inputs are reused at the same spatial resolution for

all GAN blocks. Furthermore, the noise inputs are concate-

nated rather than added to the convolutions in StyleGAN.

We empirically found that this can bring more details in the

restored face image.

Full network architecture. Once the GAN prior net-

work is trained by using some dataset (e.g., the FFHQ [21]

dataset), we embed it into the U-shaped DNN as a decoder,

as shown in Figure 3(c). The latent code z and the noise in-

puts to the GAN network are replaced by the output of the

fully-connected layer (i.e., deeper features) and shallower

layers of the encoder of the DNN, respectively, which will

control the reconstruction of global face structure, local face

details, as well as the background of face image. Since the

proposed model is not fully convolutional, LQ face images

are first resized to the desired resolution (e.g., 10242) using

simple bilinear interpolator before being input to the GPEN.

After embedding, the whole GPEN will be fine-tuned so

that the encoder part and decoder part can learn to adapt to

each other.

3.3. Training Strategy

We first pre-train the GAN prior network using a dataset

of HQ face images following the training strategies of Style-

GAN [21, 22]. The pre-trained GAN model is embedded

into the proposed GPEN, and we fine-tune the whole net-

work using a set of synthesized LQ-HQ face image pairs

(the image synthesis process will be given in Section 4.2).

To fine-tune the GPEN model, we adopt three loss func-

tions: the adversarial loss LA, the content loss LC , and the
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feature matching loss LF . LA is inherited from the GAN

prior network:

LA = min
G

max
D

E(X) log

(

1+ exp
(

−D
(

G(X̃)
)

)

)

, (1)

where X and X̃ denote the ground-truth HQ image and the

degraded LQ one, G is the generator during training, and

D is the discriminator. LC is defined as the L1-norm dis-

tance between the final results of the generator and the cor-

responding ground-truth images. LF is similar to the per-

ceptual loss [19] but it is based on the discriminator rather

than the pre-trained VGG network to fit our task. It is for-

mulated as follows:

LF = min
G

E(X)

(

∑T

i=0

∥

∥Di(X)−Di(G(X̃))
∥

∥

2

)

, (2)

where T is the total number of intermediate layers used for

feature extraction. Di(X) is the extracted feature at the i-th

layer of discriminator D.

The final loss L is as follows:

L = LA + αLC + βLF , (3)

where α and β are balancing parameters. The content loss

LC enforces the fine features and preserves the original

color information. By introducing the feature matching loss

LF on the discriminator, the adversarial loss LA can be bet-

ter balanced to recover more realistic face images with vivid

details. In all the following experiments, we empirically set

α = 1 and β = 0.02.

4. Experiments

4.1. Datasets and Evaluation Metric

The FFHQ dataset [21], which contains 70, 000 HQ face

images of resolution 10242, is used to train our GPEN

model. We first use it to train the GAN prior network,

and then synthesize LQ images from it to fine-tune the

whole GPEN. To evaluate our model, we use the CelebA-

HQ dataset [20] to simulate LQ face images to quantita-

tively compare GPEN with other state-of-the-art methods.

We also collet 1, 000 real-world LQ faces (will be made

publicly available) from internet to qualitatively evaluate

the performance of our model in the wild. In the quanti-

tative evaluation, the Peak Signal-to-Noise Ratio (PSNR),

the Fréchet Inception Distances (FID) [15] and the Learned

Perceptual Image Patch Similarity (LPIPS) [51] indices are

used. It is worth mentioning that all these indices can only

be used as references for evaluation because they cannot

truly reflect the performance of a BFR method, especially

for BFR in the wild.

4.2. Implementation Details

We first train the GAN prior network using the FFHQ

dataset with similar settings to StyleGAN [21, 22]. The pre-

trained GAN prior network is embedded into the GPEN to

perform fine-tuning. To build LQ-HQ image pairs for fine-

tuning, we synthesize degraded faces from the HQ images

in FFHQ using the following degradation model:

Id = ((I ⊗ k) ↓s +nσ)JPEGq
, (4)

where I , k, nσ , Id are respectively the input face image,

the blur kernel, the Gaussian noise with standard deviation

σ and the degraded image. ⊗, ↓s, JPEGq respectively de-

note the two-dimensional convolution, the standard s-fold

downsampler and the JPEG compression operator with a

quality factor q.

The above degradation model has been used in previous

methods [29, 27]. In our implementation, for each image

the blur kernel k is randomly selected from a set of blurring

models, including Gaussian blur and motion blur with vary-

ing kernel sizes. The additive Gaussian noise nσ is sam-

pled channel-wise from a normal distribution, and σ is cho-

sen from [0, 25]. The value of s is randomly and uniformly

sampled from [10, 200] (i.e., up to 200 times downscaling)

and q is randomly and uniformly sampled from [5, 50] (i.e.,

up to 95% JPEG compression) per image. By using those

severely degraded images to fine-tune the model, the en-

coder part of our GPEN can learn to generate suitable la-

tent code and noise inputs to the GAN prior decoder net-

work, which is updated simultaneously to tackle severely

degraded faces in real-world scenarios.

During model updating, we adopt the Adam optimizer

with a batch size of 1. The learning rate (LR) varies for

different parts of GPEN, including the encoder, the de-

coder and the discriminator. In our implementation, we

let LRencoder = 0.002, and set LRencoder : LRdecoder :
LRdiscriminator = 100 : 10 : 1. It should be noted that the

discriminator part will be removed in the testing stage.

4.3. Ablation Study

To better understand the roles of different components of

GPEN and the training strategy, in this section we conduct

an ablation study by introducing some variants of GPEN

and comparing their BFR performance. The first variant

is denoted by GPEN-w/o-ft, i.e., the embedded GAN prior

network is kept unchanged in the fine-tuning process. The

second variant is denoted by GPEN-w/o-noise, which refers

to the GPEN model without noise inputs. The third variant

is denoted by GPEN-noise-add, i.e., that the noise inputs are

added rather than concatenated to the convolutions.

We perform BFR on the CelebA-HQ dataset to evaluate

GPEN and its three variants. The LQ images are synthe-

sized by using the degradation model in Eq. (4) and the
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(a) (b) (c) (d) (e) (f)

Figure 4: Comparisons of our variants BFR. (a) LQ input; (b) GPEN-w/o-ft; (c) GPEN-w/o-noise; (d) GPEN-noise-add; (e)

GPEN; (f) Ground truth.

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 5: Blind face restoration results on synthsized degraded faces. (a) Degraded faces; (b) Super-FAN [5]; (c) GFRNet

[29]; (d) GWAInet [9]; (e) Pix2PixHD [43]; (f) DFDNet [27]; (g) HiFaceGAN [47]; (h) GPEN; (i) Ground truth.

Table 1: Comparison (PSNR, FID and LPIPS) of different

variants of GPEN.

Method PSNR↑ FID↓ LPIPS↓

GPEN-w/o-ft 12.55 92.71 0.653

GPEN-w/o-noise 13.30 95.62 0.709

GPEN-noise-add 20.71 34.26 0.359

GPEN 20.80 31.72 0.346

same set of parameters used in Section 4.2. Table 1 lists

the PSNR, FID and LPIPS results. One can see that GPEN

achieves better quantitative measures than its variants. Fig-

ure 4 shows the BSR results of the networks on an image.

We can see that GPEN-w/o-ft can generate clean HQ face

image; however, the appearance of the face is rather differ-

ent from the ground-truth, and the background of the image

is totally different. This is because without fine-tuning the

GAN prior, it is difficult to generate the desired latent code

into the latent space Z , which coincides with the findings in

many GAN inversion works [1, 38]. By discarding the noise

input, the result of GPEN-w/o-noise is blurrier than GPEN-

w/o-ft, and there are some artifact generated in the bound-

ary of the image. This implies that the noise input plays an

import role in synthesizing localize details. GPEN-noise-

add achieves comparable result to GPEN but with slightly

less facial details, while it generates some false details in

the background of the image. Overall, GPEN shows supe-

rior performance to its variants, demonstrating the effective-

ness of concatenated U-shaped architecture and our training

strategy for the BFR tasks.

Table 2: Comparison (PSNR, FID and LPIPS) of different

BFR methods. ∗

Method PSNR↑ FID↓ LPIPS↓

Pix2PixHD [43] 20.45 76.89 0.494

Super-FAN [5] 21.56 136.83 0.616

GFRNet [29] 21.70 134.92 0.597

GWAInet [9] 19.84 135.84 0.569

HiFaceGAN [47] 21.33 56.67 0.392

GPEN 20.80 31.72 0.346

4.4. Experiments on Synthetic Images

To quantitatively compare GPEN with other state-of-

the-arts, we first perform experiments on synthetic images.

Considering that many face restoration methods [12, 34, 38]

are actually designed for FSR instead of BFR, we perform

experiments on BFR and FSR separately, where different

competing methods are used for fair comparison.

Blind Face Restoration. By using the degradation

model in Eq. (4) and the same set of parameters used in

Section 4.2, we synthesized a set of LQ face images on

the CelebA-HQ dataset for evaluation. We compare GPEN

with the latest BFR methods, including Pix2PixHD [43],

Super-FAN [5], GFRNet [29], GWAInet [9], DFDNet [27],

HiFaceGAN [47]. The models trained by the original au-

thors are used in the experiments. We do not compare with

those FSR methods [12, 34, 38] in this experiment because

they assume a very simple degradation model (e.g., bicu-

∗Note that the results of DFDNet [27] are not reported because it fails

to recover many face images in this experiment.
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Table 3: Comparison (PSNR, FID and LPIPS) of various FSR methods. Since mGANprior [12] and PULSE [34] are very

time-consuming, we only used the first 1, 000 images of CelebA-HQ dataset to compute their measures. “-” means that the

result is not available.

Method
PSNR↑ FID↓ LPIPS↓

8× 16× 32× 64× 128× 256× 8× 16× 32× 64× 128× 256× 8× 16× 32× 64× 128× 256×
Bilinear 28.73 26.13 22.81 20.49 17.75 15.17 89.29 183.50 206.03 342.63 528.17 495.03 0.471 0.567 0.659 0.713 0.765 0.812

Super-FAN [5] - 20.95 - - - - - 92.65 - - - - - 0.453 - - - -

GFRNet [29] 28.08 24.73 21.39 - - - 47.38 70.49 132.88 - - - 0.324 0.423 0.578 - - -

GWAInet [9] 25.79 - - - - - 56.81 - - - - - 0.339 - - - - -

DFDNet [27] 25.37 23.11 - - - - 29.97 35.46 - - - - 0.212 0.274 - - - -

HiFaceGAN [47] 26.36 24.66 22.42 19.83 - - 29.95 36.26 47.17 88.28 - - 0.211 0.266 0.349 0.460 - -

mGANprior [12] 21.44 21.29 20.53 18.09 15.45 13.39 104.20 100.84 95.82 108.05 113.73 113.28 0.521 0.518 0.472 0.519 0.558 0.582

PULSE [34] 24.32 22.54 19.98 16.09 13.39 11.49 65.89 65.33 81.23 87.45 102.48 101.35 0.421 0.425 0.405 0.492 0.544 0.579

pSp [38] 18.99 18.73 18.62 18.02 16.18 14.57 40.97 43.37 75.92 74.46 88.44 123.85 0.415 0.424 0.441 0.458 0.504 0.581

GPEN 24.66 23.27 21.23 19.02 15.74 13.66 30.49 31.37 31.60 32.56 46.08 82.72 0.210 0.261 0.317 0.381 0.503 0.564

16
2

(a) Bilinear (b) Super-FAN [5] (c) GWAInet [9] (d) GFRNet [29] (e) pix2pixHD [43]

(f) HiFaceGAN [47] (g) mGANprior [12] (h) PULSE [34] (i) pSp [38] (j) GPEN (k) Ground truth

Figure 6: Face super-resolution results by state-of-the-art methods. The input image has a resolution of 162.

bic downsampling) and cannot handle this challenging BFR

task. The PSNR, FID and LPIPS results are listed in Ta-

ble 2. One can see that our GPEN achieves comparable

PSNR index to other competing methods, but it achieves

significantly better results on FID and LPIPS indices, which

are better measures than PSNR for the face image percep-

tual quality.

Figure 5 compares the BFR results on some degraded

face images by the competing methods. One can see that

the competing methods fail to produce reasonable face re-

constructions. They tend to generate over-smoothed face

images with distorted facial structures. However, our GPEN

generate visually photo-realistic face images with clear hair,

eye, eyebrow, tooth and mustache details. Even the back-

ground can also be partially constructed. This clearly val-

idates the advantages of our GPEN model and the training

strategy. More visual comparison results can be found in

the supplementary file.

Face Super-Resolution. FSR aims to generate an HR

image from the input LR version. It can be considered as a

special case of BFR, where the image degradation process is

specified (i.e., bicubic downsampling). To validate the gen-

erality of our GPEN, we still use our model trained for BFR

to perform the FSR task, and compare it with those state-

of-the-art methods designed for FSR, including Super-FAN

[5], GFRNet [29], GWAInet [9], DFDNet [27], HiFace-

GAN [47], mGANprior [12], PULSE [34], and pSp [38].

The zooming factor ranges from 8× to 256×, and the LR

face images are simulated on the CelebA-HQ dataset.

The quantitative results are presented in Table 3. One

can see that the naı̈ve bilinear interpolator achieves the best

PSNR index, though it cannot restore any facial details.

This actually validates that PSNR is not a suitable index

to measure FSR quality. GPEN achieves the best FID and

LPIPS scores under almost all the zooming factors. Fig-

ure 6 presents a visual comparison example for zooming

factor 64×. More visual comparison results can be found in

the supplementary.

4.5. Experiments on Images in the Wild

Finally, we perform experiments on real-world LQ face

images, which suffer from complex unknown degradations.

We collected 1, 000 LQ face images from internet for test-

ing. The BFR methods Pix2PixHD [43], Super-FAN [5],

GFRNet [29], GWAInet [9], DFDNet [27] and HiFaceGAN

[47] are used in the comparison. Figure 7 shows the BFR
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(a) (b) (c) (d) (e) (f) (g) (h)
Figure 7: Blind face restoration results on real degraded faces in the wild. (a) Real degraded faces; (b) Super-FAN [5]; (c)

GFRNet [29]; (d) GWAInet [9]; (e) Pix2PixHD [43]; (f) DFDNet [27]; (g) HiFaceGAN [47]; (h) GPEN.

GPEN HiFaceGAN Pix2PixHD GFRNet Super-FAN GWAINet
0

0.2

0.4

0.6

0.8

1

Rank-1 Rank-2 Rank-3 Rank-4 Rank-5 Rank-6

Figure 8: User study results of different BFR methods.

results on three images. One can see that the competing

methods fail to restore the facial details. This is mainly

because they are trained on synthesized data but have lim-

ited generalization capability to the images in the wild. Our

method manages to overcome this difficulty by the carefully

designed GAN prior embedding and fine-tuning strategies.

It not only preserves well the global structure of the face,

but also generates realistic details on the face components

(e.g., hair, eye, mouth, etc.). Our GPEN can also be suc-

cessfully used to renovate old photos, as we demonstrated

in Figure 1. Please refer to the supplementary material for

more results.

Since the commonly used quantitative metrics like PSNR

and SSIM do not strongly correlate with human visual per-

ception to image quality, we conduct a user study as a

subjective assessment on the performance of our method

and the competing methods. The BFR results of GPEN,

Pix2PixHD [43], Super-FAN [5], GFRNet [29], GWAInet

[9], DFDNet [27] and HiFaceGAN [47] on 113 real-world

LQ face images collected from internet are presented in

a random order to 17 volunteers for subjective evaluation.

The volunteers are asked to rank the six BFR outputs of

each input image according to their perceptual quality. Fi-

nally, we collect 1, 915 votes, and the statistics are presented

in Figure 8. As can be seen, our GPEN method receives

much more rank-1 votes than the other state-of-the arts.

5. Conclusion and Discussion

We proposed a simple yet effective GAN prior embedded

network, namely GPEN, for BFR in the wild. By embed-

ding a pre-trained GAN into a U-shaped DNN as a decoder,

and fine-tuning the whole network with artificially degraded

face images, our model learned to generate high quality face

images from severely degraded ones. Our extensive ex-

periments on synthetic data and real-world images demon-

strated that GPEN outperforms the latest state-of-the-arts

significantly, restoring clear facial details while retaining

properly the image background. The proposed method can

also be applied to other tasks such as face inpainting and

face colorization. Some preliminary results were provided

in the supplementary material.

The proposed GPEN does not allow multiple HQ im-

ages to be generated from a single LQ image in its current

form. StyleGAN controls the synthesis via style mixing;

however, such an operation may lead to inconsistent image

background in GPEN. In the future, we will extend GPEN

to allow multiple HQ outputs for a given LQ image. For

example, we can use an extra HQ face image as a reference

so that different HQ outputs can be generated by GPEN for

different reference images.
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