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Abstract

Prior research on self-supervised learning has led to

considerable progress on image classification, but often

with degraded transfer performance on object detection.

The objective of this paper is to advance self-supervised

pretrained models specifically for object detection. Based

on the inherent difference between classification and detec-

tion, we propose a new self-supervised pretext task, called

instance localization. Image instances are pasted at various

locations and scales onto background images. The pretext

task is to predict the instance category given the compos-

ited images as well as the foreground bounding boxes. We

show that integration of bounding boxes into pretraining

promotes better task alignment and architecture alignment

for transfer learning. In addition, we propose an augmen-

tation method on the bounding boxes to further enhance

the feature alignment. As a result, our model becomes

weaker at Imagenet semantic classification but stronger

at image patch localization, with an overall stronger pre-

trained model for object detection. Experimental results

demonstrate that our approach yields state-of-the-art trans-

fer learning results for object detection on PASCAL VOC

and MSCOCO1.

1. Introduction

The dominant paradigm for training deep networks in

computer vision is by pretraining and finetuning [20, 29].

Typically, the pretraining is optimized to find a single

generic representation that is later transferred to various

downstream applications. For example, supervised pre-

trained models using image-level labels [26, 25] and self-

supervised pretrained models by contrastive learning [22]

both transfer remarkably well to a number of tasks, e.g., im-

age classification, object detection, semantic segmentation

and human pose estimation.

Despite the popularity of this approach, we question the

existence of such generic and universal representations for

transfer learning. Recently, it has been observed that self-

1Code and models are available at this link.

‡ indicates corresponding author.
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Figure 1. For visual transfer learning, it is widely assumed

that the ImageNet classification accuracy and object detection

performance are positively correlated. By studying recent self-

supervised models, we find that this is not actually the case. We

propose a novel approach, called Instance Localization (InsLoc),

which sacrifices ImageNet classification accuracy, but enjoys bet-

ter generalization ability for object detection.

supervised representations which improve upon image clas-

sification performance may fail to translate the advantage

to object detection [3, 21]. Also, it is found that high-

level features is not what truly matters in transfer to de-

tection and segmentation [46]. These indicate that current

self-supervised models may overfit to the classification task

while becoming less effective for other tasks of interest.

We identify two issues that contribute to task misalign-

ment in transfer learning. The first is that the pretrained net-

work needs to be re-purposed into the target network archi-

tecture for finetuning. This often involves non-trivial archi-

tectural changes, such as inserting a feature pyramid [27] or

employing convolution kernels with large dilations [4]. Sec-

ond, for typical contrastive learning models, the pretraining

pretext task considers an image holistically in instance dis-

crimination [41], without explicit spatial modelling over re-

gions. Though it enhances transferability for classification,

this practice is less compatible with spatial reasoning tasks,

such as object detection.

In this paper, we propose a new self-supervised pre-

text task, called instance localization, specifically for the

downstream task of object detection. Akin to instance dis-
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crimination, which learns a classifier for individual image

instances, instance localization additionally takes bound-

ing box information into account for representation learn-

ing. We create our training set by taking crops of fore-

ground images and pasting them at various aspect ratios and

scales onto different locations of background images. Self-

supervised pretraining follows by extracting RoI features

using bounding boxes and performing contrastive learning

using instance labels. In this way, not only does the network

architecture maintain consistency during transfer, but the

pretraining task also includes localization modelling, which

is crucial for object detection.

Introducing bounding boxes into pretraining encourages

explicit alignment between convolutional features and fore-

ground regions. The feature responses thus become sensi-

tive to translations in the image domain, benefiting detec-

tion [10]. We additionally find that feature alignment can

be strengthened by inducing augmentations on the bound-

ing box coordinates. Specifically, spatially jittered bound-

ing boxes are randomly selected from a set of region pro-

posal anchors.

We implement the approach within the framework of

momentum contrast [22]. The network takes the compos-

ited images and bounding boxes as input, and extracts re-

gion embeddings for contrastive learning. Compared with

the baseline approach which considers holistic instances, a

linear probe on the last-layer features shows reduced perfor-

mance for image classification, while achieving improve-

ments in regressing bounding box locations. Experimen-

tally, we study two popular detection backbone networks,

ResNet50-C4 and ResNet50-FPN. For both backbone net-

works, our instance localization approach elevates perfor-

mance substantially, surpassing the state-of-the-art transfer

learning results on PASCAL VOC [17] and MSCOCO [28].

Notably, our model is even more advantageous for object

detection under the small data regime.

2. Related Work

Self-supervised Learning. The central idea of self-

supervised learning is to create free supervisory labels from

visual data, and use the free supervision to obtain general-

izable and transferrable representations. One of the sim-

plest forms of a pretext task is to reconstruct the input

image using a generative model. The latent representa-

tion in a generative model is thought to capture the high-

level structures and semantic manifolds of the input distri-

bution. Auto-encoders [39] and Boltzmann Machines [37]

show such capability on handwritten digits, but fail to work

on natural images. Later, the advance of GANs [47] en-

abled manipulation of generative content by disentangling

neural responses of the latent representation into facial at-

tributes, pose and lighting conditions. Recent work on

BigBiGAN [14] and Image-GPT [6] demonstrate that ex-

tremely large generative models may deliver very promising

visual recognition representations. However, a fundamental

question that remains is how learning to generate image pix-

els relates to high-level visual understanding.

Aside from reconstructing image pixels, another kind of

pretext task is to withhold some part of the data and then

predict it from the other part. Colorization [44] withholds

color information and attempts to predict it from grayscale

values. Context prediction [12] splits the spatial content

into a 3-by-3 grid of patches. The network is then trained

to predict the spatial relationship between patches. The way

the pretext task is formulated strongly affects the knowledge

that is learned from the data. The colorization approach

tends to work when objects in the same category share the

same color. Context prediction assumes that objects of one

category share the same spatial configurations. Since dif-

ferent pretext tasks extract visual knowledge of different

aspects, a multi-task approach [13] that combines their in-

dividual knowledge boosts the learning performance.

One popular pretext task for self-supervised learning is

contrastive learning, or more specifically instance discrimi-

nation [41]. Each instance in the training dataset is treated

as a single category of its own. The learning objective is

simply to classify each instance from the rest. The critical

component of contrastive learning is the data augmentation

used for inducing invariances [41, 22, 7]. The ideal data

augmentations should reflect the intra-class variations, and

commonly-used augmentations include cropping, scaling,

color jittering, and blurring. Recent research on contrastive

learning focuses on developing better augmentations [3],

designing projection head structures [21], and even alle-

viating the requirement of negative samples [21]. While

the leading contrastive learning methods BYOL and SwAV

push ImageNet performance to an impressive 74% with lin-

ear readoff classifiers, their transfer performance to object

detection actually drops below that of MoCo [22]. This sug-

gests that these self-supervised methods are overfitted to a

single downstream task of classification, sacrificing gener-

alization to other tasks.

We propose a novel pretext task for self-supervised pre-

training, with a focus on transfer to object detection. Build-

ing on top of instance discrimination, we introduce the use

of bounding boxes in the pretraining stage. Towards im-

proved localization, our method learns a representation in

which there is alignment between bounding boxes and their

corresponding foreground features. Prior works that explic-

itly address patch-level spatial modelling include CPC [33]

and context prediction [12]. These works reason about spa-

tial arrangement based on patch contents within an image.

In contrast, our pretext task considers spatial relationships

between two distinct images composited together.

There is a spectrum of other pretext tasks for self-

supervised learning on images and videos, such as inpaint-
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Figure 2. Overview of Instance Localization. Given a foreground image instance, we first sample two background images randomly

from the image gallery. Two views of the foreground image are generated and copy-pasted onto the corresponding background image.

The convolutional network takes each synthetic view, and RoIAlign extracts the region representation using the foreground bounding box

coordinates. Contrastive learning follows the region representation. Negative samples are omitted for brevity.

ing [35], rotation prediction [19], jigsaw puzzles [32], and

motion segmentation [34] on images, as well as temporal

order [31], temporal speed [2], and synchronization [1] on

videos. A detailed survey and description of each pretext

task is beyond the scope of the paper.

Learning with Image Compositions. Creating synthe-

sized imagery by copying a foreground object onto back-

grounds is a popular data augmentation technique. Given

the foreground object mask, prior works successfully apply

this technique for supervised instance segmentation [16, 18]

and unsupervised learning [45]. Our work also synthesizes

image compositions, but without a need for object masks or

clean contours.

Self-Training with Unlabeled Data. Besides transfer

learning, self-training [42, 48] is a promising direction for

utilizing unlabeled data when labelled data is limited. The

idea is to bootstrap the model by using supervised learning

on few labelled samples to generate pseudo labels on the

unlabeled samples. The model is further optimized with

supervised learning jointly on the labels and pseudo labels.

Self-training, however, may become vulnerable when the

labelled set is scarce. Transfer learning and self-training

may be integrated, as explored in SimCLR-v2 [8].

3. Pretext Task – Instance Localization

Image classification favors translation and scale invari-

ance, where objects of various scales and locations are re-

duced to a single discrete variable representing object cate-

gories. In contrast, object detection desires translation and

scale equivariance. Feature representations for object detec-

tion should be able to preserve and reflect information about

object sizes and locations. The inherent difference between

the two tasks requires dedicated modeling for each task. Re-

cent works in contrastive learning focus on designing tech-

niques for image classification. Translation and scale in-

variance are enforced by learning consistency between two

random views of an image. As a result, the pretext task of

instance discrimination overfits to holistic classification and

fails to promote spatial reasoning.

We propose a novel pretext task called instance localiza-

tion (InsLoc) as an extension to instance discrimination. As

illustrated in Figure 3, we synthesize image compositions

by overlaying foreground instances onto backgrounds. The

objective is to discriminate the foreground from the back-

ground using bounding box information. In order to achieve

this task, one has to localize the foreground instance first

and then extract foreground features.

Denote the composited image as I ′ with the foreground

image I overlaid on the bounding box b. The task T is to

predict instance label y for I ,

y ← T (I ′, b). (1)

4. Learning Approach

We aim to learn a representation which is not only se-

mantically powerful, but also equivariant to translation and

scale. We first describe our approach of introducing bound-

ing box representations into a contrastive learning frame-
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Figure 3. Bounding boxes for spatial modeling. The red box

denotes the ground-truth bounding box of the foreground image.

On the right, we show a set of anchor boxes centered on a single

spatial location. By leveraging the multiple anchors with the di-

verse scales, locations and aspect ratios, we augment the ground

truth with the blue boxes whose IoU is larger than 0.5.

work in Sec. 4.1. Data augmentations on the bounding

boxes are presented as an effective way to improve local-

ization ability in Sec. 4.2. We finally give the architecture

details of our approach on two popular detection backbones,

R50-C4 and R50-FPN, in Sec. 4.3.

4.1. Instance Discrimination with Bounding Boxes

Instance Discrimination. Contrastive learning takes two

random “views” as query Iq and key Ik+
images, which

are derived from random augmentations from the same in-

stance. The corresponding features vq and vk+
are first ex-

tracted by a backbone network f (e.g. vq = f(Iq)) and then

projected to a unit sphere via a head network φ. The con-

trastive loss, i.e. InfoNCE [33], is computed as

L = − log
exp(φ(vq)·φ(vk+

)/τ)
∑N

i=0
exp(φ(vq)·φ(vki

)/τ)
, (2)

where τ and N are the temperature and the number of neg-

ative samples, respectively.

Spatial Modeling with Bounding Boxes. We aim to en-

force spatial alignment between input regions and convolu-

tional features, along with contrastive learning of discrimi-

native instances. To do so, given the image I , we first sam-

ple a random background image B, which is simply taken

as any other image in the training set. We then define the

composition operation C, which copies and pastes a random

crop of the image I onto the background B at a random

position and scale. The operation returns the composited

image I ′ and the bounding box parameters b,

I ′q, bq = C(Iq, Bq), (3)

I ′k+
, bk+

= C(Ik+
, Bk+

), (4)

where Iq and Ik+
are crops from the same image instance,

and Bq and Bk+
are their respective background images2.

In practice, the foreground image is resized with a random

aspect ratio3 and a random scale between 128 to 256 pixels.

With the bounding box parameters b, RoIAlign [24] is ap-

plied to extract the foreground features on the convolutional

feature maps,

v′q = RoIAlign(f(I ′q), bq), (5)

v′k+
= RoIAlign(f(I ′k+

), bk+
). (6)

With the query and key features, contrastive learning fol-

lows similarly to Eq. 2. Figure 3 illustrates our framework.

A problem that complicates detection is the discrepancy

between an image region and its spatially corresponding

deep features. Since the receptive field of pooled deep fea-

tures typically extends in the image well beyond the pooling

area, the pooled features are influenced by image content

outside its vicinity. Consequently, for a bounding box that

covers the foreground, its features are affected by the sur-

rounding background, making it harder to localize.

Our instance discrimination with bounding boxes ad-

dresses this problem in a data-driven manner. By encour-

aging similarity between pooled foreground features of the

same instance but with different backgrounds, the effective

receptive field is learned to match the spatial extent of the

bounding box. Establishing this explicit correspondence be-

tween convolutional features and their effective receptive

field facilitates localization with the learned representation.

4.2. Bounding­Box Augmentation

Image augmentations play a key role in contrastive learn-

ing of representations [15, 7]. We hypothesize that a sim-

ilar augmentation strategy may also be effective on the

bounding boxes. Specifically, jittered boxes around the

ground truth location may include regions on the back-

ground. Therefore, representations may be further guided

to spatially disregard the background and acquire the local-

ization ability.

Augmentations as predefined anchors. Instead of directly

shifting the bounding box spatially, we leverage the anchors

in the region proposal network (RPN) [36] to cover the di-

versity of the augmented boxes. The anchors are a set of

pre-defined bounding box proposals with diverse scales, lo-

cations and aspect ratios. Given a ground truth box, we cal-

culate its IoU against all the anchors. Anchors with a high

overlap (larger than 0.5) are filtered, and a random one is

selected as the augmentated box. Due to the anchor-based

design, we are able to obtain a diverse collection of box pro-

posals with a dynamic range of IoUs. We apply the bound-

2It should be noted that different background images need to be used

for the two views of a foreground instance. Otherwise, the model may

cheat on background cues for contrastive learning.
3Empirically, we find [1/3, 3/1] and [1/2, 2/1] lead to better perfor-

mance for R50-C4 and R50-FPN respectively.
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Methods Epoch AP AP50 AP75

Random init - 33.8 60.2 33.1

Supervised 90 53.5 81.3 58.8

Relative Loc. 200 50.6 76.9 55.2

MoCo-v2 200 57.0 82.4 63.6

MoCo-v2 800 57.4 82.5 64.0

InfoMin 200 57.6 82.7 64.6

InfoMin 800 57.5 82.7 64.3

SimCLR 200 51.5 79.4 55.6

BYOL 300 51.9 81.0 56.5

SwAV 400 45.1 77.4 46.5

InsLoc 200 57.9 82.9 64.9

InsLoc 400 58.4 83.0 65.3

Table 1. Object detection on PASCAL VOC. Mod-

els are fine-tuned on trainval07+12 and tested on

test2007. We evaluate the SimCLR, BYOL, SwAV

models ourselves, while reporting the remaining results

from their original papers. All numbers are averaged over

five trials.

ing box augmentations on RoIAlign module of the query en-

coder while the momentum encoder always uses the ground

truth one for pooling.

4.3. Architectural Alignment

One critical issue that contributes to the task misalign-

ment in transfer learning is the non-trivial architectural ad-

justment. The pretrained network needs to be re-purposed

into a detection network by appending region-wise opera-

tions and head networks. Our introduction of bounding box

representation allows to minimize the architectural discrep-

ancy between pretraining and finetuning. To be specific, the

RoIAlign operation in pretraining introduces region-wise

representations, which tightly mimics the detection behav-

ior in finetuning. We provide details for the detection archi-

tecture R50-C4 and R50-FPN during pretraining.

R50-C4. On the standard ResNet50 architecture, we insert

the RoI operation on the output of the 4-th residual block.

Bounding box coordinates are then used to extract region

features. The entire 5-th residual block is treated as the head

network for classifying regions.

R50-FPN. R50-FPN uses lateral connections to form a 4-

level feature hierarchy on top of ResNet50. Each level of

feature is responsible for modeling objects in a correspond-

ing scale. We insert the RoI operations on all levels in the

FPN hierarchy. The instance localization task is performed

on all 4 feature levels concurrently [43], where each level

maintains a separate memory queue of negative examples

in order to avoid cross-level cheating. In this way, not only

the ResNet50 network, but also the FPN layers can be pre-

trained.

5. Experimental Results

We evaluate the generalization ability of our model for

transfer learning on the mainstream object detection bench-

marks: PASCAL VOC [17] and MSCOCO [28]. The main

experimental results with state-of-the-art comparisons are

presented in Section 5.1. Ablation studies and discussions

regarding the trade-offs between semantic classification and

localization are conducted in Section 5.2. In Section 5.3, we

present an experiment on the mini version of MSCOCO to

demonstrate the fast generalization ability of our model un-

der a small amount of labelled data.

Dataset. The ImageNet dataset [11] with 1.3 million im-

ages is used for pretraining, while PASCAL VOC [17] and

MSCOCO [28] are used for transfer learning. PASCAL

VOC0712 contains about 16.5K images with bounding box

annotations in 20 object categories. MSCOCO contains

about 118K images with bounding box and instance seg-

mentation annotations in 80 object categories.

Pretraining. We largely follow the hyper-parameters from

the official implementation of MoCo-v2 [9]. We optimize

the model with synchronized SGD over 8 GPUs with a

weight decay of 0.0001, a momentum of 0.9, and a batch

size of 32 on each GPU. The optimization takes 200-400

epochs with an initial learning rate of 0.03 and a cosine

learning rate schedule [30]. A two-layer MLP head is used

for contrastive learning, and the temperature parameter is

set to 0.2 in Eq 2. We also maintain a memory queue of

65536 negative samples. The momentum coefficient is set

to 0.999 for updating the key encoder.

Data augmentations. During pretraining, image augmen-

tations for the foreground content follow MoCo-v2 [9].

Specifically, we apply random resized cropping, color jitter-

ing, grayscaling, gaussian blurring and horizontal flipping.

Even stronger augmentations may further boost the transfer

performance [38, 7] but lie outside the focus of our work.

Fine-tuning. The backbone network is transferred from the

pretraining task to the downstream task. Following MoCo-

v2 [9], synchronized batch normalization is used across all

layers including the newly initialized batch normalization

layers. Detectors are implemented and fine-tuned using de-

tectron2 [40].

5.1. Main Results

We provide our experimental results for object detection

and compare the performance with state-of-the-art methods.

The pretrained weights of SimCLR [7] and BYOL [21] are

borrowed from a third-party implementation4, while those

of MoCo [22], InfoMin [38] and SwAV [3] are collected

from their official implementations.

4https : / / github . com / open - mmlab / OpenSelfSup /

blob/master/docs/MODEL_ZOO.md
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Methods Epoch APbb APbb

50 APbb

75 APmk APmk

50 APmk

75

Random - 35.6 54.6 38.2 31.4 51.5 33.5

Supervised 90 40.0 59.9 43.1 34.7 56.5 36.9

Rel. Loc. 200 38.0 57.4 41.0 33.3 54.1 35.4

MoCo-v2 200 40.7 60.5 44.1 35.6 57.4 37.1

MoCo-v2 800 41.2 60.9 44.6 35.8 57.7 38.2

InfoMin 200 41.3 61.2 45.0 36.0 57.9 38.3

InfoMin 800 41.2 61.2 44.8 35.9 57.9 38.4

SimCLR 200 39.6 59.1 42.9 34.6 55.9 37.1

BYOL 300 40.3 60.5 43.9 35.1 56.8 37.3

SWAV 400 39.6 60.1 42.9 34.7 56.6 36.6

InsLoc 200 41.4 60.9 45.0 35.9 57.6 38.4

InsLoc 400 41.8 61.6 45.4 36.3 58.2 38.8

(a) Mask R-CNN, R50-C4, 2× schedule

APbb APbb

50 APbb

75 APmk APmk

50 APmk

75

38.4 57.5 42.0 34.7 54.8 37.2

41.6 61.7 45.3 37.6 58.7 40.4

39.4 58.7 42.7 35.6 55.9 38.1

41.7 61.6 45.6 37.6 58.7 40.5

42.5 62.3 46.8 38.2 59.6 41.1

42.5 62.7 46.8 38.4 59.7 41.4

42.1 62.3 46.2 38.0 59.5 40.8

40.8 60.6 44.4 36.9 57.8 39.8

42.3 62.6 46.2 38.3 59.6 41.1

42.3 62.8 46.3 38.2 60.0 41.0

43.2 63.5 47.5 38.7 60.5 41.9

43.3 63.6 47.3 38.8 60.9 41.7

(b) Mask R-CNN, R50-FPN, 2× schedule

Table 2. Object detection and instance segmentation on COCO. Models are fine-tuned on train2017 and tested on val2017.

5.1.1 PASCAL VOC Object Detection

Setup. We use the Faster R-CNN detector [36] with a R50-

C4 backbone architecture. Optimization takes a total of 24k

iterations. The learning rate is initialized to 0.02 and de-

cayed to be 10 times smaller after 18k and 22k iterations.

The image scale is within [480, 800] pixels for training and

set to 800 at inference. AP, AP50 and AP75 are shown as the

evaluation metrics.

Results. The transfer results are summarized in Table 1. All

values are averaged over five independent trials due to large

variance. We report our results under 200 epochs and 400

epochs of pretraining. Compared with our direct baseline,

MoCo-v2 [9], our model obtains an improvement of +0.9

and +1.0 AP with 200 and 800 epochs, respectively. It also

outperforms all previous approaches without using complex

and stronger data augmentations such as RandAugment or

Multi-crop. Our pretrained model obtains the state-of-the-

art results on this benchmark.

5.1.2 COCO Object Detection and Segmentation

Setup. We use the Mask R-CNN [24] framework with R50-

C4 and R50-FPN backbone networks. Since previous litera-

ture [23] suggests that a detector with random initialization

can match the supervised counterpart on COCO [28] when

the training schedule is very long, we conduct this transfer

experiment on 2× schedules with 180k iterations of opti-

mization. The learning rate is initialized to 0.02 and de-

cayed to be 10 times smaller after 120k and 160k iterations.

The image scale is within [640, 800] pixels for training and

set to 800 for testing. AP, AP50 and AP75 are shown as the

evaluation metrics for bounding box detection and instance

segmentation.

Results. Table 2 shows the results for R50-C4 (Table 2a)

and R50-FPN (Table 2b). APbb and APmk denote the AP

of bounding box detection and instance mask segmenta-

tion, respectively. Pretrained for 200 epochs, InsLoc out-

performs the direct baseline MoCo-v2 [22] by +0.7 and

+1.5 AP for the R50-C4 and R50-FPN backbones. Pre-

trained for 400 epochs, InsLoc reaches the new state-of-the-

art performance, surpassing all prior self-supervised mod-

els with possibly stronger image augmentations. In partic-

ular, InsLoc introduces the significant improvements over

fully supervised ImageNet pretraining, i.e. +1.8 and +1.7

AP for R50-C4 and R50-FPN respectively. Notably, In-

foMin shows reduced transfer performance when the model

is pretrained longer. BYOL and SwAV are competitive for

the R50-FPN backbone but relatively weaker for the R50-

C4 backbone. Our model is consistently stronger in all as-

pects.

5.2. Ablation Study

To further understand the advantages of instance local-

ization, we conduct a series of ablation studies that exam-

ine semantic and localization trade-offs, the effects of the

new pretext task, fine-tuning with longer schedules, and

pretraining under more optimization epochs.

Whether the improvement is due to stronger seman-

tic features. Recent methods tend to focus on linear ob-

ject classification as the core evaluation metric for learned

representations, based on an assumption that representa-

tions with stronger semantics always translate well to other

downstream tasks. To further investigate and understand the

improvement of the proposed method for object detection,

we devise a new readout task for evaluating the localization

ability of pretrained models.

Specifically, given an input image, we split the whole

image into M patches. The task is to predict the location
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Methods Cls Loc APbb APmk

SWAV 70.1 58.4 34.0 30.4

BYOL 74.3 67.6 37.5 32.8

MoCo-v2 67.7 71.9 38.9 34.1

InsLoc 61.7 74.2 39.5 34.5

(a) Semantic vs. Localization. The linear readout accuracy of linear

classification (Cls) and localization (Loc) as well as overall fine-tuned

detection AP are presented. Detector architecture is R50-C4.

RA CP BBA APbb APmk

39.8 36.1

X 40.2 36.4

X X 41.1 36.9

X X X 41.4 37.1

(b) RoiAlign (RA) is inserted into the baseline to reflect architec-

tural changes. The instance localization task is then performed, i.e.

foreground images are copied and pasted (CP) onto the background

images to learn the spatial alignment. Bounding-box augmentation

(BBA) is finally applied. The experiments are performed on the R50-

FPN architecture.

Table 3. Ablation Studies. All numbers are reported with 1×

schedule on the COCO val2017 set.

of each patch based on the region features of the patch us-

ing linear classifiers. Figure 4 illustrates this task for M
equal to 9. While earlier work on context prediction [12]

predicts the relative spatial position between two patches,

our evaluation task instead considers the spatial arrange-

ment of a patch with respect to the full image. For each

patch, we extract its vector representation by forwarding it

through the backbone network, extracting RoI features, and

passing them through the head network. We append a linear

classifier to predict the patch index. We argue that this task

is akin to the detection pipeline, and reflects the localization

ability of pretrained models.

Table 3a shows a comparison of semantic and local-

ization accuracy. Instance Localization introduces a clear

improvement of 2.3% for the linear localization task,

while under-performing MoCo-v2 in linear classification by

6.0%. This suggests that the overall improvement on object

detection is mainly brought by better spatial localization,

instead of stronger semantics. These results also match a

recent finding [46] that self-supervised pretraining does not

transfer high-level semantics for object detection, but rather

low-level and mid-level transfer matters more. We further

include entries for BYOL and SWAV on this localization

evaluation in Table 3a. Their poor localization ability limits

the effectiveness of transfer to object detection.

Effectiveness of instance localization pretext task. Ta-

ble 3b presents the ablation studies of multiple components:

the architectural alignment, the instance localization task

and the proposed bounding-box augmentation. We first in-

tegrate the RoiAlign operator to alleviate the architectural
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Figure 4. Linear localization evaluation. We split a natural

image into a grid of region patches. For each region, we extract

its vector representation and train a linear classifier to predict the

region index in the full image.

changes for the baseline model. To be specific, holistic

representations are pooled and extracted from the network,

and contrastive learning follows. Also, multiple contrastive

losses on the FPN hierarchy (Sec.4.3) are applied, leading

to an overall +0.4 APbb improvement. Such improvements

demonstrate the effectiveness to align the architecture for

the detection transfer. We then apply the instance localiza-

tion task on the composited images with copy-paste oper-

ations and bounding box representations, the performance

reaches to 41.1 APbb, showing a clear margin over MoCo-

v2 by +1.3. Finally, when spatial jittering is applied on the

bounding boxes, the result is further boosted to 41.4 APbb.

These results strongly verify the effectiveness of the new

pretext task i.e. instance localization and the corresponding

augmentation.

Effects of fine-tuning schedules. Fine-tuning the down-

stream object detection task with increasing number of iter-

ations may improve the object detection performance. We

examine how the fine-tuning schedule affects the relative

improvement of pretrained models. In Table 4, we study

the object detection transfer to COCO under the 1x and 2x

fine-tuning schedules. Using R50-C4, an improvement of

0.6 APbb with the 1× schedule translates to an improve-

ment of 0.7 APbb with the 2× schedule. Similar observa-

tions were obtained for R50-FPN. These results show that

longer fine-tuning may not significantly weaken the relative

improvements, demonstrating the utility of pretrained mod-

els for transfer learning.

Effects of longer pretraining. ImageNet linear classifica-

tion accuracy benefits substantially from longer pretraining.

For example, MoCo-v2 improves from 67.5% to 71.1% by

increasing the number of pretraining epochs from 200 to

800. However, for object detection, longer pretraining may

be harmful as shown for InfoMin [38]. In Table 4, we re-

port the transfer performance on COCO with pretraining

models for 400 epochs of optimization. Compared to the
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Methods Epoch APbb APbb

50 APbb

75 APmk APmk

50 APmk

75

MoCo-v2 200 38.9 58.6 41.9 34.1 55.5 36.0

MoCo-v2 800 39.3 58.9 42.5 34.3 55.7 36.5

InsLoc 200 39.5 59.1 42.7 34.5 56.0 36.8

InsLoc 400 39.8 59.6 42.9 34.7 56.3 36.9

(a) Mask R-CNN, R50-C4, 1× schedule

APbb APbb

50 APbb

75 APmk APmk

50 APmk

75

40.7 60.5 44.1 35.6 57.4 37.1

41.2 60.9 44.6 35.8 57.7 38.2

41.4 60.9 45.0 35.9 57.6 38.4

41.8 61.6 45.4 36.3 58.2 38.8

(b) Mask R-CNN, R50-C4, 2× schedule

Methods Epoch APbb APbb

50 APbb

75 APmk APmk

50 APmk

75

MoCo-v2 200 39.8 59.4 43.6 36.1 56.5 38.9

MoCo-v2 800 40.4 60.2 44.2 36.4 57.2 38.9

InsLoc 200 41.4 61.7 45.0 37.1 58.5 39.6

InsLoc 400 42.0 62.3 45.8 37.6 59.0 40.5

(c) Mask R-CNN, R50-FPN, 1× schedule

APbb APbb

50 APbb

75 APmk APmk

50 APmk

75

41.7 61.6 45.6 37.6 58.7 40.5

42.5 62.3 46.8 38.2 59.6 41.1

43.2 63.5 47.5 38.7 60.5 41.9

43.3 63.6 47.3 38.8 60.9 41.7

(d) Mask R-CNN, R50-FPN, 2× schedule

Table 4. Baseline comparison with MoCo-v2 for object detection and instance segmentation on COCO. R50-C4 and R50-FPN

backbones are fine-tuned under 1× and 2× schedule.

models pretrained for 200 epochs, longer pretraining ob-

tains a consistent improvement and a new state-of-the-art

performance. Even longer pretraining with 800 epochs is

computationally expensive and we leave it for future work.

5.3. Evaluation on Mini COCO

Transfer learning to COCO may be of limited signifi-

cance due to the scale of its dataset. Previous literature [5]

also suggests that training from scratch on COCO with

very long learning schedule could provide a strong baseline.

To demonstrate the generalization ability of our pretrained

model under a small amount of labeled data, we conduct an

experiment on a mini version of the COCO dataset.

Dataset. We randomly select 10% of the training data

(around 11.8K images) from the original train2017 set

as Mini COCO. The total training data is similar to that of

PASCAL VOC [17]. The large variances of objects in terms

of scales and aspect ratios remains particularly challenging.

We use the full validation set (i.e. val2017) of MSCOCO

[28] which contains 5K annotated images for evaluation.

Fine-tuning. Fine-tuning protocols remain the same as for

the entire COCO. We use the R50-C4 backbone and fine-

tune the network for 12 epochs. An additional batch nor-

malization layer is inserted after the last residual block.

Results. Table 5 summarizes the results. We obtain a large

improvement of 3.3 APbb and 2.4 APmk against MoCo-v2,

and 3.1 APbb and 2.3 APmk against the supervised method,

demonstrating superior generalization and transfer ability.

Note that the gain on Mini COCO is much greater than

the gain on the original COCO. Such results clearly show

that our pretrained model is more data-efficient for transfer

learning.

Methods Epoch APbb APmk

Supervised 90 22.9 21.2

Relative Loc. 200 17.2 16.1

MoCo-v2 200 22.7 21.1

InfoMin 200 23.6 21.7

SimCR 200 20.0 18.9

BYOL 300 20.6 19.6

SWAV 400 14.9 15.2

InsLoc 200 26.0 23.5

Table 5. Object detection on Mini COCO. Models are

fine-tuned on 10% of COCO train2017 for 12 epochs

and evaluated on val2017.

6. Conclusion

We propose a new pretext task of instance localization,

and introduce the use of bounding boxes in self-supervised

representation learning. The pretrained model is shown to

perform weaker for holistic image classification, but much

stronger for patch localization. When transferred to ob-

ject detection, it achieves notable improvements against the

baseline MoCo and obtains the state-of-the-art results on

VOC and COCO. We also show that our approach obtains a

larger gain when the labeled data is particularly small. The

experimental results demonstrate that transfer performance

for object detection can be strengthened by improving task

alignment.
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