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Figure 1: (a) Many data-driven segmentation methods heavily rely on appearance cues, and fail for novel test scenes. For instance,

PointRend [25] trained on MSCOCO fails to detect coral reef fishes even with a low confidence threshold of 0.1. (b) On the other

hand, geometric motion segmentation [5, 58] generalizes to novel appearance, but fails due to noisy flow inputs and degenerate motion

configurations. (c)-(e) We propose a neural architecture powered by geometric reasoning that decomposes a scene into a rigid background

and multiple moving rigid bodies, parameterized by 3D rigid transformations. It demonstrates generalization ability to novel scenes and

robustness to noisy inputs as well as motion degeneracies. The inferred rigid motions significantly improve depth and scene flow accuracy.

Abstract

Appearance-based detectors achieve remarkable perfor-

mance on common scenes, benefiting from high-capacity

models and massive annotated data, but tend to fail for

scenarios that lack training data. Geometric motion segmen-

tation algorithms, however, generalize to novel scenes, but

have yet to achieve comparable performance to appearance-

based ones, due to noisy motion estimations and degenerate

motion configurations. To combine the best of both worlds,

we propose a modular network, whose architecture is mo-

tivated by a geometric analysis of what independent object

motions can be recovered from an egomotion field. It takes

two consecutive frames as input and predicts segmentation

masks for the background and multiple rigidly moving ob-

jects, which are then parameterized by 3D rigid transforma-

⇤Code is available at github.com/gengshan-y/rigidmask.

tions. Our method achieves state-of-the-art performance for

rigid motion segmentation on KITTI and Sintel. The inferred

rigid motions lead to a significant improvement for depth

and scene flow estimation.

1. Introduction

Autonomous agents such as self-driving cars need to be

able to navigate safely in dynamic environments. Static en-

vironments are far easier to process because one can make

use of geometric constraints (SFM/SLAM) to infer scene

structure [15]. Dynamic environments require the fundamen-

tal ability to both segment moving obstacles and estimate

their depth and speed [2]. Popular solutions include object

detection or semantic segmentation [27]. While one can

build accurate detectors for many categories of objects that

are able to move, “being able to move” is not equivalent to
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“moving”. For example, there is a profound difference be-

tween a parked car and an ever-so-slightly moving car (that

is pulling out of parked location), in terms of the appropriate

response needed from a nearby autonomous agent. Secondly,

class-specific detectors rely heavily on appearance cues and

categories present in a training set. Consider a trash can that

falls on the street; current closed-world detectors will likely

not be able to model all types of moving debris. This poses

severe implications for safety in the open-world that a truly

autonomous agent must operate [4].

Problem formulation: We follow historic work on motion-

based perceptual grouping [23, 43, 50, 56, 61] and segment

moving objects without relying on appearance cues. Specifi-

cally, we focus on segmenting rigid bodies from two frames.

We focus on two-frame because it is the minimal set of in-

puts to study the problem of motion segmentation, and in

practice, perception-for-autonomy needs to respond immedi-

ately to dynamic scenes, e.g., an animal that appears from

behind an occlusion. We focus on rigid body and its 3D

motion parameterizations because it’s directly relevant for

an autonomous agent acting in a 3D world. While dynamic

scenes often contain nonrigid objects such as people, we ex-

pect that deformable objects may be modeled as a rigid body

over short time scales, or decomposed into rigidly-moving

parts [1, 8].

Challenges: Earlier work on rigid motion segmentation of-

ten makes use of geometric constraints arising from epipolar

geometry and rigid transformations. However, there are sev-

eral fundamental difficulties that plague geometric motion

segmentation. First, epipolar constraints fail when cam-

era motion is close to zero [61]. Second, points moving

along epipolar lines cannot be distinguished from the rigid

background [65], which we discuss at length in Sec. 3.1.

Third, geometric criteria are often not robust enough to noisy

motion correspondences and camera egomotion estimates,

which can lead to catastrophic failures in practice.

Method: We theoretically analyze ambiguities in 3D rigid

motion segmentation, and resolve such ambiguities by ex-

ploiting recent techniques for upgrading 2D motion observa-

tion to 3D with optical expansion [63] and monocular depth

cues [38]. To deal with noisy motion correspondences and

degenerate scene motion, we design a convolutional archi-

tecture that segments the rigid background and an arbitrary

number of rigid bodies from a given motion field. Finally,

we parameterize the 3D motion of individual rigid bodies by

fitting 3D rigid transformations.

Contributions: (1) We provide a geometric analysis for am-

biguities in 3D rigid motion segmentation from 2D motion

fields, and introduce solutions to deal with such ambigui-

ties. (2) We propose a geometry-aware architecture for 3D

rigid motion segmentation from two RGB frames, which

is generalizable to novel appearance, resilient to different

motion types and robust to noisy motion observations. (3)

Our method achieves state-of-the-art (SOTA) performance

of rigid motion segmentation on KITTI/Sintel. The inferred

rigidity masks significantly improve the performance of

downstream depth and scene flow estimation tasks.

2. Related Work

Geometric Motion Segmentation: The problem of clus-

tering motion correspondences into groups that follow a

similar 3D motion model has been extensively studied in the

past [47, 48, 50, 52, 53, 61, 65]. However, prior methods

either focus on theoretical analysis with noisy-free data, or

assume relatively simple scenes where long-term motion tra-

jectories can be obtained by point tracking algorithms. Some

recent work [5, 7, 58] tackles more complex scenarios with

two-frame optical flow inputs, where geometric constraints,

such as motion angle and plane plus parallax (P+P) [42] are

considered as cues of “moving versus static”. However, such

geometric constraints are sensitive to noise in optical flow

even under a robust estimation framework [16]. Moreover, as

we shall see in Sec. 3.1, the prior two-frame solutions do not

deal with several degenerate cases, including co-planar/co-

linear motion [65] and camera motion degeneracy [48]. We

address these problems by encoding geometric constraints

into a modular neural network.

Learning-Based Video Object Segmentation: Segment-

ing salient objects from videos historically stems from the

problem of image salient object detection [35, 36], where ex-

isting methods often rely either on appearance features or on

salient motions from 2D optical flow [24, 30, 45, 46, 64, 67].

Oftentimes, optical flow is interpreted as a color im-

age [24, 67], where geometric information, such as camera

egomotion, is ignored. Close to our methodology, Motion

Angle Network (MoA-Net) [6], analytically reduces the ef-

fect of camera rotation and uses the “rectified” flow angle

as input features to a binary segmentation network. Our

approach further incorporates 3D flow and depth cues and

segments multiple 3D rigid motions.

Instance Scene Flow: Scene flow is the problem of re-

solving dense 3D scene motion from an ego-camera [34, 51],

which is challenging due to the lack of visual evidence to

find correspondence matches, for example, when occlusion

occurs. Prior approaches often utilize scene rigidity pri-

ors to resolve such ambiguities, such as piecewise rigidity

prior [34, 54] and semantic rigidity prior [3, 32]. However,

it is risky to segment the scene purely relying on semantics

– an object that is able to move is not the same as an object

that is moving. Furthermore, such high-level cues do not

generalize to an open-world, where algorithms are required

to be robust to never-before-seen categories [4]. Instead,

we exploit motion rigidity for scene flow estimation, which

decomposes the scene into multiple rigidly moving segments

while preserving the completeness of individual rigid bodies.
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(c) Sampson err. (white indicates moving)(b) Naive flow-triangulated reconstruction(a) Two frame overlay

Figure 2: Collinear motion ambiguity. (a) The input scene contains a dynamic object (the car in the lower left) moving parallel to camera

translational direction. (b) One can triangulate motion correspondences assuming overall rigidity that places the moving car at an elevated

height, which illustrates both (1) the commonality of this degenerate case [65] in urban navigation, and (2) one solution of using structural

scene priors that do not allow for floating objects above the ground. (c) Due to such ambiguities, the 2D motion of the moving car is

consistent with the camera egomotion, leaving it indistinguishable under classic motion segmentation metrics such as Sampson error [19].

3. Approach

In this section, we first analyze degeneracies in motion

segmentation that arise when dynamic motion is indistin-

guishable from the camera motion, and what information

is required to resolve the ambiguities. We then design a

neural architecture for rigid instance motion segmentation

that builds on this geometric analysis, producing a pipeline

for two-frame rigid motion segmentation.

3.1. Two-Frame 3D Motion Segmentation

Problem setup: Given two-frame 2D motion correspon-

dences written in homogenous coordinates (p̃0, p̃1) with

depths (Z0, Z1) observed by camera intrinsics (K0,K1),
the corresponding 3D points in the camera coordinate sys-

tem of each frame is given by P0 = Z0K0
�1p̃0 and P1 =

Z1K1
�1p̃1. We wish to detect points whose 3D motion can-

not be described by camera motion Rc 2 SO(3), Tc 2 R
3:

(RcP1 +Tc)�P0 6= 0, (transform of coordinates) (1)

To gain more geometric insights, we re-arrange Eq. (1) into

Tsf = K0
�1(Z1HRp̃1 � Z0p̃0) 6= �Tc,

(“rectified” 3D scene flow 6= negative camera translation)
(2)

where Tsf = RcP1 �P0 is the “rectified” 3D scene flow,

with the motion induced by camera rotation Rc removed

through “rectifying” the second frame coordinate system

to have the same orientation as the first frame; and HR =
K0RcK1

�1 is the rotational homography that “rectifies”

the second image plane into the same orientation as the first

image plane, removing the effect of camera rotation from

the 2D motion fields. Eq. (2) states that the rectified 3D

scene flow of a moving point P will not equal the negative

camera translation. However, assuming camera intrinsics

and motion are known, there are still two crucial degrees of

freedom that are undetermined: depth Z0 and Z1.

Coplanar motion degeneracy: Solving for Z0 and Z1

equates to estimating the depth and 3D scene flow, which

itself is challenging [34]. To remove such dependencies, clas-

sic geometric motion segmentation segments points whose

2D motion is inconsistent with the camera motion, measured

either by Sampson distance to the epipolar line [19, 47] or

plane plus parallax (P+P) [42] representations that factor out

camera rotation, allowing one to evaluate the angular devia-

tion of the 2D motion to the epipole [5, 23]. However, is 2D

motion sufficient to segment points moving in 3D? The an-

swer is no (Fig. 2). Formally, 3D points that translate within

the epipolar plane defined by the camera translation vector

Tc will project to the epipolar line, making them "appear"

as stationary points, as shown in Fig. 3 Case (II).

To detect such co-planar motion, we make use of optical

expansion cues that upgrade 2D flow to 3D as suggested

by recent work [63]. Optical expansion, measured by the

scale change of overlapping image patches, approximates the

relative depth τ = Z1

Z0

for non-rotating scene elements under

scaled orthographic projection [63]. We derive a 3D motion

angle criterion that does not require depth, but removes

the ambiguity of points moving within the epipolar plane.

Normalizing Eq. (2) by depth Z0, we have

T̃sf = K0
�1(⌧HRp̃1 � p̃0) 6⇠ �Tc,

(rectified 3D flow direction 6= neg. camera translation direction)
(3)

where T̃sf = Tsf

Z0

is the rectified and normalized 3D flow

and 6⇠ indicates two vectors are different in their directions.

Eq. (3) states that a point is moving if the direction of its

rectified 3D scene flow is not consistent with the direction

of the camera translation, as shown in Fig. 3 Case (III).

Collinear motion degeneracy: However, there is still a

remaining ambiguity that cannot be resolved. If point P

moves in the opposite direction of the camera translation,

both classic criteria and Eq. (3) would fail, as shown in

Fig. 3 Case (IV). Such ambiguity remains even given multi-

ple frames [65], but is common in many real-world applica-

tions, e.g., two cars passing each other (Fig. 2). To identify

moving points in such cases, one could use depth Z0 to re-

cover the metric scale of normalized rectified scene flow

T̃sf , and compare it with camera translation Tc. However,

in a monocular setup, we neither know the scale of Tc nor

trust the overall scale of Z0 [19]. Instead, we derive a depth

contrast criterion, inspired by an observation that dynamic

scene points triangulated from flow assuming overall rigid-

ity will appear “abnormal” in the 3D reconstruction, such

as the floating car in Fig. 2 (b). To do so, we contrast the

flow-derived depth Z
flow
0 with a depth prior Z

prior
0 ,

Z
flow
0 6= �Z

prior
0 , (flow-triangulated depth 6= depth prior) (4)
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epipolar line

Case (II): general motion

epipolar line

Case (III): coplanar motion

epipolar line

Case (IV): collinear  motion

epipolar line

Case (I): rigid scene point

image plane

Figure 3: When can a moving scene point P be identified from a moving camera? Rectified 3D scene flow of P (that assumes camera

rotation has been removed) can be written as the sum of rigid background motion (induced by the camera) and independent object motion

Tsf = Tbg +To, where Tbg = −Tc. Case (I): Assuming a rigid scene point P with zero independent motion To = 0, the 2D motion

projected by Tsf must lie on the epipolar line. Case (II): In other words, if the 2D motion deviates from the epipolar line, |α| > α0, P must

be moving, analagous to Sampson error [19]. Case (III): However, the inverse does not hold. If 2D flow is consistent with the background

motion (|α| < α0), P might still be moving in the epipolar plane. However, if the angular direction of 3D flow Tsf – computable from

optical expansion [63] – differs from Tbg (|β| > β0), P must be moving. Case (IV): If the 3D flow direction is consistent with background

motion (|β| < β0), P could still be moving in the direction of Tbg, making it unrecoverable without knowing the scale (or relative depth).

where Z
flow
0 can be computed efficiently using midpoint

triangulation [19], depth prior Z
prior
0 can be represented by

a data-driven monocular depth network, and the scale factor

γ that globally aligns Z
prior
0 to Z

flow
0 can be determined by

the ratio of their medians or robust least squares [44].

Egomotion degeneracy: Furthermore, when the camera

translation is small, Tc is notoriously difficult to esti-

mate due to small motion parallax. In such cases, rigid-

background motion (and objects that deviate from it) is easier

to model with a rotational homography model [47, 49].

3.2. Learning to Segment Rigid Motions

We now operationalize our motion analysis into a deep

network for rigid motion segmentation (Fig. 4). At its heart,

our network learns to transform motion measurements (noisy

3D scene flow) into pixel-level masks of rigid background

and instances. To do so, we construct motion cost maps de-

signed to address the motion degeneracies described earlier.

Given such input maps and raw scene flow measurements,

we use a two-stream network architecture that separately

regresses the rigid background and rigid instance masks.

Motion estimation: First, we extract the camera and rela-

tive scene motion given two frames. We apply existing meth-

ods to estimate optical flow, optical expansion and monocular

depth [38, 63]. To estimate camera motion, we fit and decom-

pose essential matrices from flow maps using the five-point

algorithm with a differentiable and parallel RANSAC [9].

Rigidity cost-maps inputs: We construct rigidity cost

maps tailored to camera-object motion configurations an-

alyzed in Sec. 3.1, including (1) an epipolar cost for general

configurations, computed as per-pixel Sampson error [19];

(2) a homography cost to deal with small camera translations,

implemented as per-pixel symmetric transfer error [14] with

regard to the rotational homography, HR = K0RcK1
�1;

(3) a 3D P+P cost to detect coplanar motions, computed as

c3D = ||T̃sf || · | sinβ|, (5)

where β = |∠(T̃sf ,�Tc)| is the measured angle between

normalized scene flow T̃sf (computed by Eq. 3) and negative

camera translation �Tc; and (4) a depth contrast cost to deal

with colinear motion ambituity, computed as

cdepth = | log(
Zflow
0

γZ
prior
0

)|. (6)

Please refer to the supplement for visuals and more details.

Rectified scene flow inputs: Besides rigidity cost-maps,

we find it helpful to also input raw scene flow measurements,

represented as an 8-channel feature map, containing the

first frame 3D scene points P0, rectified motion fields Tsf ,

and uncertainty estimations of flow and optical expansion

(σ1,σ2). To compute P0, we back-project the first frame

pixel coordinates given monocular depth inputs; to compute

Tsf , we upgrade optical flow using optical expansion τ ,

T̃sf = K0
�1(⌧HRp̃1 � p̃0), (7)

where the second coordinate frame is rectified by rotational

homography HR = K0RcK1
�1 to remove the effect of

camera rotation. Finally, the uncertainty of optical flow and

optical expansion are computed as out-of-range confidence

score and Gaussian variance respectively [22, 62]. Such

rectified scene flow inputs are more effective than 2D optical

flow, as empirically tested in ablation study (Tab. 4).
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Figure 4: We detect and estimate rigid motions in three steps: First, depth and optical flow are computed using off-the-shelf networks (M) and

camera motion is estimated by epipolar geometry (P) given two frames. Then, rigidity cost maps and rectified scene flow are computed (G)

and fed into a two-stream network that produces the segmentation masks of a rigid background and an arbitrary number of rigidly moving

instances. Finally, we fit rigid transformations for the background and each rigid instance to update their depth and 3D scene flow.

Architecture: We use a two-stream architecture: (1) a

lightweight U-Net [41] architecture to predict binary labels

for pixels belonging to the (rigid) background and (2) a

CenterNet [68] architecture to predict pixel instance masks.

Inspired by the single-shot segmentation head proposed in

PolarMask [59], stream (2) outputs a heatmap representing

object centers and a regression map of K = 36 polar dis-

tances at evenly distributed angles. Intuitively, stream (2)

generates coarse instance-level masks that are refined by

pixel-accurate background masks from stream (1). Specifi-

cally, pixels where rigid background and instance predictions

disagree are not used for rigid body fitting below, and marked

as incorrect during evaluation.

Losses: The overall architecture is end-to-end differen-

tiable and can be trained with standard loss functions,

L = α1Lbinary + α2Lcenter + α3Lpolar (8)

where Lbinary is binary cross-entropy loss with label balanc-

ing, Lcenter is the focal loss [28, 68] and Lpolar is the polar

loss defined in PolarMask [59]. Given ground-truth contours

of M objects, we convert them to polar coordinates quantized

as K rays uniformly emitted from their mass-centers. Then

the polar loss is computed as

Lpolar =
1

KM

MX

i=1

KX

k=1

|di,k � d⇤i,k|, (9)

where d⇤i,k is the ground-truth distance of the k-th ray to the

mass-center. Weights are balanced as α1 = 1�4, α2 = 1�3

and α3 = 1�7 through grid search.

Rigid body scene flow: Given segmentations of rigid bod-

ies, our goal is to parameterize 3D scene flow as 3D geometry

and transformations of rigid bodies by fitting flow and depth

observations. We provide details in Alg. 1. To find the best

fit of rotations and up-to-scale translations, we estimate and

decompose essential matrices over flow correspondences

with RANSAC [19]. To obain a more reliable 3D reconstruc-

tion than back-projected monocular depth, we triangulate

flow using rigid motion estimations for each rigid body, and

determine their scales by aligning each triangulated depth

map to monocular depth inputs with RANSAC [44]. Given

the above parameterization, the second frame coordinates

are computed as

P1 =
PN

i=0 Si(RiP0 +Ti), (10)

where Si is a one-hot rigid motion segmentation vector.

Algorithm 1 Rigid body scene flow (monocular)

Input: Rigid body segmentation maps {S0, . . . ,SN}, flow correspon-

dence (p,p0), first frame depth map Zprior , intrinsics (K,K0).

Output: Rigid transformation {(R0,T0) . . . , (RN ,TN )}, first frame

scene points {P0, . . . ,PN}.

Normalize coordinates p̃ K�1[p,1]T , p̃0  K0�1[p0,1]T

For i = 0 · · ·N . i = 0 indicates the rigid background

(p̃i, p̃i
0) {(p̃, p̃0),Si(p) = 1} . points on the current body

Fit essential matrix Ei over (p̃i, p̃i
0) with 5-pt+RANSAC.

Decompose Ei and select the best (Ri,Ti) by cheirality check [19].

Triangulate 3D points Pi from (p̃i, p̃i
0) and (Ri,Ti).

Align P
(3)
i to Zprior by scale si with RANSAC. . scale ambiguity

Ti  siTi, Pi  siPi

if chom < 4 . when parallax motion is small: supp.mat. Eq. (2)

then Ti  0, Pi  Zpriorp̃i . rely on depth prior

4. Experiments

Our method is quantitatively compared with state-of-the-

art rigidity estimation algorithms on KITTI and Sintel in

Sec. 4.1, and then applied to the depth and scene flow esti-

mation tasks in Sec. 4.2- 4.3. In Sec. 4.4 we conclude with

an ablation study.

Dataset: We use KITTI-SF (sceneflow) and Sintel for

quantitative analysis. KITTI-SF [17, 34] features an urban

driving scene with multiple rigidly moving vehicles. Sin-

tel [11] is a synthetic movie dataset that features a highly dy-

namic environment. It contains viewpoints and objects (such
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(3)Ours

(1)Mask R-CNN (2)CC

(3)Flow angle Our rigid motion estimation

Ground-truth moving object mask

Figure 5: Comparison on KITTI-SF, image 137. The prefix of each method indicates the test-time inputs: (1)Single frame. (2)Multi-frame

with appearance features. (3)Multi-frame without appearance. Our best appearance-based segmentation baseline, (1)Mask R-CNN [20]

detects all the moving vehicles, but also reports parked cars in the background. (2)CC [39] correctly detects moving cars but also reports the

edge of the road as moving objects. (3)Geometric segmentation algorithm [5, 58] fails on the approaching car due to the colinear motion

ambiguity, and reports false positives at the background due to the noisy flow estimation. In contrast, (3)our method correctly segments both

the moving vehicles and the rigid background. Rigid motions are estimated within each mask and applied to depth and scene flow estimation.

as dragons) that are rare in existing datasets. KITTI provides

ground-truth segmentation masks for the rigid background

and moving car instances, where the remaining dynamic

objects (such as pedestrians) are manually removed. For Sin-

tel, computing rigid instances masks is an ill-posed problem

since most objects are nonrigid. Instead, we obtain ground-

truth rigid background segmentation from MR-Flow [58].

Both datasets also provide ground-truth depth and scene flow

as well as camera intrinsics.

Implementation: We use MiDaS [38], a state-of-the-art

monocular depth estimator to acquire imprecise, up-to-scale

depth of the first frame as inputs. The remaining networks

are trained without target domain data: optical flow and

optical expansion networks are trained using FlyingChairs,

SceneFlow, VIPER, and HD1K [13, 26, 33, 40]; the rigid

motion segmentation network is trained on SceneFlow [33].

4.1. Two-frame Rigid Motion Segmentation

Metrics: Following prior works, we compute background

IoU [31, 39] for rigid background segmentation and object

F-measure [12] for rigid instance segmentation. Only the

rigid background segmentation metric is reported on Sintel

due to the lack of rigid bodies ground-truth rigid motion

segmentation masks.

Baselines: We group baselines according to test inputs.
(1)Single frame methods. Mask R-CNN with ResNeXt-

101+FPN backone is the most accurate model on MSCOCO

provided by Detectron2 [20, 29, 57, 60]; U2Net [37] is a

state-of-the-art salient object detector; and MR-Flow-S [58]

is a semantic rigidity estimation network fine-tuned sepa-

rately on KITTI and Sintel.
(2)Multi-frame with appearance features. FusionSeg [24]

is a two-stream architecture that fuses the appearance and

optical flow features, and we provide SOTA optical flow on

KITTI and Sintel as motion input. COSNet [30] and MAT-

Net [67] are SOTA video objection segmentation methods

on DAVIS [36]. CC [39] combines “flow-egomotion consen-

Table 1: Rigidity estimation on KITTI (K) and Sintel (S) without

fine-tuning. (1)Single frame. (2)Multi-frame with appearance fea-

tures. (3)Multi-frame without appearance. The best result under

each metric (IoU in %) is in bold. ⇤:For methods only estimating

background masks, we use connected components to obtain object

masks. ‡:Methods trained on target dataset. MR-Flow-S (K) is

trained on KITTI, and MR-Flow-S (S) is trained on Sintel.

Method K: obj ↑ K: bg ↑ S: bg ↑

(1)

Mask R-CNN [57] 88.20 96.42 81.98

U2 (Saliency) [37] 64.80⇤ 93.34 82.01

MR-Flow-S (K) [58] 75.59⇤ 94.70‡ 76.11

MR-Flow-S (S) [58] 11.11⇤ 84.72 92.64‡

(2)

FSEG [24] 85.08⇤ 96.27 80.22

MAT-Net [67] 68.40⇤ 93.08 77.95

COSNet [30] 66.67⇤ 93.03 80.86

CC [39] 50.87⇤ 85.50 7

RTN [31] 34.29⇤ 84.44 64.86

(3)

FSEG-Motion [24] 61.29 89.41 78.25

CC-Motion [39] 42.99 74.06 7

Flow angle [5, 58] 25.83 85.52 74.23

Ours 90.71 97.05 86.72

sus score” (similar to our epipolar costs) with a foreground

probability regressed from five consecutive frames, which is

then thresholded to obtain the background mask. RTN [31]

uses a CNN to predict rigid background masks given two

RGBD images. For Sintel, we use the ground-truth depth as

input; for KITTI, since the ground-truth depth is sparse, we

use MonoDepth2 [18] instead.
(3)Two-frame without appearance. We separately eval-

uate the motion stream of FSEG and the flow-egomotion

consensus results of CC. Following prior work [5, 58], we

implement a classic motion segmentation pipeline that com-

bines the motion angle and motion residual criteria.

Besides CC, RTN, and the classic pipeline, all baselines

are trained or pre-trained on large-scale manually anno-

tated segmentation datasets that contain common objects
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Table 2: Monocular depth and scene flow results on KITTI (K) and

Sintel (S). D1: first frame disparity (inverse depth) error. SF: scene

flow error (%). The best result is in bold, and underlined if not

trained on the target domain data. On Sintel, we evaluate on 330

frame pairs with average flow magnitude greater than 5 pixel.

Method K: D1 ↓ K:SF ↓ S: D1 ↓ S:SF ↓

CC [39] 36.20 51.80 7 7

SSM [21] 31.25 47.05 7 7

Mono-SF [10] 16.72 21.60 7 7

MiDaS+OE [63] 37.27 44.87 49.89 55.43

MiDaS+Mask 17.33 22.47 39.60 47.40

MiDaS+Ours 16.98 22.19 38.29 46.05

and scenes, while ours is not.

Performance analysis: We show qualitative comparison

in Fig. 5 and report results in Tab. 1. On KITTI, our method

outperforms the most accurate baseline, Mask R-CNN, in

terms of both rigid instance segmentation and background

segmentation. Although Mask R-CNN is trained on common

scenes (including driving), it cannot tell whether an object

is moving or static, similar to other single-frame methods.

Therefore, our method compares favorably to Mask R-CNN

on rigid motion segmentation task. On Sintel, our method

outperforms all the baselines except MR-Flow-S (S), which

uses the first half of all Sintel sequences for training. If

we compare to MR-Flow-S (K), which is not fine-tuned on

Sintel, our method is better. Finally, among the motion-

based segmentation methods, our method is the best on both

datasets, because of our robustness to degenerate motion

configurations as well as noisy flow inputs.

4.2. Monocular Scene Flow

We then apply the estimated rigid motion masks to two-

frame depth and scene flow estimation on KITTI and Sintel.

Following Alg. 1, we estimate 3D scene flow by fitting rigid

transformations to initial depth and optical flow estimations.

Metrics: Following the convention of KITTI [34], we ar-

range Sintel as pairs of adjacent frames, and report the aver-

age depth and scene flow estimation performance on KITTI

and Sintel. We report disparity error on both frames (D1,

D2), optical flow error (Fl) and scene flow error (SF). To

remove the overall scale ambiguity, we take an extra step to

align the overall scale of the predictions to the ground-truth

with their medians [38, 55].

Baselines: We compare against state-of-the-art monocular

scene flow baselines. CC [39] and SSM [21] are representa-

tive methods for self-supervised monocular depth and scene

flow estimation that does not make use of segmentation pri-

ors at inference time. Mono-SF [10] trains a monocular

depth network with KITTI ground-truth, and solve an op-

timization problem given semantic instance segmentation

provided by Mask R-CNN. The above three methods are

Table 3: Stereo scene flow results on KITTI benchmark. D1 and D2:

first and second frame disparity error. Fl: optical flow error. SF:

scene flow error. Metrics are errors in percentage and top results

are in bold. ⇤First frame disparity is not refined by our method.

Method D1⇤ ↓ D2 ↓ Fl ↓ SF ↓

PRSM [54] 4.27 6.79 6.68 8.97

OpticalExp [63] 1.81 4.25 6.30 8.12

DRISF [32] 2.55 4.04 4.73 6.31

Ours Mask R-CNN 1.89 3.42 4.26 5.61

Ours Rigid Mask 1.89 3.23 3.50 4.89

trained on KITTI and the results are taken from their papers.

OE (optical expansion) [63] learns to predict relative depth

from dense optical expansion, which together with optical

flow, directly yields 3D motion. It is trained on the synthetic

SceneFlow dataset, and we use MiDaS to provide the scale.

We also implement a baseline (MiDaS+Mask) that predicts

instance segmentation masks by Mask R-CNN, and follows

the same rigid body fitting procedure as ours.

Performance analysis: We report results on KITTI-SF

and Sintel in Tab. 2. First, it is noted our method reduces

the disparity error of MiDaS by more than 50% on KITTI,

and 20% on Sintel. Compared to OE, which uses the same

monocular depth input as ours, we are better in all metrics.

(SF: 22.19% vs 44.87%), which demonstrates the effective-

ness of our rigid motion mask. Our method also outperforms

the other methods that do not use segmentation priors (CC

and SSM). Compared to Mono-SF, which is trained with

ground-truth KITTI depth maps, and uses a semantic seg-

mentation prior, our method is slightly worse on KITTI.

Compared to Midas-Mask, our method is strictly better on

both KITTI and Sintel, indicating the benefit of using our

rigid motion masks versus appearance-based masks.

4.3. Stereo Scene Flow

Our method is also able to take advantage of reliable

depth sensors, such as stereo cameras, to produce better two-

frame rigid motion segmentation and scene flow estimations.

To take advantage of stereo inputs, we make two algorithmic

changes. First, we triangulate stereo disparities as the depth

input to the segmentation network. Second, we refine each

rigid body transformation by solving a perspective-n-point

problem (via LM optimization):

min
(Ri,Ti)

X

j

||pi,j
0 � ⇡K(RiPi,j +Ti)||

2, (11)

where π(·) is a projection function, Pi,j is the j-th point

from the i-th rigid body, and p0

i,j is the second frame flow

correspondence. We use the results of Alg. 1 as initial values

and update rigid body transformations for 20 iterations.

Implementation: We use off-the-shelf networks that are

fine-tuned on KITTI-SF to estimate stereo disparity and opti-

cal flow [63, 66]. We also fine-tune our rigid motion segmen-
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Our motion instance seg.

Semantic instance seg.Initial scene flow err map (3px error) With semantic rigid motion estimation 

With our rigid motion estimation 

Figure 6: Rigidity vs semantic-based segmentation for instance scene flow. Given instance segmentation masks, scene flow can be optimized

by fitting rigid body transforms within each mask. While semantic segmentation fails to improve scene flow estimation on the parked cars

(in red circle), our rigid motion mask groups the parked car together with the rigid background and successfully reduces the scene flow error.

Table 4: Diagnostics of rigid body motion segmentation on KITTI-

SF. Dignostics in the second group are sequential.

Method K: obj ↑ K: bg ↑ S: bg ↑

Reference 89.53 97.22 84.63
(1)w/o cost maps 88.66 96.59 76.81
(2)w/o uncertainty 85.09 95.72 77.25
(3)w/o monocular depth 84.46 94.84 76.14
(4)w/o expansion (MoA [6]) 81.28 95.50 77.00
(5)w/o learning [5, 58] 25.83 85.52 74.23

tation network by mixing KITTI-SF and SceneFlow datasets.

The performance is reported on the KITTI benchmark.

Baselines: Our method segments rigid motions based on

two-frame rigidity and fits rigid body transformations over

depth-flow correspondences, which is used to update the sec-

ond frame depth and flow estimations. Among the baselines,

OE [63] uses the same architecture (as in the monocular

setup) fine-tuned on KITTI to upgrade optical flow to 3D

scene flow. Same as ours, GA-Net stereo and VCN optical

flow are used as inputs. PRSM [54] segments an image into

superpixels, and fits rigid motions to estimate piece-wise

rigid scene flow. Given semantic instance segmentation [20],

depth, and optical flow, DRISF [32] casts scene flow estima-

tion as an energy minimization problem and finds the best

rigid transformation for each semantic instance. The key

difference between our method and DRISF is that we use

rigid motion segmentation masks.

Performance analysis: As reported in Tab. 3, our method

demonstrates state-of-the-art performance on KITTI scene

flow benchmark (SF: 4.89 vs 6.31). If we replace the seg-

mentation masks with semantic instance segmentation, i.e.,

Mask R-CNN, the performance drops noticeably (SF: 4.89%

to 5.61%). As illustrated in Fig. 6, our method successfully

groups the static objects (e.g. parked cars) with the rigid

background, which effectively improves scene flow accuracy

by optimizing the whole background as one rigid body, while

semantic instance segmentation methods fail to do so.

4.4. Diagnostics

We ablate critical components of our approach and re-

train networks. Results are shown in Tab. 4. We validate the

design choices of using (1)explicitly computed rigidity cost-

maps inputs, (2)uncertainty estimation inputs, (3)monocular

depth inputs, (4)optical expansion that upgrades 2D optical

flow to 3D, and (5) our rigid motion segmentation network.
(1)Removing rigidity cost-maps leads to a slight drop of ac-

curacy on KITTI, and a significant drop on Sintel (84.63%

to 76.81%). This indicates the cost map features are cru-

cial for Sintel, possibly due to complex camera and object

motion configurations, in which cases explicit geometric

priors are helpful. (2)Removing uncertainty inputs leads

to a noticeable drop of performance on KITTI (88.66% to

85.09%). We posit uncertainty estimation contains rich in-

formation about motion distribution, and is therefore useful

for segmentation. (3)Further removing monocular depth in-

puts leads to an accuracy drop on all metrics, especially on

KITTI, which shows the importance of using depth cues to

deal with collinear motions in autonomous driving scenes.
(4)After further removing optical expansion, our method de-

grades to MoA-Net [6]. The performance drops noticeably

on KITTI rigid instance segmentation metric (84.46% to

81.28%), which indicates optical expansion is useful for seg-

menting foreground objects. (5)Lastly, if we directly apply

the rigidity cost maps with manually-tuned thresholds to

decide the background region without the neural architecture

and learning, the method becomes worse in all metrics due to

the loss of robustness to noisy inputs and degenerate motion.

5. Conclusion

We investigate the problem of two-frame rigid body mo-

tion segmentation in an open environment. We analyze the

degenerate cases in geometric motion segmentation and in-

troduce novel criteria and inputs to resolve such ambiguities.

We further propose a modular neural architecture that is ro-

bust to noisy observations as well as different motion types,

which demonstrates state-of-the-art performance on rigid

motion segmentation, depth and scene flow estimation tasks.
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