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Abstract

Deep Neural Networks (DNN) could forget the knowl-

edge about earlier tasks when learning new tasks, which is

known as catastrophic forgetting. To learn new task with-

out forgetting, recently, the mask-based learning method

(e.g. piggyback [10]) is proposed to address this issue by

learning only a binary element-wise mask, while keeping

the backbone model fixed. However, the binary mask has

limited modeling capacity for new tasks. A more recent

work [5] proposes a compress-grow-based method (CPG)

to achieve better accuracy for new tasks by partially train-

ing backbone model, but with order-higher training cost,

which makes it infeasible to be deployed into popular state-

of-the-art edge-/mobile-learning. The primary goal of this

work is to simultaneously achieve fast and high-accuracy

multi task adaption in continual learning setting. Thus mo-

tivated, we propose a new training method called Kernel-

wise Soft Mask (KSM), which learns a kernel-wise hybrid

binary and real-value soft mask for each task. Such a hybrid

mask can be viewed as a superposition of a binary mask and

a properly scaled real-value tensor, which offers a richer

representation capability without low-level kernel support

to meet the objective of low hardware overhead. We val-

idate KSM on multiple benchmark datasets against recent

state-of-the-art methods (e.g. Piggyback, Packnet, CPG,

etc.), which shows good improvement in both accuracy and

training cost.

1. Introduction

It is well-known that human and animals can learn new

tasks without forgetting old ones. However, a practical lim-

itation of Deep Neural Network (DNN) is their high degree

of specialization to a single task and domain. For example,

given a backbone DNN model, conventional fine-tuning of

the model for new tasks could easily result in the forget-

ting of old knowledge upon earlier tasks, thus degrading the

performance. Such phenomenon is known as catastrophic

forgetting, which widely exists in continual learning [6].

The continual learning refers that a model is incrementally

updated over a sequence of tasks, performing knowledge

transfer from old tasks to the new one.

The typical way to alleviate the catastrophic forgetting

issue is to fine-tune the backbone model w.r.t the new task

with regularization [8, 6, 14, 1], thus preventing drastic

weight update. Nevertheless, such method has limited suc-

cess when many new tasks need to be learned. Different

from that, Piggyback [10], a mask-based continual learn-

ing method, is proposed to address this issue by learning

only binary (i.e., 0,1) element-wise masks w.r.t the weights,

while keeping the backbone model fixed. Such mask is then

multiplied by the fixed network weights, determining rele-

vant or irrelevant for the current task. Since it only updates

binary masks for each new task during training, it can be

trained in fast manner, but with limited modeling capac-

ity. To further improve the adaption capacity without for-

getting, the compress-grow-based approach (e.g., CPG [5])

compresses (via pruning) and selectively expands the model

iteratively. After punning, it utilizes the Piggyback method

to learn a mask for the preserved weights as shown in Fig.1,

and also retrains the released weights for current task. If

the accuracy goal is not attained, it will expand the model

by adding new filters. Such method outperforms Piggy-

back [10], as it involves additional task-specific parameters,

but with order-higher training cost.

Motivation: Although Piggyback could learn new tasks

in a fast manner, the binary mask has limited representation

capacity, which gets non-ideal accuracy gain. As the coun-

termeasure, CPG improves the representation capacity via

combining the mask learning and additional task-specific

parameters retraining. However, such complex training pro-

cedure suffers from extremely high training cost (i.e., train-

ing time and computing resources) that makes it impossible

to deploy into state-of-the-art popular edge based or mobile

computing based continual learning domain. These limi-

tations motivate us to explore a new mask-based learning

method that can rich the representation capacity, and more

importantly, without involving additional training cost.

Contribution: In this work, we propose a new learn-

ing method called Kernel-wise Soft Mask (KSM), which

learns a kernel-wise hybrid binary and real-value soft mask
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a) retraining with
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Figure 1: Overview of neural network approaches to overcome catastrophic forgetting, we consider the setting where each

task retrains a new classifier. Except that, for the backbone model: a) retraining while regularizing to prevent catastrophic

forgetting with previously learned tasks; b) unchanged weights with network extension for representing new tasks; c) selective

retraining with possible expansion[5]; d) the hard mask method[10]; e) the proposed soft mask method.

for each new task, while keeping the backbone model

fixed. The KSM method has the capability to mitigate the

well-known catastrophic forgetting issue, to better transfer

knowledge from old tasks, and more importantly, to im-

prove the training efficiency. Our method is distinguished

from prior works in the following aspects:

1. Kernel-wise mask sharing. To reduce the mask size

and improve the computation efficiency in hardware,

we design the mask in kernel-wise, instead of element-

wise. For instance, only a single mask value is utilized

to represent a 3 by 3 kernel, thus the mask size would

reduce by 9 times.

2. Soft mask. To boost the knowledge representation

ability without involving additional training cost, we

decompose the mask into a binary mask and partial

real-value scaling coefficient tensor.

3. Softmax trick. To obtain a better binary mask, we pro-

pose to leverage the softmax trick to relax the gradient

approximation for mask during training.

Benefiting from the techniques above, the proposed KSM

method could achieve similar to CPG (or even better) ac-

curacy, while keeping similar to Piggyback (or even better)

training speed.

2. Related Work

2.1. Dynamic architecture for continual learning

Dynamic architecture method addresses the catastrophic

forgetting issue by selectively retraining and expanding the

network architecture. [17] proposes to expand the network

by generating new sub-network with fixed size for each

task, while fixing the backbone model. [22] first selectively

retrains the backbone network while expanding with limited

Fixed weight Real-valued mask

Binarization

Binary mask

Binary Mask: 1 0

Task-specific weight

Real-valued 

mask:

large

small

Figure 2: Illustration of Piggyback to learn a binary mask

given a backbone model [10].

neurons by group-sparsity regularization, and then splits

and duplicates the neurons to avoid catastrophic forgetting.

Beyond that, PackNet [11] avoids this issue by identifying

weights important for prior tasks through network pruning,

while keeping the important weights fixed after training for

a particular task. In contrast to directly expanding model

architecture, [21] adds additional task-specific parameters

for each task and selectively learns the task-shared parame-

ters together. CPG [5] combines the model pruning, weight

selection and model expansion methods, which gradually

prunes the task-shared weights and then learns additional

task-specific weights. Moreover, it could uniformly expand

the model channels in each layer if the current accuracy can

not meet the accuracy requirement.

2.2. Multi-domain learning

Multi-domain learning [13, 15] aims to build a model,

which can adapt a task into multiple visual domains with-

out forgetting previous knowledge, and meanwhile using

as fewer parameters as possible. [15] proposes to recom-
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bine the weights of the backbone model via controller mod-

ules in channel-wise. [9] proposes domain-specific atten-

tion modules for the backbone model. One of the most

related method is Piggyback [10], which solves the issue

by learning task-specific binary masks for each task, as il-

lustrated in 1(d). They achieve this by generating the real-

value masks which own the same size with weights, pass-

ing through a binarization function to obtain binary masks,

which are then applied to existing weights. We denote the

real-value mask and binary mask as M
r

and M
b

respectively,

then, the binarization function is given by:

Forward : M
b =

{

1 if M
r ≥ τ

0 otherwise
(1)

Backward : ∇M
b = ∇M

r
(2)

Where τ is a constant threshold value. However, the

gradient of binarization is non-differential during back-

propagation. They use the Straight-Through Estimator

(STE) [4] to solve this problem, which estimates the gra-

dient of real-value mask by the gradient of binary mask as

shown in Fig 2.

3. Kernel-wise Soft Mask Method

Different from the conventional multi-task learning

where the data of all tasks is available at training time, we

consider a continual learning setting in which new tasks

({T1, T2, ..., TN}) arrive sequentially and past mask cannot

be used for training future tasks. Given a convolution layer,

we denote the weights W
(l) ∈ R

cin×cout×kh×kw, where

cin, cout, kh, kw refers the weight dimension of l-th layer, in-

cluding #output channel, #input channel, kernel height and

width, respectively. We also denote the dataset of the t-th
task (Tt) as Dt = {xt,yt}, where xt and yt are vectorized

input data and label pair. To adapt the pre-trained backbone

model with the parameter {W1} from the initial task T1 to

a new task Tt, we intend to learn a task-specific kernel-wise

soft mask Mt ∈ R
cin×cout×1×1 that is applied to the fixed

parameter W1 to provide good performance. To reduce the

mask size, each make element is shared by a kh × kw ker-

nel. Based on this idea, the optimization objective can be

mathematically formalized as:

min
Mt

L
(

f(xt; {Mt × W1}),yt

)

(3)

Such soft mask based method differs from prior mask-based

counterparts [10] in following aspects:

1. Kernel-wise Mask Sharing. Since the task-specific

weights are refactorized from the backbone model via

the task-specific mask, the size of mask directly deter-

mines the computation and model overhead for domain

Real-valued Mask

SoftMax Trick

Fixed Weight Kernels (3x3)

One-hot 

Binary Mask

Scaling tensor

Soft Mask

Task-specific 

Weight Kernels
Forward and backward: 

Forward only: 

( )

Figure 3: Overview of the proposed soft mask (KSM) learn-

ing method. Give a task t, we aim to learn a task-specific

soft mask Mt, by refactoring the fixed backbone weight to

favor the current task. Mt is decomposed into a binary mask

M
b
t

and a scaling coefficient tensor A
s
t

(4). To obtain M
b
t
, the

learnable real-value mask Mt pass through a logistic func-

tion (6) and a softmax function (8) successively. In addition,

scaling tensor M
b
t

is generated by M
r
t

(5). During training

backward, the real-value mask can be updated without gra-

dient estimation. After training, only the soft mask is saved

for testing.

adaption objective. Instead of utilizing the mask in the

identical size with weights as in [10], we introduce the

compact mask where each mask element is shared by

the kernel kh × kw. Such kernel-wise mask method

properly alleviates the computation and memory bur-

den, and importantly, without accuracy degradation as

demonstrated in our experiments.

2. Soft Mask. In contrast to prior works leveraging bi-

nary mask (M
b

t
∈ {0, 1}), the proposed soft mask

(Mt ∈ R) replaces the zero values inside binary mask

with real-valued scaling coefficients. Such simple

modification empowers the mask with a richer repre-

sentation capability. However, although kernel-wise

mask can greatly reduce the mask size, the additional

memory usage caused by the real-valued Mt (32 bits)

is still too large. For example, given a model with 3

by 3 kernel size in all layers, comparing with binary

mask (1 bit), the soft mask will cause 32
3×3 ≈ 3.5× ad-

ditional memory consumption. To address this issue,

we divided the soft mask into two parts: one is binary
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mask M
b

t
; the other is a scaling coefficient tensor A

s

t
in

sparse pattern. It can be expressed as:

Mt = M
b

t
+ A

s

t
. (4)

3. Softmax trick for better gradient calculation. Since

the soft mask above includes binary portion, there

still exists the non-differential issue. Instead of uti-

lizing Straight-Through Estimator (STE) to approxi-

mate gradient in the binary mask counterpart, we pro-

pose to leverage the softmax trick to relax the categor-

ical objective. Compared to the STE method, the soft-

max trick could provide better gradient calculation, to

achieve higher accuracy on new tasks.

Fig. 1 depicts the evolution from prior implementation

to our method. More details of our soft mask-based method

are presented in the following subsections.

3.1. Soft mask

As in Piggyback method [10], the adopted binary mask

is generated by binarizing trainable real-valued masks. We

conjecture that the magnitude of these masks have the in-

nature property to represent the importance levels w.r.t the

corresponding weights of the backbone model. Inspired by

that, we aim to utilize the real-valued mask to represent

scaling coefficient tensor.

However, there are two issues that impede us directly

use the trainable real-valued mask: 1) Constructing the

real-valued scaling coefficient tensor in dense pattern will

largely increase the model size; 2) The magnitude of val-

ues in the real-value mask is typically very small (i.e. 0.01),

even with negative values. To solve the fist issue, we intro-

Real-valued Mask

[0.01, 0.003, -0.003, 0.015]

[1, 0, 0, 1]
Binary Mask

Normalized to (0, 0.5)

Inverted Binary Mask

[0, 1, 1, 0]

Sparse scaling tensor

[0, 0.5, 0, 0]

[0, 0.003, -0.003, 0]

Figure 4: An example to generate the scaling coefficient

tensor with four values.

duce an additional trainable real-value scale coefficient ten-

sor A
s

as a replacement of the zero elements in the binary

mask counterpart, so as to create a soft mask and avoid mask

size increasing significantly due to those real values. In

this way, it can improve the learning capacity without time-

consuming re-training of zeroed-out weights in CPG [5]. To

solve the second issue, we normalize those values to treat

them as the scaling factor of each kernel when learning new

tasks. In practice, we normalize the real-valued masks be-

tween 0 and 0.5 in all the experiments. As shown in Fig. 3,

the above two steps can be achieved by inverting ‘0’ and ‘1’

in the generated binary mask M
b
, followed by multiplying

with the real-value mask M
r
. Fig. 4 gives a toy example

to show how to generate the scaling coefficient tensor by

real-valued masks, which can be formulated as:

A
s = normal(Mr

t
) (5)

Where
∼

Mb inverts 0 and 1 in the Mb. The ‘detach’ is used

to only grasp the values of Mr without influence the back-

propagation. Note that, since all the masks are set in kernel-

wise, each mask value will be applied on a kernel weight as

shown in Fig. 3.

In short, we generate the soft mask M by combining

the binary mask M
b

and the scaling factor A
s

as shown

in Eq. (4). It can be understood as we fix the important

kernels (‘1’ in binary mask) and scale the unimportant ker-

nels (‘0’ in binary mask) to be different trainable levels for

the new task. The soft mask is generated in this way, mainly

for the following two reasons:

1. Directly utilizing the already existing real-value mask

does not involve additional trainable parameters or

changing the backbone model architecture, indicating

that can be trained with no extra cost.

2. These scaling factors increase the model capacity for

the new task, with very small mask size increase due

to the facts that 1) real-values occupy a small portion

in the mask and 2) our kernel-wise mask dimension

is already much smaller than traditional element-wise

mask. We will quantify the overhead and the sparsity

level in the analysis later.

3.2. Soft mask learning via softmax trick

[10] proposes a masking method, where they train a real-

value mask followed by a hard threshold function to bina-

rize the mask as depicted in Eq. (1). However, the binariza-

tion function is not differentiable, the general solution is

to skip the threshold function during backpropagation and

update the real mask by directly using gradients computed

from binary mask, which is known as Straight Through Es-

timator (STE) as shown in Eq. (2). Different from that,

we propose a method to eliminate the gradient estimation

step and make whole mask learning compatible with exist-

ing gradient based backpropagation training process.

First, we relax the binarization function in Eq. (1) to a

continuous logistic function:

σ(Mr) =
1

1 + exp(−k(Mr − τ))
(6)
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where k is a constant. Note that the logistic function be-

comes closer to hard thresholding function when k is in-

creasing. The partial derivative of the logistic function is:

∂σ(Mr)

∂M
r = k · σ(Mr) · (1− σ(Mr)) (7)

In this work, we treat σ(Mr) as a probability mask to esti-

mate the importance level of the corresponding weight ker-

nels to save training time without involving extra parame-

ters.

When considering it as a probability mask, sampling

from a Bernoulli distribution is a reasonable and popular

way to generate, but such sampling procedure is not differ-

entiable. To overcome this issue, we leverage the softmax

trick, which performs a differential sampling to approxi-

mate a categorical random variable. Summarizing, we de-

fine p(·) using the softmax trick as

p(Mr) =
exp((logπ0)/T )

exp((logπ0)/T ) + exp((logπ1)/T )
(8)

Where π0 and π1 represent 1 − σ(Mr) and σ(Mr) respec-

tively. The temperature T is a hyper-parameter to adjust the

range of input values, meanwhile choosing larger one could

avoid gradient vanishing during back-propagation. Note

that the output of p(Mr) closer to a Bernoulli sample as T
towards to 0.

Benefiting from the differentiable property of Eq. (6) and

Eq. (8), the real-value mask M
r

can be embedded with ex-

isting gradient based backpropagation training without gra-

dient approximation. During training, most values in the

distribution of p(Mr) will move towards either 0 and 1. To

represent p(Mr) as binary format, we use the one-hot code

of p(Mr) during training forward, which has no influence

on the real-value mask to be updated for back-propagation.

In the end, the soft mask is generated as described

in Eq. (4). During forward, the input-output relationship

of one layer is given by y = W1 · (Mb + A
s)x. Accord-

ing to the chain rule in the back-propagation, the gradient

of such soft mask is given by:

∇M
s = (

∂E

∂y
) · (

∂y

∂p(Mr)
) · (

∂p(Mr)

∂σ(Mr)
) · (

∂σ(Mr)

∂M
r ) (9)

Where the partial derivative of each term is given by:

∂E

∂y
= ∇y

∂y

∂p(Mr)
= x

T · W1

∂p(Mr)

∂σ(Mr)
= −

p(Mr)(1− p(Mr))

Tσ(Mr)(1− σ(Mr))

(10)

By doing so, the proposed method can optimize the soft

mask in an end-to-end manner, where every step is differ-

entiable. We illustrate the complete algorithm in Algorithm

1. During training, we save the optimized M
∗

, and then di-

rectly apply it to the corresponding weight for testing.

Algorithm 1 The proposed soft mask learning

Require: Give the initial task τ1 and the backbone model

with the parameter W1, the threshold τ and temperature

T
1: for Task t = 2, ..., N do

2: Get data xt and label yt

3: M
b

t
← one-hot(p(Mr

t
))

4:

∼

Mb
t
← invert(Mb

t
)

5: Mt ← M
b

t
+

∼

Mb
t
· normal(Mr

t
.detach())

6: M
∗

t
← minMs

t
L
(

f(xt;W1 · Mt),yt

)

7: During testing, execute f(xt;W1 · M
∗

t
)

8: end for

4. Experiments

4.1. Datasets and backbone architectures

To make a fair comparison with prior works, similarly,

we use VGG16-BN [19] and ResNet50 [3] as the backbone

architectures for the following datasets:

ImageNet-to-Sketch In this experiments, six image classi-

fication datasets are used: CUBS [20], Stanford Cars [7],

Flowers [12], WikiArt [18] and Sketch [2]. We use the

ResNet50 as the backbone model which are trained on Ima-

geNet dataset [16], then fine-tunes the fine-grained datasets

sequentially.

Twenty Tasks of CIFAR-100 We divide the CIFAR-100

dataset into 20 tasks. Each task has 5 classes, 2500 training

images, and 500 testing images. In the experiment, VGG16-

BN model (VGG16 with batch normalization layers) is em-

ployed to train the 20 tasks sequentially.

4.2. Competing methods to compare

To test the efficacy of our KSM method, we compare

it with recent several representative methods in three cate-

gories:

• Whole model fine-tuning: Fine-tuning the whole

model for each task individually

• PiggyBack [10] It fixes the backbone weights and then

learns a binary mask to select partial weights for new

tasks.

• PackNet [11]: It first prunes unimportant weights, and

then fine-tunes them for learning new tasks.

• CPG [5]: It combines PackNet and PiggyBack to grad-

ually prune, pick and grow the backbone model for

learning new tasks sequentially.
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Table 1: The accuracy (%) and training cost (s) on Twenty Tasks of CIFAR-100. Considering those accuracy and training

time comparison, we could achieve best average accuracy and around ∼ 10× faster than CPG.

Methods 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

PackNet
Acc 66.4 80.0 76.2 78.4 80.0 79.8 67.8 61.4 68.8 77.2 79.0 59.4 66.4 57.2 36.0 54.2 51.6 58.8 67.8 83.2 67.5

Time 334 360 370 379 382 385 385 389 234 358 370 378 384 385 384 337 359 371 377 382 365

Piggyback
Acc 65.8 78.2 76.4 79.8 86.0 81.0 79.4 82.4 81.8 86.4 87.8 76.0 82.8 80.6 48.2 70.4 65.0 71.80 87.80 90.6 77.1

Time 100 150 102 113 154 102 121 119 97 130 84 110 96 120 106 97 97 106 110 119 111

CPG
Acc 66.6 76.2 78.2 80.6 86.4 83.0 81.4 82.4 82.0 86.8 86.8 81.4 82.8 82.0 50.4 72.4 66.2 71.2 85.6 91.6 78.7

Time 629 2101 2123 2120 2121 2127 2116 2120 2122 2121 2122 2115 2127 2125 2126 2114 2124 2126 2123 2125 2046

Ours
Acc 67.2 78.0 78.8 78.4 85.6 82.6 80.2 83.4 82.6 89.4 88.4 80.6 83.2 80.8 52.8 73.2 67.8 72.6 88.0 92.0 79.2

Time 130 81 111 123 123 127 62 106 88 78 95 85 73 88 90 90 80 95 96 65 94.3

4.3. Results on ImageNet-to-Sketch dataset

In this experiment, following the same settings in the

works of CPG [5] and Piggyback [10], we train each task

for 30 epochs using the Adam optimizer. The initial learn-

ing rate is 1e-4, which is decayed by a factor of 10 after 15

epochs.

4.3.1 Accuracy comparison

The accuracy of the five classification tasks is tabulated

in Table 2. For the first ImageNet task, CPG and PackNet

perform slightly worse than the others, since both meth-

ods have to compress the model via pruning. Then, for

the following five fine-grained tasks, the proposed method

could achieve all better accuracy comparing with Piggyback

and PackNet. Even comparing with the individually fine-

tuning whole model for each task, we could still achieve

better performance except WikiArt dataset. In comparison

to CPG that requires one order more training time (Fig.5),

our method achieves better accuracy in tasks of CUBS,

Flowers and Sketch. However, we admit that, owing to a

small portion of real-values in the hybrid mask, our method

needs slightly more model size than other methods. Note

that, the model size reported in 2 includes both the back-

bone model and introduced mask size.

Table 2: Accuracy on ImageNet-to-Sketch dataset

Dataset Finetune PackNet Piggyback CPG Ours

ImageNet 76.26 75.71 76.16 75.81 76.16

CUBS 82.83 80.41 81.59 83.59 83.81

Cars 91.83 86.11 89.62 92.80 92.14

Flowers 96.56 93.04 94.77 96.6 96.94

WikiArt 75.60 69.40 71.33 77.15 75.25

Sketch 80.78 76.17 79.91 80.33 81.12

Model Size

(MB)
554 115 121 121 146

4.3.2 Training time comparison

To do fair comparisons, all the methods are trained on the

single Quadro RTX-5000 GPU with the same batch size and

epochs. Fig. 5 summarizes the whole training time for each

method. First, our method slightly outperforms Piggyback,

since the proposed soft mask learning method (as illustrated

in Eq. (6) and Eq. (4)) is faster than the binarization function

in real hardware implementation. Then, ours and Piggyback

could both achieve better speed than PackNet, since Pack-

Net needs to retrain weights which is slower than training

a mask. Last, it is obvious that CPG requires ∼ 10× more

training time than all rest methods, while 3 out of 5 tasks

have lower accuracy than ours as shown in Table 2.

Figure 5: Training cost on ImageNet-to-Sketch datasets

with various continual learning methods.

4.4. Results on twenty tasks of CIFAR-100

Different from the ImageNet-to-Sketch setting that relies

on a pre-trained model on ImageNet dataset, in this exper-

iment, we first train a task from scratch as the backbone

model. Afterward, we fix the backbone model weights and

learn the task-specific mask for the rest tasks sequentially.

To conduct a fair comparison, we follow the same configu-

ration as CPG, and select the same task as the initial task-1.

Note that, since this work only focuses on continual learn-

ing without model expansion, all the CPG results are with-

out expansion based on their open source code.

4.4.1 Accuracy and training time comparison

Similar phenomenon can be observed with the ImageNet-

to-Sketch setting. Table 1 shows the accuracy and training
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Table 3: The accuracy on Twenty Tasks of CIFAR-100 with different initial tasks. The accuracy of individual task on these

five settings is slightly different. Nevertheless, the average accuracy is better than PackNet and Piggyback. Comparing with

CPG, better accuracy could be achieved on three different initial types.

Initial 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

1 67.2 78.0 78.8 78.4 85.6 82.6 80.2 83.4 82.6 89.4 88.4 80.6 83.2 80.8 52.8 73.2 67.8 72.6 88.0 92.0 79.2

5 67.0 77.2 77.6 79.2 84.8 82.6 78.0 85.2 82.8 88.8 88.4 80.8 84.2 81.4 50.2 71.8 67.0 71.2 86.0 91.8 78.8

10 67.8 77.2 76.6 79.4 82.8 81.6 80.8 83.4 82.0 88.6 88.2 81.2 85.0 80.2 53.4 73.8 68.6 74.4 87.2 91.2 79.3

15 67.6 78.2 77.0 77.0 81.8 82.6 78.4 83.4 83.2 86.6 88.4 80.0 83.0 78.0 51.2 70.8 67.8 67.8 86.4 91.0 78.0

20 66.8 75.6 77.2 76.6 85.4 81.0 79.0 84.0 82.2 87.4 86.4 79.0 83.8 80.4 49.0 70.8 66.4 72.0 88.2 93.6 78.2

cost for these methods. Our method could achieve com-

pletely better results than Piggyback and PackNet. In ad-

dition, comparing with CPG, we also could achieve better

results in most tasks. In terms of training time, our method

is around ∼ 10× faster than CPG.

Considering those accuracy and training time compari-

son, it shows our method could perform outstanding knowl-

edge transfer based on a weak backbone model, which only

trains on 2 classes. It is worthy to note that the initial task

indeed influences the performance of rest tasks, since we fix

the backbone weights all the time. In the next section, we

will show that, even with different initial tasks, in all cases,

our method could learn a mask that achieves good knowl-

edge representation for new task.

Figure 6: Training cost on twenty tasks of CIFAR-100 with

various continual learning methods.

4.5. Ablation Study and Analysis

4.5.1 Kernel-wise, soft mask and softmax trick

We study the individual effect of the three main techniques

of our proposed method on ImageNet-to-Sketch dataset set-

ting. As shown in Table. 4, we denote the ‘Piggyback-Soft’

as replacing the 0 values in piggyback’s binary mask with

scaling factors, and denote the ‘Ours-softmax’ as we only

use the proposed softmax trick to generate binary mask.

Also, we name the ‘Ker-wise’ and ‘Ele-wise’ as kernel-wise

and element-wise mask respectively. The ‘Ours-Softmax’

achieves better results than Piggyback, which means the

proposed differentiable mask learning process with soft-

max trick could generate better optimization, since we don’t

have gradient estimation. In addition, ‘Piggyback-Soft’

achieves better results than ‘Piggyback’ proving that adding

scaling factors to zeroed-out weights indeed improves the

task-specific representation ability. Also, changing the

mask to kernel-wise has very minor or neglect-able influ-

ence for performance. In the end, the ‘Ours-Full’ combines

all three techniques, showing best overall performance in all

datasets.

Table 4: The ablation study on the proposed method.

Method CUBS Cars Flowers WikiArt Sketch

Piggyback 81.59 89.62 94.77 71.33 79.91

Piggyback - Ker-wise 81.76 89.57 94.88 70.30 79.95

Piggyback - Soft 82.26 91.17 95.85 73.12 80.22

Ours - Softmax 82.86 91.71 96.67 74.06 80.70

Ours - Ele-wise 83.79 92.18 96.90 75.0 81.10

Ours - Full 83.81 92.14 96.94 75.25 81.12

4.5.2 The Effect of Different Initial Tasks

Different from the ImageNet-to-Sketch dataset setting that

heavily relies on a strong pre-trained model, we randomly

select a task and then train it from scratch as the initial

model in Twenty Tasks of CIFAR-100 setting. To explore

how does the initial task affects the performance of rest

tasks, we randomly select five different tasks as the initial

task as shown in Fig. 6. Thus, the accuracy of these five set-

tings on each individual task is slightly different, since they

own different domain shift levels. Nevertheless, the average

accuracy is better than PackNet and Piggyback. Comparing

with CPG, better accuracy could be achieved on three differ-

ent initial types, which indicates that the proposed method

could balance the domain shift with different initial tasks.

4.5.3 Scaling Tensor Distribution on ImageNet-to-

Sketch Setting

Fig. 7 shows the distribution of the scaling tensors on five

different tasks respectively. We select two representative

layers of the ResNet50 model: first layer and last layer. In

practice, we normalize the real-valued mask between 0 and

0.5. Three observations could be drawn across all tasks: 1)
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end layers have more scaling tensors than front layers. Es-

pecially, the last layer has the highest scaling tensor ratio in

the soft mask; 2) the number of scaling tensors almost grad-

ually increases from 0 to 0.5, which depends on the learning

property of the real-valued mask; 3) different from Flowers,

cars and CUBS dataset, WikiArt and Sketches have more

number of scaling tensors between 0 and 0.2, which reflect

these two tasks are more difficult in terms of domain shift.

(a) CUBS dataset

(b) Flowers dataset

(c) Cars dataset

(d) WikiArt dataset

(e) Sketches dataset

Figure 7: The scaling tensor distribution on ImageNet-to-

Sketch setting

4.5.4 Architecture and Soft Mask Visualization

Fig. 8 visualizes the ratio of ‘1’ values in binary mask and

the scaling factor. Two observations could be drawn from

all the tasks: 1) Within a task, end layers need more changes

than front layers, especially the last convolutional layer. 2)

The scaling factor ratio may link to the domain shift diffi-

culty. For example, the largest dataset WikiArt has a higher

ratio the that of smallest dataset Flowers.

Figure 8: The ratio of two mask types visualization on

ResNet50 for ImageNet-to-Sketches dataset.

5. Conclusion

In this work, we propose a novel kernel-wise soft mask

method for multiple task adaption in the continual learn-

ing setting, which learns a hybrid binary and real-value soft

mask of a given backbone model for new tasks. Compre-

hensive experiments on the ImageNet-to-Sketch dataset and

twenty tasks of CIFAR-100 indicate that, with no need of

using weight regularization and model expansion, the pro-

posed method can run ∼ 10× faster than the state-of-the-

art CPG based learning method with similar accuracy per-

formance. In addition, we analyze the effect of different

backbone models. Even with a weak backbone model, the

proposed method also could learn reasonable information

for new tasks. We show that we can achieve better results

compared with the related prior mask-based methods.
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