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Abstract

Multi-person pose estimation and tracking serve as cru-

cial steps for video understanding. Most state-of-the-art ap-

proaches rely on first estimating poses in each frame and

only then implementing data association and refinement.

Despite the promising results achieved, such a strategy is

inevitably prone to missed detections especially in heavily-

cluttered scenes, since this tracking-by-detection paradigm

is, by nature, largely dependent on visual evidences that

are absent in the case of occlusion. In this paper, we pro-

pose a novel online approach to learning the pose dynam-

ics, which are independent of pose detections in current

fame, and hence may serve as a robust estimation even in

challenging scenarios including occlusion. Specifically, we

derive this prediction of dynamics through a graph neural

network (GNN) that explicitly accounts for both spatial-

temporal and visual information. It takes as input the his-

torical pose tracklets and directly predicts the correspond-

ing poses in the following frame for each tracklet. The

predicted poses will then be aggregated with the detected

poses, if any, at the same frame so as to produce the final

pose, potentially recovering the occluded joints missed by

the estimator. Experiments on PoseTrack 2017 and Pose-

Track 2018 datasets demonstrate that the proposed method

achieves results superior to the state of the art on both hu-

man pose estimation and tracking tasks.

1. Introduction

Multi-person pose estimation and tracking find their ap-

plications in a wide spectrum of scenarios including behav-

ior analysis and action recognition, and have therefore re-

ceived increasing attention in recent years [45, 32, 19]. De-

spite often coupled together, they focus on slightly differ-

ent aspects: the former aims to locate human joints in each

*The work is partially done when the author is an internship at Worm-

pex AI Research.
†Corresponding author.
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Figure 1. By modeling the pose dynamics from history poses

through a graph neural network, our method learns a pose predic-

tion that is robust to challenging scenes, such as motion blur (top)

and occlusion (bottom). In both cases, the visual-based HR-

Net [37] fails to locate the joints, yet our approach delivers de-

pendable pose estimations.

frame of an input video, while the latter one aims to asso-

ciate joints that belong to the same human across frames. It

has been long considered as a challenging task due to var-

ious factors, including but not limited to camera motions,

complex backgrounds, and mutual occlusions.

Thanks to the recent advances of deep learning tech-

niques, pose estimation and tracking have witnessed un-

precedented results in the past years. Existing methods can

be broadly categorized into two streams, bottom-up meth-

ods [32, 19, 55, 18] and top-down methods [45, 53, 40].

Bottom-up methods first generate joint candidates and then

group the joints into a person detection. The grouped joints

are then associated across frames to generate the final pose

tracking results. Top-down methods, on the other hand, first

detect human candidates in a single frame and then estimate

the human poses for each candidate. The estimated human

poses are associated across frames to achieve pose track-

ing. Methods from both streams have produced promising
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results on various scenarios [53, 40].

In spite of the encouraging results, state-of-the-art pose

estimation and tracking approaches remain prone to missed

detections especially in highly-cluttered and fast-motion

scenes. This is not totally unexpected, since by nature they

rely on first detecting either joints or human bodies in a

scene using a visual-based detector, and only then carry-

ing out data association to link the detections into tracks. In

challenging scenarios such as crowded or blurred scenes,

the joint- or human-detector would inevitably fail due to

the absent image evidences. Although some succeeding re-

finement steps would mildly remedy the flawed estimations,

they are are still largely dependent on visual cues and hence

incompetent to fully tackle missed detections.

We propose in this paper a novel approach by explic-

itly looking into the dynamics of human poses within image

sequences. In contrast to state-of-the-art approaches that

rely on first detecting human or joints in each frame, which

is again prone to failures in the absence of detection evi-

dences, our approach first predicts poses in a frame from a

track of history without looking at any detection cue. This

strategy allows us to free our dependency on the detection

evidences and consequently produce a legitimate state of

human pose at the very first place. Specifically, in our ap-

proach this prediction step is accomplished through a graph

neural network (GNN) that takes as input a track of history

poses in previous frames. Next, the predicted pose is aggre-

gated with the detected poses, if any, in the same frame to

produce the final pose, in which way both dynamical and

visual information are exploited. At a conceptual level, our

approach follows a similar spirit of Bayesian filters, expect

that in our approach all parameters and features are learned

end to end. A qualitative example is shown in Figure 1,

where our dynamic-based approach yields dependable pose

estimation results in the cases of motion blur and occlusion.

Apart from the strength of recovering missed poses from

predictions, the proposed approach also enjoys other mer-

its. First, prior approaches match poses between two con-

secutive frames, which is brittle to identify switches due to

factors such as intersection of poses and fast motion. Our

approach, by contrast, aggregates poses within the same

frame, thanks to our prediction-based nature, allowing us to

significantly reduce the mismatched rate. Second, as com-

pared to state-of-the-art methods, our approach tackles pose

tracking from an additional perspective, i.e. the motion dy-

namics, which complements the visual cues that are in many

cases absent, resulting in gratifying final poses.

We evaluate the effectiveness of the proposed method on

two widely used benchmark datasets, PoseTrack 2017 and

PoseTrack 2018. Empirical evaluations showcase that our

method outperforms state-of-the-art approaches by a con-

siderably large margin on both pose estimation and tracking

tasks. We also provide extensive analyses on the impact of

each component in the proposed method, and demonstrate

the superiority of learning pose dynamics using our method.

2. Related Work

We briefly review the following three related topics, in-

cluding single-frame human pose estimation, human pose

tracking, and graph neural networks.

2.1. Single-Frame Human Pose Estimation

Human pose estimation methods from single images

can be generally categorized into top-down methods and

bottom-up methods. Bottom-up methods [6, 27, 29, 17, 8]

do not rely on human detectors. These methods first de-

tect all the body joints and then group them to form human

poses. The major challenges are robustly detecting joints

in complex situations (e.g. various scales, poses and clut-

tered background) and correctly grouping joints from dif-

ferent persons particularly in crowds with heavy occlusions.

Top-down methods first detect the human bounding

boxes from an image and then estimate the human pose

within each bounding box. Most top-down methods adopt

off-the-shelf human detectors [33, 7, 54] and focus on de-

signing efficient human pose estimators [37, 28]. Pose esti-

mation is confined for a single person within a small area at

a fixed scale. With a reliable human detector, the top-down

methods can achieve accurate human pose estimation.

2.2. Human Pose Tracking

Extending the pose estimation to video lead to the hu-

man pose tracking problem, where the human poses are es-

timated for each frame and associated across frames. As a

result, pose tracking is often tackled together with human-

location tracking [42, 43, 25, 24, 21].

Bottom-up methods [32, 18, 39] in pose tracking asso-

ciated the joints spatially and temporally without detecting

human bounding boxes. For example, Raaj et al. [32] ex-

tended the Part Affinity Field (PAF) [6] designed for sin-

gle image pose estimation to include temporal modeling for

pose tracking. Jin et al. [18] proposed ST-Embed to learn

the Spatial-Temporal Embedding of joints based on the idea

of Associative Embedding [27]. Both methods only model

relationships of joints between two frames.

Top-down methods focus on improving single-frame

pose estimation by exploiting temporal context and as-

sociating the estimated poses into human pose tracklets.

In the simple baseline method [45], the estimated human

poses are associated by the similarity computed based on

the optical flow between consecutive frames. Detect-and-

Track (DAT) [15] utilizes a 3D Mask R-CNN model to de-

tect persons with key-points from a video clip and then asso-

ciates them by comparing the locations of person detections.

CombDet [40] extends a 3D network as the backbone for
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Figure 2. Overall pipeline of the proposed method. Given the history of poses and the current frame, the GNN model predicts poses for

each tracklet in the history memory. The predicted poses are then matched and merged with the estimated poses to obtain the final poses in

the current frame.

pose estimation to generate a tube of poses by directly prop-

agating a bounding box to the neighboring frames. Key-

Track [36] associates the estimated human poses pose sim-

ilarities. TKMRNet [53] matches human poses by learning

appearance embeddings of joints and refines joints by ex-

ploiting temporal context from tracked poses.

Although some of the prior methods utilize multiple con-

secutive frames to help improve pose estimation and track-

ing, none of them explicitly model the spatial-temporal and

visual dynamics of human joints. Our method models the

pose tracking process with a Graph Neural Networks to

learn the dynamics across frames from data.

2.3. Graph Neural Networks

Graph Neural Networks (GNNs) was first developed for

graph analysis such as node classification [20] and link

prediction [52]. It shows great potential in dealing with

non-grid data [14, 49, 47] and has been applied to process

point clouds and images [12, 44, 26, 48, 30]. For exam-

ple, DGMPN [51] utilize GNN to capture the long range

dependence among pixels in images to enhance the feature

representation.

GNN has been used to model human poses for pose-

based action recognition [23, 9, 35] and single-frame pose

estimation [41, 4]. For example, DGCN [31] adopts several

learnt graphs to model the relations of different joints and

propagates among them to obtain the enhanced joint feature

for better human pose estimation.

There are prior works that use GNNs for generic object

tracking [13, 2]. Gao et al. [13] proposed to divide an object

into several parts and learn a spatial-temporal template of

the object for tracking. Bao et al. [2] utilized GNN in their

pose tracking method to exploit human structural relations

to help associate human poses across frames. This method

relies on a strong human detector as well as a strong pose

estimator to generate human poses for association.

In this paper, we propose a GNN-based predictor to es-

timate a potential configuration for each human pose track-

let frame by frame via leveraging the tracked pose history.

The learnable predictor naturally models the pose tracking

process and captures the dynamics of pose tracklets across

video frames. Our proposed framework is capable of pre-

dicting the poses of missed human detections, which makes

it robust to heavy occlusions and motion blur.

3. Method

Figure 2 shows the overall pipeline of the proposed

method. For each incoming frame, two sets of poses are

computed separately by the single-frame pose estimation

module and the GNN-based pose prediction module. These

two sets of poses are matched and merged together to gen-

erate the final human poses for the current frame. We intro-

duce each components of the proposed method in the fol-

lowing sections.

3.1. Single-Frame Pose Estimation

We follow the standard pipeline of recent top-down pose

trackers [45, 40, 53] to perform pose estimation for each

frame. Each human detection in a frame is first cropped and

rescaled to a fixed size (e.g. 384×288 when HRNet is used

as the backbone of human pose estimation). The human

pose estimator takes the scaled image as input and outputs

a set of feature maps as well as a set of heatmaps H. The
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size of the generated heatmaps is typically smaller than the

input image (e.g. 96×72 with HRNet as the backbone). The

number of heatmaps is set to be the number of joints, which

is 15 on PoseTrack 2017 and PoseTrack 2018 datasets. Let

Hijk be the value at the (i, j) location of the k-th heatmap.

The position of the k-th joint can be computed as

l∗k = argmax
(i,j)

Hijk, (1)

where l∗k is the position within the heatmap and can be trans-

formed to the position in the frame according to the center

and scale information of the cropped image.

The training loss of the single-frame pose estimation

model is computed against the heatmaps. A cropped hu-

man example is first scaled to a fixed size and the corre-

sponding ground-truth joints are properly transformed to

the coordinates in heatmaps. Let lk be the ground-truth lo-

cation of the k-th joint in the heatmap. The ground truth

heatmap is generated following a 2D Gaussian distribution:

H
gt
ijk = exp(− ||(i,j)−lk||

2

2

σ2 ). σ is set to be 3 in all our ex-

periments. We train the human pose estimation model by

minimizing the following loss:

Le =
H
∑

i

W
∑

j

K
∑

k

||Hpred
ijk −H

gt
ijk||

2
2, (2)

where H and W represent the height and width of

heatmaps, and K is the number of joints.

3.2. Dynamics Modeling via GNN

As shown in Figure 2, given the tracked poses of the

same identity from prior frames, we design a GNN-based

model to explicitly capture the spatial-temporal human mo-

tion dynamics from history poses and make prediction for

the subject’s pose in current frame.

The GNN as a human pose dynamics model has joints

of tracklets as the nodes. Edges between all pair-wise joints

within-frame and between consecutive frames help capture

the relative location constraints between joints as well as

human motion dynamics. When applied to history tracklets

as shown in the Joint Aggregation part in Figure 3, the GNN

updates features on the nodes with respective to the learned

dynamics. For pose prediction, each location in the current

frame is considered as a node and is connected to the joints

of the last pose in the tracklet. The GNN performs feature

aggregation for the locations in the current frame and clas-

sifies each location by its aggregated features to determine

the joint type of the location.

Let t be the total number of frames involved in the GNN.

A FIFO queue is used to maintain the history poses with

the same identity. We denote a human pose as Pr, where

r ∈ {1, . . . , t}. P1,...,t−1 are from history tracklets and Pt

represents the predicted pose in the current frame.

△ 𝒙	

△ 𝒚

Center

Current Frame
Tracklet from Previous Frames

…

…

△ 𝒙,	 △ 𝒚, Visibility

…
Joint ID

:   Visual feature

:  Position feature

:  Type feature

:  Temporal message passing

:  Spatial message passing

:  The center of the last frames in a tracklet

Joint Aggregation Pose Prediction

Ground Truth HeatmapPredicted Heatmap

Loss:

,

…

Figure 3. Illustration of our GNN model. Nodes in the tracklet are

the joints of poses, while edges are the connections between joints

within the same pose or across consecutive poses. During the pose

prediction, we model each position in the current frame as a node

and generate the heatmaps by classifying all the nodes. L2 norm

is used as the loss function to train the GNN model.

3.2.1 Nodes in the proposed GNN model

Joints of history tracklets and potential joints of the human

pose in current frame are used as nodes in our GNN model.

For each frame, we incorporate three kinds of cues on each

joint to construct the input node feature, the visual feature

from the backbone CNN of our single-frame pose estimator

as vk, the encoding of its joint type with a learnable lookup

table [10] as ck, and its 2D position and confidence score

from pose estimator as pk. For the potential joint in the

current frame we set its confidence to 1. All the 2D posi-

tion of joints are normalized according to the center of the

last tracked pose Pt−1. Normalizing joint positions with

respect to the same center help capture the full body move-

ment. Here k ∈ 1, . . . ,K denotes the k-th joint type of a

given human pose.

We use Multilayer Perceptron (MLP) to transform all the

joint features to have the same dimension and merge them

with average pooling, i.e. The final feature of the k-th joint

is computed as follows:

Jk = Pooling
(

MLPvis(vk),MLPpos(pk),

MLPtype(ck)
)

.
(3)

The three MLP∗ encoders above (MLPvis, MLPpos,

MLPtype) for different cues do not share parameters.

When constructing Jk for potential joints in the current

frame the ck part is ignored.
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3.2.2 Edges in the proposed GNN model

The graph is constructed with two different types of edges:

the connections between joints within the same frame and

the connections across consecutive frames. Edges within

the same frame enable the GNN to capture relative move-

ments and spatial structure of human joints while the cross-

frame edges model the temporal human pose dynamics. We

use two sets of GNN parameters when aggregating features

from these two types of edges.

3.2.3 Joint aggregation

In each layer of the GNN model, node features are updated

via massage passing, i.e.,

J
l+1
k = J

l
k +MLP

(

[

J
l
k ||M(Jl

k′,k′∈N
Jl

k

|Jl
k)
]

)

, (4)

where J
l
k represents the feature of the k-th joint at the l-th

layer. NJl

k

represents the set of neighbours of the k-th joint,

M represents the message aggregating function that takes

all the neighbours as inputs and computes the aggregated

feature, and [·||·] represents the concatenation of vectors.

We use self-attention [38] mechanism in function M to

compute the aggregated feature. To aggregate the features

from all the neighbours, the query representation of Jk is

computed as Jkq and then each joint Jk′ is first transformed

to two different representations include value Jk′v and key

Jk′k. The final aggregated feature can be computed as the

weighted average of all the values of the neighbours:

M(Jk′,k′∈NJk
|Jk) =

∑

k′∈NJk

αkk′Jk′v,

where αkk′ = Softmaxk′(J⊤
kqJk′k).

(5)

J
⊤ represents the transpose of the feature vector J and

the similarity is computed as the dot product between the

query and keys. αkk′ is computed as the softmax normal-

ization over the similarities.

The information comes from the different types of edges

plays different roles: edges within the same frame model

the spatial dynamics while edges across frames incorpo-

rate the temporal dynamics. We keep separated parameters

for the two dynamics. Specifically, the MLP(·) in Equa-

tion 4 is switched between two implementations from layer

to layer. In the l-th layer, the implementation is set to be

MLPspatial(·) working on neighbors defined by the edges

within the same frame and in the next (l + 1)-th layer, it is

switched to MLPtemporal(·) working on neighbors defined

by edges across frames, and so on so forth. The aggregated

features of joints from Pt−1 are used for the pose prediction

step.

3.2.4 Pose prediction

This step aims to locate the poses in current frame by the

GNN model, with neither human detection nor single-frame

human pose estimator. To reduce computation, we select

potential joints only from a confined scope. We propagate

the bounding box of the last tracked pose Pt−1 to current

frame and scale it up by a factor of 1.5 vertically and 2 hor-

izontally at the same center to support fast-motion scenes,

shown as the dotted orange box in Figure 3.

A graph is constructed with potential joints in the cur-

rent frame and joints from Pt−1. The learned GNN model

is then applied to this graph to update joint features via mes-

sage passing as explained above.

On top of the final features from GNN as J, the predic-

tion is conducted via another MLP over each potential joint

in current frame, i.e.,

Prob = MLPpred(J), (6)

where Prob denotes the probability distribution over all

joint types of the input node. The predicted probability dis-

tributions of all potential joints in current frame generate the

predicted heatmaps for all joints.

3.2.5 Training

As in Equation 2, we generate ground-truth heatmaps from

labeled human pose and compute L2 loss against the pre-

dicted joint heatmaps. Since the full GNN predictor is dif-

ferentiable, we optimize the parameters and learn the dy-

namics from end to end.

3.3. Online Tracking Pipeline

In the current frame, given the poses from the GNN-

based predictor and the poses from the single-frame pose es-

timator, we match and fuse them to obtain the final tracked

human poses. In this process, the poses from the predictor

and that from the estimator are complimentary to each other

as the poses missed by the single-frame estimator due to oc-

clusion and motion blur can be recovered by the predictor.

Specifically, we apply Hungarian matching to compute

an one-to-one mapping between the predicted poses and the

estimated poses. The similarity used in the Hungarian algo-

rithm is the object keypoint similarity [45] computed based

on the positions of the joints.

After matching, we propagate the tracking IDs from the

predicted poses to the estimated poses if they are matched.

A new ID is assigned to the estimated pose without a

matched predicted pose, which is likely to be a newly ob-

served one. For all the matched poses, the joint heatmaps of

the two poses are first aligned according to their centers and

then merged together by averaging the heatmaps. Refined

poses are then decoded from the fused heatmaps.
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We store the tracked results in a FIFO manner while

keeping a fixed size of each tracklet. The history tracklets

are then used as inputs to the GNN model for the following

frame. The proposed framework is hence implemented to

be an online tracker, as shown in Figure 2.

4. Experiments

4.1. Datasets

We evaluate the proposed method on two widely used

datasets for human pose estimation and tracking, PoseTrack

2017 and PoseTrack 2018 [1]. These datasets contain sev-

eral video sequences of articulated people that perform var-

ious actions. Specially, PoseTrack 2017 contains 250 video

sequences for training and 50 video sequences for valida-

tion, PoseTrack 2018 increases the number of video se-

quences and contains 593 for training and 170 for vali-

dations. Both datasets are annotated with 15 joints, each

of them are associated with an ID for the corresponding

person. The training videos are annotated densely within

the middle 30 frames of each video sequences. The val-

idation videos are annotated every forth frame across the

whole video sequences beside the densely annotation of the

middle. We use the training set for training and valida-

tion set for testing, which is a common setup in previous

works [53, 15].

The performance of the proposed method is evaluated

from two aspects: human pose estimation and human pose

tracking. We use mean Average Precision (mAP) [22, 34]

to evaluate the performance of human pose estimation, and

Multi Object Tracking Accuracy (MOTA) to evaluate hu-

man pose tracking. MOTA is evaluated based on three kinds

of errors: missing rate, false positive rate, and switch rate.

Both metrics are computed independently for each joint and

then averaged across all joints. Since the evaluation of hu-

man pose tracking requires filtering the joints according to

some certain thresholds, we can either evaluated the per-

formance of human pose estimation independently or based

on the filtered joints. The former one provides us an il-

lustration of of the trade-off between human pose tracking

and human pose estimation while the latter one provides us

the pure performance of human pose estimation. We report

both results for pose estimation.

4.2. Implementation Details

For the single-frame human pose estimation, we used

HRNet [37] as the backbone. Following the training strate-

gies of [3, 53], the HRNet is first trained on COCO dataset

and then fine-tuned on PoseTrack 2017 and PoseTrack 2018

independently. For the fine-tuning process, we train the

model for 20 epochs with Adam optimizer. The initial

learning rate is set to be 0.0001 and reduced by a factor of 10

at the 10th and 15th epochs. We add several data augmen-

tation strategies as used in [3], including random rotation,

random flip, randomly using half of body, and random scale.

Flip test is used in our work as in [40]. We adopt Faster

R-CNN [33] with feature pyramid network and deformable

convolutional network as the human detector [53]. The hu-

man detector is pre-trained on COCO dataset and then fine-

tuned on PoseTrack 2017 and PoseTrack 2018 separately.

For the human detector, Non-Maximum Suppresion

(NMS) is applied to remove duplicate detected bounding

boxes which is a common operation in detection. Specif-

ically, we use Soft-NMS [5] and set the threshold to 0.7.

As articulated human pose tracking in a video often in-

volves complex interaction and heavy person-to-person oc-

clusions, traditional NMS in object detection that merely

rely on the Intersection Over Union (IOU) of the bounding

boxes is prone to fail [53]. Since we have the pose informa-

tion, Pose-based Non-Maximum Suppresion (pNMS) [11]

is adopted to help further remove the duplicate human

poses. In pNMS, the IOU is not computed based on the

bounding boxes but the weighted sum of all the joints’ dis-

tances with respect to the scale of the pose. The threshold

of pNMS is set to be 0.5.

For the training of the GNN pose prediction model, the

fine-tuned backbone model is used to compute the visual

feature of the joints. Specifically, we obtain the feature

maps that are in the same resolution as the heatmaps, from

all the three stages of the HRNet. The feature maps then

are concatenated together and form the final feature maps

with depth of 144. The visual feature of each joint can be

obtained according to the joint position in the heatmap. Sev-

eral data augmentation strategies are used during the GNN

training process, including random rotation of the tube, ran-

dom flip, random scale of the tube, and randomly selecting

the gap between consecutive frames in the tube. We train

the GNN model for 10 epochs with Adam optimizer. The

initial learning rate is set to be 0.0001 and reduced by a

factor of 10 at the 5th and 8th epochs. The length of pose

history is set to be three.

4.3. Results on PoseTrack 2017

We compare our proposed method with the state-of-the-

art methods in human pose estimation and human pose

tracking, which are shown in Table 1, Table 2, and Table 3.

In Table 2 and Table 3, the upper methods are bottom-up

fashion and lower methods are top-down fashion.

Human pose estimation. In Table 1 and Table 2, we

Method Head Shou Elb Wri Hip Knee Ankl Total

PoseWarper [3] 81.4 88.3 83.9 78.0 82.4 80.5 73.6 81.2

CombDet [40] 89.4 89.7 85.5 79.5 82.4 80.8 76.4 83.8

Ours 90.9 90.7 86.0 79.2 83.8 82.7 78.0 84.9

Table 1. Comparison of state-of-the-art methods on pure human

pose estimation (without filtering) on the PoseTrack 2017 valida-

tion set, where the performance is evaluated as mAP and all joints

are counted.
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Method Head Shou Elb Wri Hip Knee Ankl Total

BUTD [19] 79.1 77.3 69.9 58.3 66.2 63.5 54.9 67.8

RPAF [55] 83.8 84.9 76.2 64.0 72.2 64.5 56.6 72.6

ArtTrack [1] 78.7 76.2 70.4 62.3 68.1 66.7 58.4 68.7

PoseFlow [46] 66.7 73.3 68.3 61.1 67.5 67.0 61.3 66.5

STAF [32] - - - 65.0 - - 62.7 72.6

ST-Embed [18] 83.8 81.6 77.1 70.0 77.4 74.5 70.8 77.0

DAT [15] 67.5 70.2 62.0 51.7 60.7 58.7 49.8 60.6

FlowTrack [45] 81.7 83.4 80.0 72.4 75.3 74.8 67.1 76.9

TKMRNet [53] 85.3 88.2 79.5 71.6 76.9 76.9 73.1 79.5

Ours 88.4 88.4 82.0 74.5 79.1 78.3 73.1 81.1

Table 2. Comparison with state-of-the-art methods on human pose

estimation (with filtering) on the PoseTrack 2017 Validation set,

where thresholds are used to filtering low confidence joints for

pose tracking. Evaluated in mAP and all joints are counted.

Method Head Shou Elb Wri Hip Knee Ankl Total

BUTD [19] 71.5 70.3 56.3 45.1 55.5 50.8 37.5 56.4

ArtTrack [1] 66.2 64.2 53.2 43.7 53.0 51.6 41.7 53.4

PoseFlow [46] 59.8 67.0 59.8 51.6 60.0 58.4 50.5 58.3

STAF [32] - - - - - - - 62.7

ST-Embed [18] 78.7 79.2 71.2 61.1 74.5 69.7 64.5 71.8

DAT [15] 61.7 65.5 57.3 45.7 54.3 53.1 45.7 55.2

FlowTrack [45] 73.9 75.9 63.7 56.1 65.5 65.1 53.5 65.4

PGPT [2] 75.4 77.2 69.4 71.5 65.8 67.2 59.0 68.4

TKMRNet [53] 81.0 82.9 69.8 63.6 72.0 71.1 60.8 72.2

CombDet [40] 80.5 80.9 71.6 63.8 70.1 68.2 62.0 71.6

Ours 82.0 83.1 73.4 63.5 72.3 71.3 63.5 73.4

Table 3. Comparison of state-of-the-art methods on human pose

tracking on the PoseTrack 2017 validation set. The performance

is evaluated as MOTA and all joints are counted.

evaluate pure human pose estimation in videos where the

estimated poses are directly evaluated without filtering, as

well as the filtered human pose estimation performance in

the context of pose tracking. As shown in Table 1, the pro-

posed method achieves the best performance, outperform-

ing the previous best method [40] by 1.1 mAP. Note that

CombDet [40] utilizes a heavier 3D convolutional back-

bone and uses 9 frames as input. Since human pose tracking

needs to firstly filter some estimated joints, the mAP result

in Table 2 is lower than that in Table 1. As shown in Table 3,

our method outperforms the best top-down method [53] by

1.6 mAP and the best bottom-up method [18] by 4.1 mAP.

Human pose tracking. As shown in Table 3, our

method achieves state-of-the-art pose tracking performance

and outperform the best top-down method [53] by 1.2

MOTA, and the best bottom-up method [18] by 1.6 MOTA.

Qualitative samples. To provide an intuitive under-

standing of our method, in Figure 4 we visualize some sam-

ples of the history pose tracklets, the pose estimation re-

sult in the current frame, and the final outputs of our full

method. Different skeleton colors represents different per-

son identity and the red circles in the 4th column highlight

the missed or incorrect estimated joints that are corrected

by the proposed GNN model.

4.4. Results on PoseTrack 2018

We show in Table 4, Table 5 and Table 6 the compar-

ison of our proposed method and existing methods on the

PoseTrack 2018 validation set. Again, our method achieves

Method Head Shou Elb Wri Hip Knee Ankl Total

PT CPN++ [50] 82.4 88.8 86.2 79.4 72.0 80.6 76.2 80.9

KeyTrack [36] 84.1 87.2 85.3 79.2 77.1 80.6 76.5 81.6

CombDet [40] 84.9 87.4 84.8 79.2 77.6 79.7 75.3 81.5

Ours 85.1 87.7 85.3 80.0 81.1 81.6 77.2 82.7

Table 4. Comparison of state-of-the-art methods on pure human

pose estimation (without filtering) on the validation set of Pose-

Track 2018. Evaluated in mAP and all joints are counted.

Method Head Shou Elb Wri Hip Knee Ankl Total

STAF [32] - - - 64.7 - - 62.0 70.4

TML++ [16] - - - - - - - 74.6

TKMRNet [53] - - - - - - - 76.7

Ours 80.6 84.5 80.6 74.4 75.0 76.7 71.9 77.9

Table 5. Comparison of state-of-the-art methods on human pose

estimation (with filtering) on the PoseTrack 2018 validation set,

where thresholds are used to filtering low confidence joints for

pose tracking.

Method Head Shou Elb Wri Hip Knee Ankl Total

STAF [32] - - - - - - - 60.9

TML++ [16] 76.0 76.9 66.1 56.4 65.1 61.6 52.4 65.7

PT CPN++ [50] 68.8 73.5 65.6 61.2 54.9 64.6 56.7 64.0

TKMRNet [53] - - - - - - - 68.9

KeyTrack [36] - - - - - - - 66.6

CombDet [40] 74.2 76.4 71.2 64.1 64.5 65.8 61.9 68.7

Ours 74.3 77.6 71.4 64.3 65.6 66.7 61.7 69.2

Table 6. Comparison of state-of-the-art methods on human pose

tracking on the PoseTrack 2018 validation set. Evaluated in

MOTA and all joints are counted.

the best performances in pure human pose estimation, pose

estimation with filtering, and human pose tracking. Specif-

ically, as in Table 4, the proposed method improves pure

human pose estimation without filtering by 1.1 mAP over

the state-of-the-art method [36]. As shown in Table 5, our

method outperforms the best existing human pose estima-

tion [53] with filtering for pose tracking by 1.2 mAP. And

for human pose tracking, the proposed method also achieves

the state-of-the-art performance improving the MOTA by

0.3 over [53], as shown in Table 6.

The superior performance on both PoseTrack 2017 and

2018 datasets in all three tasks (pure pose estimation in

video, pose estimation with filtering, and pose tracking) val-

idates the effectiveness of modeling dynamics by GNN.

4.5. Model Analysis

We provide here analyses on the proposed method, in-

cluding ablation studies, visualization of the attentions

among joints learnt from the GNN model, and sensitively

analysis of the memory length and GNN model size.

Ablation study. We examine the effectiveness of the

proposed method by conducting ablation experiments on

several key components. As shown in Table.7, Matching

w/ IOU and Matching w/ OKS means we associate the esti-

mated poses between consecutive frames using the IOU and

OKS as the similarity measure. Matching w/ GNN means

we only use the predicted poses for matching measure, and

the final poses are not refined by the predicted poses. Full

model is our proposed model. It can be seen that using the
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Figure 4. Qualitative examples of the proposed method on the PoseTrack 2017 validation set. The first three columns show the poses in

the memory, the fourth column shows the estimated poses from HRNet, and the last column shows the final poses of our proposed method.

Red dot circles highlight the incorrect or missed poses that are corrected.

Low

High

History Frames Current Frame

Figure 5. Visualization of the attention among different joints

within the GNN model. Red nodes are the centers for aggrega-

tion and the colors of lines indicate the attention values. We zoom

the current frame for a better visualization.

predicted poses for matching metric can improve the MOTA

performance and reduce the switch rate over IOU and OKS

metrics, the full model with pose refinement by pose merg-

ing can improve both the mAP and MOTA further more.

Visualization of GNN model. In order to provide a thor-

ough understanding of the GNN model, we visualize in Fig-

ure 5 the computed attention weights αkk′ as computed in

Equation 5. It can be observed that the hip in current frame

is influenced by the hip, shoulder, and knee in the consecu-

tive pose mostly. The ankle in the middle frame is influence

mostly by the lower part of the previous pose.

Length of memory tube and model size. In Table 8 we

Method mAP MOTA Miss (%) Switch (%) FP (%)

Matching w/ IOU 79.9 71.8 17.4 1.8 9.0

Matching w/ OKS 79.9 72.1 17.4 1.6 8.9

Matching w/ GNN 79.9 73.1 17.1 1.4 8.4

Full model 81.1 73.4 16.9 1.3 8.4

Table 7. Ablation studies on the PoseTrack 2017 validation set,

where Miss, Switch, FP stand for the missing rate, switch rate and

false positive rate (the lower the better) in MOTA.

Method mAP MOTA Miss (%) Switch (%) FP (%)

Two frames 80.6 72.9 17.2 1.4 8.5

Four frames 81.3 73.4 16.9 1.3 8.4

Smaller model 80.8 73.2 17.1 1.3 8.4

Full model 81.1 73.4 16.9 1.3 8.4

Table 8. Influence of model capacity and length of memory.

show the results with different lengths of memory and dif-

ferent model size, where smaller model means the dimen-

sion of the output of MLP∗ (as in Equation 3) is halved. It

can be seen that the performance is improved when chang-

ing the memory length from two to four frames and being

saturated when using more memory. Enlarging the model

size improves both mAP and MOTA.

5. Conclusion

We present in this paper a novel approach for human

pose estimation and tracking. In our method, a GNN model

is designed to explicitly model the dynamics of the pose

tracklets and predict the corresponding poses in an incom-

ing frame, independent of the estimations. When combin-

ing with the human pose estimation model, the proposed

method takes advantages of both the visual information

and the dynamics, thereby enabling the recovery of missed

poses and refinement of estimated poses. Extensive experi-

ments on PoseTrack 2017 and PoseTrack 2018 datasets val-

idate the superiority of the proposed method in both human

pose estimation and human pose tracking tasks. In our fu-

ture work, we would like to explore a more flexible manner

to aggregate the predicted results and the new observation,

making the whole pipeline even more adaptive.
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