
HourNAS: Extremely Fast Neural Architecture Search

Through an Hourglass Lens

Zhaohui Yang1,2, Yunhe Wang2∗, Xinghao Chen2, Jianyuan Guo2,

Wei Zhang2, Chao Xu1, Chunjing Xu2, Dacheng Tao3, Chang Xu3

1 Key Lab of Machine Perception (MOE), Dept. of Machine Intelligence, Peking University.
2 Noah’s Ark Lab, Huawei Technologies. 3 School of Computer Science, Faculty of Engineering, University of Sydney.

zhaohuiyang@pku.edu.cn; yunhe.wang@huawei.com; c.xu@sydney.edu.au

Abstract

Neural Architecture Search (NAS) aims to automatically

discover optimal architectures. In this paper, we propose

an hourglass-inspired approach (HourNAS) for extremely

fast NAS. It is motivated by the fact that the effects of the

architecture often proceed from the vital few blocks. Act-

ing like the narrow neck of an hourglass, vital blocks in

the guaranteed path from the input to the output of a deep

neural network restrict the information flow and influence

the network accuracy. The other blocks occupy the major

volume of the network and determine the overall network

complexity, corresponding to the bulbs of an hourglass. To

achieve an extremely fast NAS while preserving the high ac-

curacy, we propose to identify the vital blocks and make them

the priority in the architecture search. The search space of

those non-vital blocks is further shrunk to only cover the

candidates that are affordable under the computational re-

source constraints. Experimental results on ImageNet show

that only using 3 hours (0.1 days) with one GPU, our Hour-

NAS can search an architecture that achieves a 77.0% Top-1

accuracy, which outperforms the state-of-the-art methods.

1. Introduction

In the past decade, progress in deep neural networks

has resulted in the advancements in various computer vi-

sion tasks, such as image classification [6, 67, 7, 52], ob-

ject detection [20, 41], and segmentation [25]. The big

success of deep neural networks is mainly contributed to

the well-designed cells and sophisticated architectures. For

example, VGGNet [51] suggested the use of smaller con-

volutional filters and stacked a series of convolution layers

for achieving higher performance, ResNet [26] introduced

the residual blocks to benefit the training of deeper neu-

ral networks, and DenseNet [29] designed the densely con-

∗Corresponding author.

nected blocks to stack features from different depths. Be-

sides the efforts on the initial architecture design, extensive

experiments [59, 24, 10] are often required to determine the

weights and hyperparameters of the lightweight deep neural

network [2, 11, 69, 35, 36, 37].

To automatically and efficiently search for neural net-

works of desireable properties (e.g., model size and FLOPs)

from a predefined search space, a number of Neural Architec-

ture Search (NAS) algorithms [40, 65, 33, 70, 68, 18, 58, 61]

have been recently proposed. Wherein, Evolutionary Algo-

rithm (EA) based methods [48] maintain a set of architec-

tures and generate new architectures using genetic operations

like mutation and crossover. Reinforcement Learning (RL)

based methods [75, 76] sample architectures from the search

space and train the controllers accordingly. The differen-

tiable based methods [40, 62, 63, 50] optimize the shared

weights and architecture parameters, which significantly re-

duces the demand for computation resources and makes the

search process efficient.

These methods have made tremendous efforts to greatly

accelerate the search process of NAS. Nevertheless, given

the huge computation cost on the large-scale dataset [62,

23, 64, 27, 3], e.g., 9 GPU days for NAS on the ImageNet

benchmark, most methods execute NAS in a compromised

way. The architecture is first searched on a smaller dataset

(e.g., CIFAR-10 [32]), and then the network weight of the

derived architecture is trained on the large dataset. An obvi-

ous disadvantage of this concession is that the performance

of the selected architecture on the CIFAR-10 may not be well

extended to the ImageNet benchmark [71]. We tend to use

the minimal number of parameters without discrimination

to construct an architecture that would achieve the maximal

accuracy. But just as the popular 80-20 rule1 goes, only a

few parts could be critical to the architecture’s success, and

1The 80/20 rule (a.k.a Pareto principle, the law of vital few) is an

aphorism that states, for many events, roughly 80% of the effects come

from 20% of the causes.

10896

Figure 1. Blocks in the residual network are either “vital” or “non-vital”, and they form the neck or bulb parts in the hourglass network.

Two-stage search scheme speed up architecture search by 9× and the resource constrained search further accelerates architecture search by

72×.

we need to give them the most focus while balancing the

parameter volume for other parts.

In this paper, we propose HourNAS for an accurate and

efficient architecture search on the large-scale ImageNet

dataset. Blocks in an architecture are not created equally.

Given all the possible paths for the information flow from

the input to the output of the network, blocks shared by these

paths are vital, just as the neck of an hourglass to regulate the

flow. We identify these vital blocks and make them the prior-

ity in the architecture search. The other non-vital blocks may

not be critical to the accuracy of the architecture, but they

often occupy the major volume of the architecture (like the

bulb of an hourglass) and will carve up the resource budget

left by the vital blocks. Instead of directly working in a large

search space flooding with architectures that obviously do

not comply with the constraints during deployment, we de-

velop a space proposal method to screen out and optimize the

most promising architecture candidates under the constraints.

By treating the architecture search through an hourglass

lens, the limited computation resource can be well allocated

across vital and non-vital blocks. We design toy experiments

on residual networks to illustrate the varied influence of vital

and non-vital blocks on the network accuracy. The resulting

HourNAS costs only about 3 hours (0.1 GPU days) on the

entire ImageNet dataset to achieve a 77.0% Top-1 accuracy,

which outperforms the state-of-the-art methods.

2. Related Works

This section reviews the methods for neural architecture

search algorithms. Then, we discuss layer equality, i.e., the

importance of different blocks in deep neural networks.

Neural Architecture Search. To automate the design of

neural models, neural architecture search (NAS) was intro-

duced to discover efficient architectures with competitive per-

formance. Reinforcement learning (RL) and evolution algo-

rithm (EA) were widely adopted in NAS [76, 75, 42, 48, 55,

23, 21]. However, these methods were highly computation-

ally demanding. Many works have been devoted to improv-

ing the efficiency of NAS from different perspectives, e.g.,

by adopting the strategy of weight sharing [45] or progres-

sive search [39]. Differentiable based NAS attracted great

interest as it drastically reduces the searching cost to several

days or even hours [62, 40, 16, 63, 46, 38, 22, 8, 34, 74]. For

example, DARTS [40] adopted the continuous architecture

representation to allow efficient architecture search via gradi-

ent descent. Meanwhile, as discusses in TuNAS [1], gradient-

based NAS methods consistently performed better than ran-

dom search, showing the power of searching for excellent

architectures. However, the most efficient gradient-based

NAS methods still took dozens of days for directly search-

ing on target large-scale dataset (e.g., ImageNet). Thus, an

efficient method for directly searching deep neural architec-

tures on large-scale datasets and search spaces is urgently

required.

Layer Equality. Most of existing NAS methods treated all

layers with the same importance during the search. However,

convolution neural networks are always over-parameterized

and the impact on the final accuracy of each layer is totally

different. Zhang et al. [72] re-initialized and re-randomized

the pre-trained networks, and found that some layers are

robust to the disturbance. For some intermediate layers,

the re-initialization and re-randomization steps did not have

negative consequences on the accuracy. Veit et al. [60]

decomposed residual networks and found that skipping some

layers does not decrease the accuracy significantly. Ding et

al. [15] pruned different layers separately and found some

layers are more important to the final accuracy. It is obvious

that the layers are not created equal, and some layers are

more important than others.

In this paper, we analyze the causes of the inequality

10897

phenomenon in the residual network and exploit this property

in neural architecture search to improve its efficiency.

3. Hourglass Neural Architecture Search

In this section, we revisit the neural architecture search

from an hourglass way. The vital few blocks should be

searched with a higher priority to guarantee the potential ac-

curacy of the architecture. The non-vital blocks that occupy

the major volume are then searched in an extremely fast way

by focusing on the discovered space proposals.

3.1. Vital Blocks: the Neck of Hourglass

In this paper, we focus on the serial-structure NAS Su-

perNet [55, 56, 62, 4, 54, 53], as it is hardware-friendly and

capable of achieving superior performance. Before we illus-

trate vital blocks in a general NAS, we first take ResNet [26]

as an example for the analysis. ResNet is one of the most

popular manually designed architectures. It is established by

stacking a series of residual blocks, and the residual block is

defined as,

y = F(x,w) + x, (1)

where x is the input feature map, F denotes the transforma-

tion (e.g., convolution and batch normalization for vision

tasks) and w stands for the trainable parameters.2 From the

information flow perspective, there are two paths to trans-

mit the information from the node x to the node y, i.e., the

shortcut connection and the transformation F . If there are

m residual blocks in a network, there will be 2m different

paths for the information propagation in total. A general

neural network N based on the residual blocks [26, 55, 62]

can therefore be approximated as the ensemble of a number

of paths [60] {P1, . . . ,Pn}, i.e., N (X) ≈
∑n

i=1
Pi(X),

where each path Pi is set up by a series of blocks, X is the

input data, and n is the number of all the paths.

It is worth noticing that there are a few blocks existing in

all the possible paths, e.g., the gray blocks in Fig. 1. These

self-contained blocks do not participate in forming any resid-

ual blocks, but they are vital, because of their appearance in

every path from the input to the output of the network. On

the other hand, the green and blue blocks in Fig. 1 are a part

of the residual blocks y = F(x,w) + x, where the infor-

mation can be transmitted through the plain transformation

F(x,w) or the shortcut connection x to the next block, so

they are not that vital.

Identify and Examine Vital Blocks. Given the paths

{P1, . . . ,Pn} in a general residual network N , the vital

blocks shared by all the paths can be identified through

P̂ = P1 ∩ · · · ∩ Pn, where Pi ∩ Pj denotes the intersec-

tion set of those blocks in paths Pi and Pj . In the popular

2As for the downsample blocks (reduce the feature map size) and the

channel expansion blocks (increase the channel number), we follow [60]

and use y = F(x,w) to express.

bl
oc

k1
_1

bl
oc

k1
_2

bl
oc

k1
_3

bl
oc

k2
_1

bl
oc

k2
_2

bl
oc

k2
_3

bl
oc

k3
_1

bl
oc

k3
_2

bl
oc

k3
_3

bl
oc

k4
_1

bl
oc

k4
_2

bl
oc

k5
_1

bl
oc

k5
_2

bl
oc

k5
_3

bl
oc

k5
_4

bl
oc

k6
_1

Block

0

10

20

30

40

50

60

70

80

To
p-

1
Ac

cu
ra

cy
 (%

)

p=1.0
p=0.6
p=0.3
p=0 (baseline)

(a) MnasNet

bl
oc

k1
_1

bl
oc

k2
_1

bl
oc

k2
_2

bl
oc

k3
_1

bl
oc

k3
_2

bl
oc

k3
_3

bl
oc

k4
_1

bl
oc

k4
_2

bl
oc

k4
_3

bl
oc

k4
_4

bl
oc

k5
_1

bl
oc

k5
_2

bl
oc

k5
_3

bl
oc

k6
_1

bl
oc

k6
_2

bl
oc

k6
_3

bl
oc

k7
_1

Block

0

10

20

30

40

50

60

70

80

To
p-

1
Ac

cu
ra

cy
 (%

)

p=1.0
p=0.6
p=0.3
p=0 (baseline)

(b) MobileNetV2

Figure 2. The diagram of block importance by using the MnasNet

and MobileNetV2 pretrained models.

residual networks, such as ResNet [26] and FBNet [62], the

vital blocks are exactly the first convolution layer, the last

fully connected layer, the downsampling blocks, and the

channel expansion blocks. These vital blocks are critical

to the accuracy of the whole architecture, as they exist in

all paths and act as the neck of the hourglass to control the

information flow. In contrast, the other blocks would always

find substitutes for themselves to keep the information flow,

and they thus play a secondary role in the whole architecture.

We further take mobile architectures as an example to

illustrate the different influence of vital and non-vital blocks

on the network accuracy. A random mask function M(y, p)
is introduced to destroy the output of blocks in the pretrained

MnasNet [55] and MobileNetV2 [49], where y is the output

feature map, and 0 ≤ p ≤ 1 is the probability. In particular,

every channel is reset to 0 with a probability p. Fig. 2 shows

the accuracy change of MnasNet [55] and MobileNetV2 [49]

resulting from the feature distortion on different blocks. The

blocki_j denotes the j-th block in the i-th stage. As dis-

cussed above, the first block in every stage is the vital block.

We set p = {0.3, 0.6, 1.0} to gradually increase the degree

of feature distortion. Each time we only manipulate one

block while keeping others unchanged in the network. For

the non-vital blocks (e.g., block3_2 and block3_3 in both

MnasNet and MobileNetV2), even if all the channels are

reset to zero (i.e., p=1.0), the network does not undergo

a significant accuracy degradation. However, a small por-

tion (p=0.3) of channels that are masked out for those vital

blocks (e.g., block1_1 and block2_1) will lead to an obvious

accuracy drop.

Revisit Neural Architecture Search. The goal of NAS is

to search for the architecture of a higher accuracy under the

constraints of available computational resources. In other

words, NAS can be regarded as a problem of resource allo-

cation. Vital blocks are potentially the most important and

need to be put as the priority. As a result, more resources

are better to be first allocated to the vital blocks, and the

remaining resources are used for the non-vital blocks design.

This therefore naturally motivates us to develop a two-stage

search algorithm. During the first stage, we construct the

minimal SuperNet Svital by stacking all the vital layers and

search the vital blocks. The weights and architecture param-

10898

eters are optimized alternatively in a differentiable way [62].

In the second stage, we fix the derived architecture of those

vital blocks, and allocate the computational resources to

search for the non-vital blocks.

3.2. NonVital Blocks: the Bulb of Hourglass

Non-vital blocks are often composed of a large number

of parameters. They look like the bulb of the hourglass to

determine the whole volume size. If the computational re-

sources are unlimited to deploy the neural network, then

we can make the network wider and deeper for achieving a

higher performance [26, 56]. However, the searched archi-

tectures are to be deployed on mobile devices which have

demanding constraints of the resources, e.g., model size, and

FLOPs. Without investigating these constraints, it would

be ineffective to directly sample the architecture from a

large search space. For example, if the sampled architec-

tures cannot fully use the available computation resource,

the resulting models might perform poorer than expected,

which has been analyzed by a number of multi-objective

NAS works [42, 66, 19, 55] (the Pareto front). Otherwise, if

the sampled architectures overwhelm the use of computation

resources, they would be difficult to be deployed. To tackle

the dilemma, we introduce an efficient sampling operation to

avoid wasting too much time on search unimportant opera-

tions, and a space proposal strategy to put more attention on

architectures that meet the target computational resources.

3.3. Space Proposal for Efficient Resource Con
strained Search

A general differentiable neural architecture search al-

gorithm can be formulated as a bilevel optimization prob-

lem [40]:

θ∗ = argmin
θ

Hval(w
∗(θ), θ),

s.t. w∗(θ) = argmin
w

Htrain(w, θ),
(2)

where H is the cross-entropy loss function, and θ denotes the

architecture parameters. If the accuracy is the only objective

to be considered for searching, a complex architecture would

be preferred for achieving a highest accuracy (see Sec. 4.3).

However, if the obtained architectures are to be deployed

on mobile devices, we may always have the computational

resource constraints from the environment . Thus, neural

architecture search that considers the multiple objectives can

be formulated as,

θ∗ = argmin
θ

Hval(w
∗(θ), θ) + α× T (θ),

s.t. w∗(θ) = argmin
w

Htrain(w, θ),
(3)

where T (θ) is the regularization term that encourages the

produced architecture to satisfy the target computational

resource constraints. Assuming the constraints (targets)

on computational resources (e.g., model size, FLOPs) are

Ti∈{1,...,n}, where n is the number of objectives, an efficient

and controllable way is to initialize architectures that satisfy

T . Thus, we introduce the concept of space proposal. The

space proposal is a subspace of the large search space, and

all the sampled architectures from the space proposal satisfy

the target resources. As a result, the search phase would

not waste resources on optimizing useless architectures. In

addition, the space proposal ensures “what you set is what

you get”. Similar to gradient-based NAS, the space proposal

is represented by the architecture parameters.

We take the FLOPs as an example to describe how to

optimize a space proposal. Suppose θ represents the trainable

architecture parameters of the NAS SuperNet and the size is

L×O, where L is the maximum depth and O is the number

of candidate operations in each layer. A number of methods

G are capable of sampling architectures Aθ from architecture

parameters θ,

Aθ = G(θ),
∑

o

Al,o = 1, (4)

where G is usually specified as softmax [40], Gumbel-

softmax [62], Gumbel-Max [17, 5], etc. The Al,o is the

o-th operation in the l-th layer.

The FLOPs table F of the SuperNet S is of size L×O,

where Fl,o denotes the FLOPs of the o-th operation in the

l-th SuperBlock. The FLOPs for sampled architecture Aθ

is calculated as RF (Aθ) = sum(Aθ ⊙ F), where ⊙ is the

element-wise product. Assuming the target FLOPs is TF ,

the optimization is formulated as,

θF = argmin
θ

|RF (G(θ))− TF |/MF , (5)

where MF is a constant scalar denotes the maximum FLOPs

of the sampled architectures, and this term is used for normal-

izing the objective to [0, 1]. We extend Eqn 5 to n different

objectives. The targets for n objectives are Ti∈{1,...,n}, and

the optimization is defined as,

θT = argmin
θ

1

n

n∑

i=1

|Ri(G(θ))− Ti|/Mi, (6)

which Ri(G(θ)) is the resource demand of the architecture

sampled by G(θ) on the i-th objective.

This optimization problem is easily to be solved in a few

seconds. The solution θT can be regarded as a space pro-

posal under the constraints T , and the structure AθT sampled

from θT by Eqn 4 would be more easily to satisfiy target

resources T . Instead of relying on a single optimal solu-

tion θT , we turn to an ensemble way to start from different

random initializations and derive a series of space propos-

als ΘT = {θT1 , · · · , θ
T
m}, where m is the number of space

10899

proposals. The orthogonal constraint is also introduced to

further increase the diversity of different space proposals,

which is formulated as,

θ1, . . . , θm = argmin
θ1,...,θm

(
1

nm

m∑

j=1

n∑

i=1

|Ri(G(θj))− Ti|/Mi+

β ×
∑

(|O − I|)),

(7)

where O = ΘΘT is an m × m matrix and element Oi,j

denotes the inner product of θi and θj . The term
∑

(|O −
I|) regularizes m space proposals to be orthogonal, which

indicates that the architectures sampled from different space

proposals are different. A uniformly initialized auxiliary

parameter Π of size m is then introduced to sample space

proposals,

π = P(Π),
∑

i

πi = 1, (8)

where P could be softmax, Gumbel-softmax or Gumbel-

Max, π is the sampled vector from Π that used for combine

the architectures sampled from m space proposals, and the

ensembled architecture AΘ that used for updating the Super-

Net is defined as,

AΘ =
∑

i

πi ·Aθi =
∑

i

πi · G(θi), (9)

where AΘ is utilized for updating network parameter w on

train set Dtrain and architecture parameter Π,Θ on valida-

tion set Dval, respectively. Every space proposal θi opti-

mizes towards the good architectures in the space proposal

and Π optimizes towards better proposals. The NAS frame-

work by using the space proposal strategy is summarized

as,

Π∗,Θ∗ = argmin
Π,Θ

Hval(w
∗(Π,Θ),Π,Θ) + α× T (Π,Θ),

s.t. w∗(Π,Θ) = argmin
w

Htrain(w,Π,Θ),

(10)

where T (Eqn 6) is the regularization on space proposal

parameters (Eqn 7), and α is the slope of the multi-objective

loss term.

3.4. Overall Search Algorithm

Based on the proposed method, we summarize the overall

search algorithm in Alg. 1.

4. Experiments

In this section, we first describe the experimental settings

and then extensively evaluate the proposed HourNAS on sev-

eral popular NAS search spaces [62, 55, 56] on ImageNet.

The models trained on CIFAR-10 dataset by using Mind-

Spore toolkit are available at https://gitee.com/

mindspore/mindspore/tree/master/model_

zoo/research/cv/HourNAS

Algorithm 1 The searching algorithm of HourNAS.

Input: The NAS supernet S, the computational targets

Ti∈{1,...,n}, the train set Dtrain and validation set Dval,

the searching epochs for vital blocks Evital and non-

vital blocks En−vital, the number of space proposals m,

iterations Isp for training space proposals.

1: // Search Vital Blocks

2: Constructing the minimal SuperNet Svital by stacking

all the vital layers and the architecture parameter θvital.
3: for e = 1 to Evital do

4: for data and target pair (Xtr, Ytr) in Dtrain do

5: Sample network A from θvital, calculate loss and

update network parameters.

6: end for

7: for data and target pair (Xval, Yval) in Dval do

8: Sample network A from θvital, calculate loss and

update θvital.
9: end for

10: end for

11: The operations with the highest importance are selected

to form the vital layers.

12: // Optimize m space proposals

13: According to the computational targets T , HourNAS

optimizes m proposals ΘT = {θT1 , · · · , θ
T
m} for Isp

iterations (Eqn 7), and construct the proposal sampler

π (Eqn 8).

14: // Search Non-Vital Blocks

15: for e = 1 to En−vital do

16: for data and target pair (Xtr, Ytr) in Dtrain do

17: Sample network A from π and Θ, calculate loss

and update network parameters.

18: end for

19: for data and target pair (Xval, Yval) in Dval do

20: Sample network A from π and Θ, calculate loss

and update π and Θ.

21: end for

22: end for

23: Fix operations by selecting the space proposal and oper-

ations with the highest probability.

Output: The architecture A which satisfies the computa-

tional targets Ti∈{1,...,n}.

4.1. Experimental Settings

We use the HourNAS to search on the complete Ima-

geNet train set. The subset Dtr takes 80% of the train set

to train network parameters and the rest Dval is used to up-

date architecture parameters. We search on three popular

search spaces, i.e., FBNet [62], MnasNet [55], and Effi-

cientNet [56]. For any of our searched architecture, the

training strategy is the same as the corresponding baseline.

We use the NVIDIA V100 GPU to measure the search time

10900

https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/cv/HourNAS
https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/cv/HourNAS
https://gitee.com/mindspore/mindspore/tree/master/model_zoo/research/cv/HourNAS

and compare with previous works fairly. The V100 GPU

is also adopted by a number of literatures, for example,

PDARTS [9], FBNet [62].

The HourNAS first searches the vital blocks for one

epoch (about 1 hour). Then, HourNAS optimizes multi-

ple space proposals according to the computational targets

and searches the non-vital blocks for one epoch (about 2

hours). The whole searching process requires only one V100

GPU within 3 hours. Extending the search time will not

further improve the accuracy, because the distribution of

architecture parameters is stable. For competing methods

like MnasNet [55], 3 GPU hours could only train one sam-

pled architecture and the RL controller has no difference

with random search. We utilize the Gumbel-Max [44, 5, 17]

to sample operations according to the learned importance,

which avoids wasting searching time on undesired operations.

Gumbel-Max samples an operation according to the learned

probability distribution (i.e., importance). The sampling fre-

quencies of those poor operations tend to be relatively low,

so that we can effectively reduce the time spent on them. The

Gumbel-Max sampling accelerates every iteration by around

O times, where O is the number of candidate operations in

every layer. During searching, we follow FBNet [62] and

add the temperature τ (Eqn 4) for sharpening the distribu-

tion progressively. The temperature τ starts from 5.0 and

multiply 0.9999 at every iteration. Slope parameter α, β
are emperically set to 5.0 and 1e-2, respectively. Learning

rates for optimizing weights and architecture parameters are

0.1 and 0.01, respectively. Adam [31] optimizer is used to

update architecture parameters.

4.2. Comparison with Stateofthearts

FBNet Search Space (FBNetSS). We first evaluate our

HourNAS on the popular FBNet search space (FBNetSS),

which contains 922 ≈ 1× 1021 architectures. HourNAS first

searches the vital blocks and the results show that operations

with the expansion ratio of six have significantly higher prob-

abilities than other operations. We choose the operations

with the highest probabilities to form the vital blocks. This

result is in line with our intuition that the complex opera-

tions have the greatest feature extraction ability on the large

dataset, i.e., ImageNet.

After fixing the operations of the vital blocks, we are

interested in finding the appropriate proposal number m. We

set the computational resources the same as FBNet-B and

search architectures using m different space proposals. We

first visualize the distribution of sampled architectures from

the space proposal by gradually decreasing the temperature

τ . Each space proposal is optimized for 1000 iterations in

total (Eqn 6). The computational targets are set to 4.8M

parameters (x-axis) and 300M FLOPs (y-axis), which are

consistent with FBNet-B [62]. As shown in Fig. 3, with

the decrease of temperature of τ , the sampled architectures

(a) τ = 5.0 (b) τ = 1.0 (c) τ = 0.5 (d) τ = 0.1

Figure 3. The distribution of 10,000 architectures sampled from

optimized space proposal under different temperatures τ .

satisfy the computational targets more precisely.

The optimization step for constructing several space pro-

posals takes only a few seconds, which is an efficient so-

lution for controllable multi-objective neural architecture

search. We enumerate m = {1, 2, 4, 8, 16} and the opera-

tions with the highest probability according to Π and Θ are

selected after searching. The architectures are evaluated on

the CIFAR-10 dataset to determine the appropriate space

proposal number m for finding superior architectures. In

retraining, we integrate CutOut [14] to make networks gen-

eralize better. The stochastic depth [30] is not used. As

shown in Tab. 2, m = 8 could result in a well-performed

architecture and we use m = 8 in the following experiments

to achieve a better trade-off between searching costs and

performance.

Table 2. Comparison of image classifiers on CIFAR-10 dataset.

Model
Test Error Params Search Cost

(%) (M) (GPU days)

HourNAS (m=1) 3.86 2.8 0.1

HourNAS (m=2) 3.54 2.8 0.1

HourNAS (m=4) 3.41 2.7 0.1

HourNAS (m=8) 3.39 2.8 0.1

HourNAS (m=16) 3.37 2.8 0.1

We search for models on the ImageNet dataset, i.e.,

HourNAS-FBNetSS-A and HourNAS-FBNetSS-B. To fairly

compare with FBNet, HourNAS-FBNetSS-A has the same

model size and FLOPs as FBNet-B, and HourNAS-FBNetSS-

B has the same computational requirements as FBNet-C. We

train the networks for 350 epochs in total with a batch size of

512. Learning rate starts from 0.25 and the weight decay is

1e-5. Label smoothing and learning rate warmup strategies

are also used. The activation after convolution is the ReLU

function. The training strategy is the same as FBNet [62]

without using bells and whistles. As shown in Tab. 1, the

HourNAS-FBNetSS-A and HourNAS-FBNetSS-B achieve

competitive accuracies with FBNet-B and FBNet-C, and the

search time is drastically reduced by two orders of magni-

tude. We search HourNAS-FBNetSS-A for three times using

different random seeds, and the standard deviation of Top-1

accuracy is 0.1%.

Enlarged FBNet Search Space (EFBNetSS). Mix-

Conv [57] indicates that a larger kernel size leads to better

performance. To understand the impact of search space

and to further verify the effectiveness of HourNAS, we

10901

Table 1. Overall comparison on the ILSVRC2012 dataset.

Model Type
Search Search Cost Params FLOPS Top-1 Top-5

Dataset (GPU days) (M) (M) (%) (%)

ResNet50 [26] manual - - 25.6 4100 75.3 92.2

MobileNetV1 [28] manual - - 4.2 575 70.6 89.5

MobileNetV2 [49] manual - - 3.4 300 72.0 91.0

MobileNetV2 (1.4×) manual - - 6.9 585 74.7 92.5

ShuffleNetV2 [43] manual - - - 299 72.6 -

ShuffleNetV2 (1.5×) manual - - 3.5 299 72.6 -

FPNASNet [13] auto CIFAR-10 0.8 3.4 300 73.3 -

SNAS (mild) [63] auto CIFAR-10 1.5 4.3 522 72.7 90.8

AmoebaNet-A [48] auto CIFAR-10 3150 5.1 555 74.5 92.0

PDARTS [9] auto CIFAR-10 0.3 4.9 557 75.6 92.6

NASNet-A [76] auto CIFAR-10 1800 5.3 564 74.0 91.3

GDAS [17] auto CIFAR-10 0.2 5.3 581 74.0 91.5

PNAS [39] auto CIFAR-10 225 5.1 588 74.2 91.9

CARS-I [66] auto CIFAR-10 0.4 5.1 591 75.2 92.5

DARTS [40] auto CIFAR-10 4 4.9 595 73.1 91.0

MdeNAS [73] auto CIFAR-10 0.2 6.1 - 74.5 92.1

RCNet [64] auto ImageNet 8 3.4 294 72.2 91.0

SPOSNAS [23] auto ImageNet 13 5.3 465 74.8 -

ProxylessNAS [4] auto ImageNet 8.3 7.1 465 75.1 92.5

FBNet-B [62] auto ImageNet 9 4.8 295 74.1 -

FBNet-C [62] auto ImageNet 9 5.5 375 74.9 -

HourNAS-FBNetSS-A auto ImageNet 0.1 4.8 298 74.1 91.8

HourNAS-FBNetSS-B auto ImageNet 0.1 5.5 406 75.0 92.2

HourNAS-EFBNetSS-C auto ImageNet 0.1 4.8 296 74.1 91.6

HourNAS-EFBNetSS-D auto ImageNet 0.1 5.5 394 75.3 92.3

MnasNet-A1 [55] auto ImageNet 3800 3.9 312 75.2 92.5

HourNAS-MnasNetSS-E auto ImageNet 0.1 3.8 313 75.7 92.8

EfficientNet-B0 [56] auto ImageNet - 5.3 390 76.8 -

HourNAS-EfficientNetSS-F auto ImageNet 0.1 5.3 383 77.0 93.5

slightly enlarge the search space of FBNet. We add the

blocks with kernel size k = 7 and remove the blocks

with group g = 2. This modification results in a search

space containing 1× 1022 architectures, which is 10 times

larger than the original one. The multi-objectives are the

same as HourNAS-FBNetSS-A and HourNAS-FBNetSS-

B. We list the searched architectures in Tab. 1. The

HourNAS-EFBNetSS-C achieves the same Top-1 accuracy

with HourNAS-FBNetSS-A and HourNAS-EFBNetSS-D

surpasses HourNAS-FBNetSS-B by 0.3% Top-1 accuracy.

The larger kernel size k = 7 ensures that the architectures

are capable of perceiving the characteristics of a larger area.

MnasNet Search Space (MnasNetSS). We further apply

our proposed HourNAS to the search space of MnasNet [55].

The search space contains 2.5× 1023 architectures in total

and is larger than FBNet search space. We select MnasNet-

A1 as the baseline and use its number of the parameters

and FLOPs as two objectives to optimize 8 space proposals.

The discovered HourNAS-MnasNetSS-E achieves a Top-

1 accuracy of 75.7% on the ILSVRC2012 dataset, which

surpasses MnasNet-A1 by 0.5%.

EfficientNet Search Space (EfficientNetSS). To com-

pare with the state-of-the-art architecture EfficientNet-

B0 [56], we also use HourNAS to search on the same search

space as EfficientNet, which contains 4 × 1018 architec-

tures. Targeting at EfficientNet-B0, we use its model size and

FLOPs as two objectives to regularize space proposals and

name the searched architecture as HourNAS-EfficientNetSS-

F. Same as EfficientNet3, we use the Swish [47] activation

and Exponential Moving Average (EMA) in fully train-

ing. Note that the AutoAugment [12] is not used. The

result in Tab. 1 shows HourNAS-EfficientNetSS-F surpasses

EfficientNet-B0 by 0.2% Top-1 accuracy with similar num-

ber of parameters and FLOPs.

4.3. Ablation Study

If we do not restrict the computational resources of the

sampled architectures in searching, the most complex block

achieves the highest probability after searching for enough

time. As shown in Tab. 3, we train the most complex ar-

chitectures in both FBNet and EfficientNet search spaces,

namely FBNet-Max and EfficientNet-Max. These two mod-

els obtain 75.7%, and 78.3% Top-1 accuracies, respectively.

However, the computational resource requirements of these

structures are relatively high. Therefore, the neural archi-

3https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet

10902

Table 3. The results of FBNet-Max and EfficientNet-Max on ILSVRC2012 dataset.

Model Params (M) FLOPS (M) Top-1 (%) Top-5 (%)

FBNet-Max 5.7 583 75.7 92.8

EfficientNet-Max 5.8 738 78.3 94.0

Table 4. Comparisons of searching with and without vital block priori on ILSVRC2012 dataset. The search spaces are original (upper) and

enlarged (lower) FBNet search space, respectively.

Model Type
Search Search Cost Params FLOPS Top-1 Top-5

Dataset (GPU days) (M) (M) (%) (%)

HourNAS-FBNetSS-A auto ImageNet 0.1 4.8 298 74.1 91.8

HourNAS-FBNetSS-G (w/o vital block priori) auto ImageNet 0.2 4.7 297 73.2 91.4

HourNAS-EFBNetSS-C auto ImageNet 0.1 4.8 296 74.1 91.6

HourNAS-EFBNetSS-H (w/o vital block priori) auto ImageNet 0.2 4.8 299 73.5 91.3

Table 5. The results comparison on ILSVRC2012 dataset.

Model Type
Search Search Cost Params FLOPS Top-1 Top-5

Dataset (GPU days) (M) (M) (%) (%)

HourNAS-FBNetSS-A auto ImageNet 0.1 4.8 298 74.1 91.8

HourNAS-FBNetSS-I auto ImageNet 1.0 4.8 318 74.2 91.8

tecture search (NAS) could be regarded as the problem of

computational resource allocation given the resource con-

straints.

The Impact of Vital Block Priori. In order to investi-

gate the impact of the vital block priori, we directly search

architectures without using the vital block information. All

the blocks in the SuperNet S are treated equally in search-

ing. We use the Gumbel-Max sampling and space proposal

strategy to search architectures under the same predefined

computational resources.

We use the previously described original and enlarged

FBNet search spaces. We optimize 8 space proposals and it

takes 6 hours for searching, which is twice of the counterpart

that utilize the vital block priori. As shown in Tab. 4, the Top-

1 accuracies of the discovered models (HourNAS-FBNetSS-

G, HourNAS-EFBNetSS-H) drop by 0.9% and 0.6% on the

ImageNet validation set, respectively. The searched vital

blocks of HourNAS-FBNetSS-A uses 0.9M parameters and

130M FLOPs, and the HourNAS-FBNetSS-G uses 0.5M

parameters and 55M FLOPs. The vital blocks in HourNAS-

FBNetSS-G are not as expressive as HourNAS-FBNetSS-

A, which results in worse performance. The results show

the necessity of the vital block priori. Searching the vital

blocks with higher priority is helpful in finding high-quality

architectures. Therefore, we use a two-stage search method

to allocate resources to vital blocks first, which can allocate

resources more effectively, so as to complete the architecture

search in a short time. The architectures are provided in

the supplementary file, under same computational resources

constraints, inclining more resources on the vital blocks

gains more performance profit.

The Impact of Gumbel-Max Sampling. As discussed

in Sec. 3.3, there are several design choices for the sampling

methods. To find out the impact of the Gumbel-Max sam-

pling method, here we instead use the Gumbel softmax [62]

to optimize architecture parameters and network parame-

ters. The search space and target resource constraints are the

same as HourNAS-FBNetSS-A. The search process takes

around 1 GPU day and the finalized architecture is denoted

as HourNAS-FBNetSS-I. As shown in Tab. 5, HourNAS-

FBNetSS-I outperforms HourNAS-FBNetSS-A by 0.1%

Top-1 accuracy with much less searching cost, which demon-

strate that Gumbel-Max is an efficient strategy for optimizing

the SuperNet with almost no less of accuracy.

5. Conclusions

This paper investigates an efficient algorithm to search

deep neural architectures on the large-scale dataset (i.e., Ima-

geNet) directly. To reduce the complexity of the huge search

space, we present an Hourglass-based search framework,

namely HourNAS. The entire search space is divided into

“vital” and “non-vital” parts accordingly. By gradually search

the components in each part, the search cost can be reduced

significantly. Since the “vital” parts are more important for

the performance of the obtained neural network, the opti-

mization on this part can ensure accuracy. By exploiting the

proposed approach, we can directly search architectures on

the ImageNet dataset that achieves a 77.0% Top-1 accuracy

using only 3 hours (i.e., about 0.1 GPU days), which outper-

forms the state-of-the-art methods in both terms of search

speed and accuracy.

Acknowledgement This work is supported by National

Natural Science Foundation of China under Grant No.

61876007, and Australian Research Council under Project

DE180101438 and DP210101859.

10903

References

[1] Gabriel Bender, Hanxiao Liu, Bo Chen, Grace Chu, Shuyang

Cheng, Pieter-Jan Kindermans, and Quoc V Le. Can weight

sharing outperform random architecture search? an investiga-

tion with tunas. CVPR. 2

[2] Ermao Cai, Da-Cheng Juan, Dimitrios Stamoulis, and Di-

ana Marculescu. Neuralpower: Predict and deploy energy-

efficient convolutional neural networks. ACML, 2017. 1

[3] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and

Song Han. Once for all: Train one network and specialize it

for efficient deployment. ICLR, 2020. 1

[4] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct

neural architecture search on target task and hardware. ICLR,

2019. 3, 7

[5] Jianlong Chang, xinbang zhang, Yiwen Guo, Gaofeng Meng,

Shiming Xiang, and Chunhong Pan. Data: Differentiable

architecture approximation. NeurIPS, 2019. 4, 6

[6] Hanting Chen, Yunhe Wang, Chunjing Xu, Boxin Shi, Chao

Xu, Qi Tian, and Chang Xu. Addernet: Do we really need

multiplications in deep learning? CVPR, 2020. 1

[7] Hanting Chen, Yunhe Wang, Chang Xu, Zhaohui Yang,

Chuanjian Liu, Boxin Shi, Chunjing Xu, Chao Xu, and Qi

Tian. Data-free learning of student networks. ICCV, 2019. 1

[8] Hanlin Chen, Li’an Zhuo, Baochang Zhang, Xiawu Zheng,

Jianzhuang Liu, David S. Doermann, and Rongrong Ji. Bina-

rized neural architecture search. AAAI, 2020. 2

[9] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive

differentiable architecture search: Bridging the depth gap

between search and evaluation. ICCV, 2019. 6, 7

[10] Zhuo Chen, Jiyuan Zhang, Ruizhou Ding, and Diana Mar-

culescu. Vip: Virtual pooling for accelerating cnn-based

image classification and object detection. WACV, 2020. 1

[11] Ting-Wu Chin, Ruizhou Ding, Cha Zhang, and Diana Mar-

culescu. Towards efficient model compression via learned

global ranking. CVPR, 2020. 1

[12] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-

van, and Quoc V Le. Autoaugment: Learning augmentation

strategies from data. CVPR, 2019. 7

[13] Jiequan Cui, Pengguang Chen, Ruiyu Li, Shu Liu, Xiaoyong

Shen, and Jiaya Jia. Fast and practical neural architecture

search. ICCV, 2019. 7

[14] Terrance DeVries and Graham W Taylor. Improved regular-

ization of convolutional neural networks with cutout. arXiv,

2017. 6

[15] Xiaohan Ding, guiguang ding, Xiangxin Zhou, Yuchen Guo,

Jungong Han, and Ji Liu. Global sparse momentum sgd for

pruning very deep neural networks. NeurIPS, 2019. 2

[16] Xuanyi Dong and Yi Yang. One-shot neural architecture

search via self-evaluated template network. ICCV, 2019. 2

[17] Xuanyi Dong and Yi Yang. Searching for a robust neural

architecture in four gpu hours. CVPR, 2019. 4, 6, 7

[18] Xuanyi Dong and Yi Yang. Nas-bench-102: Extending the

scope of reproducible neural architecture search. ICLR, 2020.

1

[19] Thomas Elsken, Jan Metzen, and Frank Hutter. Efficient

multi-objective neural architecture search via lamarckian evo-

lution. ICLR, 2019. 4

[20] Ross Girshick. Fast r-cnn. ICCV, 2015. 1

[21] Xinyu Gong, Shiyu Chang, Yifan Jiang, and Zhangyang

Wang. Autogan: Neural architecture search for generative

adversarial networks. ICCV, 2019. 2

[22] Jianyuan Guo, Kai Han, Yunhe Wang, Chao Zhang, Zhaohui

Yang, Han Wu, Xinghao Chen, and Chang Xu. Hit-detector:

Hierarchical trinity architecture search for object detection.

CVPR, 2020. 2

[23] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,

Zechun Liu, Yichen Wei, and Jian Sun. Single path one-

shot neural architecture search with uniform sampling. arXiv,

2019. 1, 2, 7

[24] Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing

Xu, and Chang Xu. Ghostnet: More features from cheap

operations. CVPR, 2020. 1

[25] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. ICCV, 2017. 1

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. CVPR, 2016.

1, 3, 4, 7

[27] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and

Song Han. Amc: Automl for model compression and acceler-

ation on mobile devices. ECCV, 2018. 1

[28] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv,

2017. 7

[29] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional networks.

CVPR, 2017. 1

[30] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q

Weinberger. Deep networks with stochastic depth. ECCV. 6

[31] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for

stochastic optimization. ICLR, 2015. 6

[32] Alex Krizhevsky and Geoffrey Hinton. Learning multiple

layers of features from tiny images. Technical report, 2009. 1

[33] Liam Li and Ameet Talwalkar. Random search and repro-

ducibility for neural architecture search. UAI. 1

[34] Mingbao Lin, Rongrong Ji, Yuxin Zhang, Baochang Zhang,

Yongjian Wu, and Yonghong Tian. Channel pruning via

automatic structure search. IJCAI, 2020. 2

[35] Shaohui Lin, Rongrong Ji, Chao Chen, Dacheng Tao, and

Jiebo Luo. Holistic cnn compression via low-rank decompo-

sition with knowledge transfer. TPAMI, 2019. 1

[36] Shaohui Lin, Rongrong Ji, Yuchao Li, Yongjian Wu, Feiyue

Huang, and Baochang Zhang. Accelerating convolutional

networks via global & dynamic filter pruning. IJCAI, 2018. 1

[37] Benlin Liu, Yongming Rao, Jiwen Lu, Jie Zhou, and Cho-Jui

Hsieh. Metadistiller: Network self-boosting via meta-learned

top-down distillation. ECCV, 2020. 1

[38] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig

Adam, Wei Hua, Alan L Yuille, and Li Fei-Fei. Auto-deeplab:

Hierarchical neural architecture search for semantic image

segmentation. CVPR, 2019. 2

[39] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens,

Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang,

10904

and Kevin Murphy. Progressive neural architecture search.

ECCV, 2018. 2, 7

[40] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts:

Differentiable architecture search. ICLR, 2019. 1, 2, 4, 7

[41] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C Berg.

Ssd: Single shot multibox detector. ECCV, 2016. 1

[42] Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh D. Dhebar,

Kalyanmoy Deb, Erik D. Goodman, and Wolfgang Banzhaf.

Nsga-net: A multi-objective genetic algorithm for neural

architecture search. GECC, 2018. 2, 4

[43] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.

Shufflenet v2: Practical guidelines for efficient cnn architec-

ture design. ECCV, 2018. 7

[44] Chris J Maddison, Daniel Tarlow, and Tom Minka. A* sam-

pling. NeurIPS, 2014. 6

[45] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and

Jeff Dean. Efficient neural architecture search via parameter

sharing. ICML, 2018. 2

[46] Ruijie Quan, Xuanyi Dong, Yu Wu, Linchao Zhu, and Yi

Yang. Auto-reid: Searching for a part-aware convnet for

person re-identification. ICCV, 2019. 2

[47] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching

for activation functions. arXiv, 2017. 7

[48] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V

Le. Regularized evolution for image classifier architecture

search. AAAI, 2019. 1, 2, 7

[49] Mark B. Sandler, Andrew G. Howard, Menglong Zhu, Andrey

Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. CVPR, 2018. 3, 7

[50] Albert Shaw, Wei Wei, Weiyang Liu, Le Song, and Bo Dai.

Meta architecture search. NeurIPS, 2019. 1

[51] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. ICLR,

2015. 1

[52] Dimitrios Stamoulis, Ting-Wu Rudy Chin, Anand Krishnan

Prakash, Haocheng Fang, Sribhuvan Sajja, Mitchell Bognar,

and Diana Marculescu. Designing adaptive neural networks

for energy-constrained image classification. ICCAD, 2018. 1

[53] Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lym-

beropoulos, Bodhi Priyantha, Jie Liu, and Diana Marculescu.

Single-path nas: Designing hardware-efficient convnets in

less than 4 hours. Joint European Conference on Machine

Learning and Knowledge Discovery in Databases, 2019. 3

[54] Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lym-

beropoulos, Bodhi Priyantha, Jie Liu, and Diana Marculescu.

Single-path mobile automl: Efficient convnet design and nas

hyperparameter optimization. IEEE Journal of Selected Top-

ics in Signal Processing, 2020. 3

[55] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

Mark Sandler, Andrew Howard, and Quoc V. Le. Mnasnet:

Platform-aware neural architecture search for mobile. CVPR,

2018. 2, 3, 4, 5, 6, 7

[56] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking

model scaling for convolutional neural networks. ICML, 2019.

3, 4, 5, 7

[57] Mingxing Tan and Quoc V. Le. Mixconv: Mixed depthwise

convolutional kernels. BMVC, 2019. 6

[58] Yehui Tang, Yunhe Wang, Yixing Xu, Hanting Chen, Boxin

Shi, Chao Xu, Chunjing Xu, Qi Tian, and Chang Xu. A semi-

supervised assessor of neural architectures. CVPR, 2020.

1

[59] Yehui Tang, Yunhe Wang, Yixing Xu, Dacheng Tao, Chunjing

Xu, Chao Xu, and Chang Xu. Scop: Scientific control for

reliable neural network pruning. arXiv, 2020. 1

[60] Andreas Veit, Michael Wilber, and Serge Belongie. Residual

networks behave like ensembles of relatively shallow net-

works. NeurIPS, 2016. 2, 3

[61] Yunhe Wang, Yixing Xu, and Dacheng Tao. Dc-nas: Divide-

and-conquer neural architecture search. arXiv preprint

arXiv:2005.14456, 2020. 1

[62] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,

Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing

Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient

convnet design via differentiable neural architecture search.

CVPR, 2019. 1, 2, 3, 4, 5, 6, 7, 8

[63] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas:

stochastic neural architecture search. ICLR, 2019. 1, 2, 7

[64] Yunyang Xiong, Ronak Mehta, and Vikas Singh. Resource

constrained neural network architecture search. ICCV, 2019.

1, 7

[65] Antoine Yang, Pedro M Esperança, and Fabio M Carlucci.

Nas evaluation is frustratingly hard. ICLR, 2020. 1

[66] Zhaohui Yang, Yunhe Wang, Xinghao Chen, Boxin Shi, Chao

Xu, Chunjing Xu, Qi Tian, and Chang Xu. Cars: Continuous

evolution for efficient neural architecture search. CVPR, 2020.

4, 7

[67] Zhaohui Yang, Yunhe Wang, Chang Xu, Peng Du, Chao Xu,

Chunjing Xu, and Qi Tian. Discernible image compression.

ACMMM, 2020. 1

[68] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real,

Kevin Murphy, and Frank Hutter. Nas-bench-101: Towards

reproducible neural architecture search. ICML. 1

[69] Fuxun Yu, Zhuwei Qin, Di Wang, Ping Xu, Chenchen Liu,

Zhi Tian, and Xiang Chen. Dc-cnn: computational flow

redefinition for efficient cnn through structural decoupling.

Proceedings of the 23rd Conference on Design, Automation

and Test in Europe, 2020. 1

[70] Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu Musat,

and Mathieu Salzmann. Evaluating the search phase of neural

architecture search. ICLR, 2019. 1

[71] Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Mar-

rakchi, Thomas Brox, and Frank Hutter. Understanding and

robustifying differentiable architecture search. ICLR, 2020. 1

[72] Chiyuan Zhang, Samy Bengio, and Yoram Singer. Are all

layers created equal. ICMLW, 2019. 2

[73] Xiawu Zheng, Rongrong Ji, Lang Tang, Baochang Zhang,

Jianzhuang Liu, and Qi Tian. Multinomial distribution learn-

ing for effective neural architecture search. ICCV, 2019. 7

[74] Li’an Zhuo, Baochang Zhang, Hanlin Chen, Linlin Yang,

Chen Chen, Yanjun Zhu, and David S. Doermann. Cp-nas:

Child-parent neural architecture search for 1-bit cnns. IJCAI,

2020. 2

10905

[75] Barret Zoph and Quoc V Le. Neural architecture search with

reinforcement learning. ICLR, 2017. 1, 2

[76] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V

Le. Learning transferable architectures for scalable image

recognition. CVPR, 2018. 1, 2, 7

10906

