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Abstract

In this paper, we aim to synthesize cell microscopy images

under different molecular interventions, motivated by practi-

cal applications to drug development. Building on the recent

success of graph neural networks for learning molecular

embeddings and flow-based models for image generation,

we propose Mol2Image: a flow-based generative model for

molecule to cell image synthesis. To generate cell features

at different resolutions and scale to high-resolution images,

we develop a novel multi-scale flow architecture based on

a Haar wavelet image pyramid. To maximize the mutual

information between the generated images and the molec-

ular interventions, we devise a training strategy based on

contrastive learning. To evaluate our model, we propose

a new set of metrics for biological image generation that

are robust, interpretable, and relevant to practitioners. We

show quantitatively that our method learns a meaningful

embedding of the molecular intervention, which is translated

into an image representation reflecting the biological effects

of the intervention.

1. Introduction

High-content cell microscopy assays are gaining traction

in recent years as the rich morphological data from the im-

ages proves to be more informative for drug discovery than

conventional targeted screens [6, 12, 55]. Motivated by these

developments, we aim to build, to our knowledge, the first

generative model to synthesize cell microscopy images un-

der different molecular interventions, translating molecular

information into a high-content and interpretable image rep-

resentation of the intervention. Such a system has numerous

practical applications in drug development – for example,

it could enable practitioners to virtually screen compounds

based on their predicted morphological effects on cells, al-

lowing more efficient exploration of the vast chemical space

and reducing the resources required to perform extensive

experiments [46, 53, 57]. Small molecules are known to
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Figure 1: Molecule to Image Synthesis. High-content cell

morphology images captured under different molecular inter-

ventions enable practitioners to assess a broad spectrum of

drug effects. We improve on state-of-the-art flow-based gen-

erative models to build a molecule to image synthesis model

with potential applications to virtual chemical screening.

enter cells and alter their biological functions and pathways,

leading to changes in cell shape, structure, organization, etc.,

that are visible in microscopy images [14, 13]. In contrast to

conventional models that predict specific chemical proper-

ties, a molecule-to-image synthesis model has the potential

to produce a panoptic view of the morphological effects of

a drug that captures a broad spectrum of properties such as

mechanisms of action [33, 34, 45] and gene targets [4].

To build our molecule-to-image synthesis model

(Mol2Image), we integrate state-of-the-art graph neural net-

works for learning molecular representations with flow-based

generative models. Flow-based models are a relatively recent

class of generative models that learn the data distribution

by directly inferring the latent distribution and maximizing

the log-likelihood of the data [9, 10, 26]. Compared to other
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classes of deep generative models such as variational au-

toencoders (VAEs) [27] and generative adversarial networks

(GANs) [17], flow-based models do not rely on approximate

posterior inference or adversarial training to learn the data

distribution and are less prone to training instability and

mode collapse, making them reliable and advantageous for

biological practitioners [54].

However, molecule-to-image synthesis is a challenging

task that highlights key, unsolved problems in flow-based

image generation. First, state-of-the-art flow models such

as NVP [10] and Glow [26] cannot be trained on large im-

ages such as full-resolution cell images (e.g., 512 × 512)

due to memory constraints, as flow models contain signifi-

cantly more parameters than other generative models. Sec-

ond, conditional variants of flow models are not nearly as

well-developed as their counterparts in generative adversar-

ial networks. While many variants of conditional GANs

have been developed to synthesize images from complex

information such as text [47], conditional flow models have

so far synthesized images from binary vectors such as im-

age classes or attributes [26, 32] or other images [1], where

the correspondence between the image and the conditioning

information is more straightforward. These open problems

in flow-based models limit their application to real-world

problems such as molecule-to-image synthesis.

Contributions. The contributions of this work are two-fold.

(1) We improve on state-of-the-art flow-based generative

models to develop a model that can generate high-resolution

cell images conditioned on molecular interventions. Our

methodological contributions to flow models include:

• A new multi-scale flow model based on the framework of

a Haar wavelet image pyramid that is trained to generate

images in a coarse-to-fine fashion and can scale to large,

high-resolution cell images. The existing state-of-the-art

model, Glow [26], cannot be trained on images larger than

256 × 256 due to memory constraints. Our principled

choice of the Haar wavelet image pyramid enables us to

scale training to large images, while preserving the original

objective of maximizing the log-likelihood of the data.

• A training algorithm for conditional flow models that lever-

ages contrastive learning to maximize the mutual infor-

mation between the generated images and the condition-

ing molecules. Although we focus on molecule-to-image

synthesis, this approach can potentially extend to other

challenging applications of conditional flow models, e.g.,

text-to-image synthesis [47].

(2) We establish a new benchmark for molecule to image

synthesis on the Cell Painting dataset [2], a high-content

cell microscopy assay, motivated by practical applications

to drug development and virtual chemical screening. To

evaluate models on this task, we propose a new set of evalua-

tion metrics specific to cell image generation that are robust,

interpretable, and relevant to practitioners. We show that our

approach outperforms the baselines on this task, indicating

potential for virtual screening.

2. Related Work

Biological Image Generation. Osokin et al. [44] use

GAN architectures to generate cellular images of budding

yeast to infer missing fluorescence channels (stained pro-

teins) in a dataset where only two channels can be observed

at a time. Separately, Goldsborough et al. [16] qualitatively

evaluate the use of different GAN variants in generating

three-channel images of human breast cancer cell lines.

While these works consider the task of generating single

cell images, neither considers the generation of cells condi-

tioned on complex inputs nor the generation of multi-cell

images, which is useful in observing cell-to-cell interactions

[42] and variability [39]. A separate, similar line of investi-

gation in histopathology and medical imagery has used GAN

models to refine and generate synthetic datasets for training

downstream classifiers but does not address the difficulty of

conditional image generation necessary to capture drug in-

terventions [22, 38, 61]. While both high throughput image-

based drug screens [5] and molecular structures [60] have

been used to generate representations of small molecules,

little work has focused on learning representations of these

modalities jointly.

Graph Neural Networks for Molecules. A neural net-

work formulation on graphs was first proposed by Gori et

al. [18]; Scarselli et al. [51] and later extended to various

graph neural network (GNN) architectures [31, 7, 41, 28,

19, 30, 56, 59]. In the context of molecule property predic-

tion, Duvenaud et al. [11] and Kearns et al. [24] first applied

GNNs to learn neural fingerprints for molecules. Gilmer et

al. [15] further enhanced GNN performance by using set2set

readout functions and adding virtual nodes into molecular

graphs. Yang et al. [60] provided extensive benchmarking of

various GNN architectures and demonstrated the advantage

of GNNs over traditional Morgan fingerprints [49] as well as

domain-specific features. While these works mainly focused

on predicting numerical chemical properties, we here focus

on using GNNs to learn rich molecular representations for

molecule-to-image synthesis.

Flow-Based Generative Models. A flow-based genera-

tive model (e.g., Glow) is a sequence of invertible networks

that transforms the input distribution to a simple latent distri-

bution such as a spherical Gaussian [9, 10, 20, 26, 35, 48].

Conditional variants of Glow have recently been proposed

for image segmentation [37, 58], modality transfer [29, 54],

image super-resolution [58], and image colorization [1].

These applications are variants of image-to-image translation

tasks and leverage the spatial correspondence between the

conditioning information and the generated image. Other

conditional models perform generation given an image class

[26] or a binary attribute vector [32]. Since the condition is
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categorical, these models apply auxiliary classifiers in the la-

tent space to ensure that the model learns the correspondence

between the condition and the image. Unlike these works,

we generate images from molecular graphs; here spatial cor-

respondence is not present and the conditioning information

cannot be learned using a classifier. Therefore we must lever-

age other techniques to ensure correspondence between the

generated images and the conditioning information.

In addition to conditioning on molecular structure, our

flow model architecture is based on an image pyramid, which

conditions the generation of fine features at a particular spa-

tial resolution on a coarse image from another level of the

pyramid. Flow-based generation of images conditioned on

other images has been explored in various previous works

[1, 29, 37, 54, 58], but different from these works, our flow-

based model leverages conditioning to break generation into

successive steps and refine features at different scales. Our

approach is inspired by methods such as Laplacian Pyra-

mid GANs [8] that break GAN generation into successive

steps. A key design choice here is our use of a Haar wavelet

image pyramid instead of a Laplacian pyramid, which is

an important consideration that allows us to prove that our

optimization procedure still maximizes the log-likelihood of

the data. Ardizzone et al. [1] use the Haar wavelet transform

to improve training stability, but they do not consider the

framework of an image pyramid for separately generating

features at different spatial resolutions.

3. Approach

In the following, we improve on state-of-the-art flow mod-

els to develop a flow-based generative model to synthesize

cell images conditioned on molecular interventions. We first

provide an overview of generative flows (Section 3.1). In

Section 3.2, we describe our novel multi-scale flow model

that generates images in a coarse-to-fine process based on

the framework of a Haar wavelet image pyramid. Our flow

model separates generation of image features at different

spatial resolutions and scales to high-resolution cell images.

In Section 3.3, we describe the full architecture of our con-

ditional flow model that conditions image generation on the

molecular embeddings of a graph neural network. We also

propose an effective training strategy for conditional flow

models that leverages contrastive learning to maximize the

correspondence between generated images and molecular

structure.

3.1. Preliminaries: Generative Flows

A generative flow consists of a sequence of invertible

functions f1 ◦ · · · ◦fL that transform an input variable x (i.e.,

an image) to a latent variable z. To generate an image, z is

sampled from a Gaussian distribution and passed through

the inverse of the flow functions:

z ∼ N (µ,Σ), hL = z,

hL−1 = f−1
L (hL), · · · , h0 = f−1

1 (h1), x = h0, (1)

where {hi}i∈1···L are the intermediate variables that arise

from applying the inverse of individual flow functions

{fi}i∈1···L. During training, the log-likelihood of sampling

target images x from the model is directly computed and

optimized using the change-of-variables formula:

log p(x) = log pN (z;µ,Σ) +

L
∑

i=1

log
∣

∣det
dhi

dhi−1

∣

∣, (2)

where pN is the Gaussian probability density function. Stan-

dard invertible functions for transforming the image include

activation normalization, 1× 1 convolution, and affine cou-

pling layers [26]. The Jacobian matrices of these transfor-

mations are triangular, which makes the log-determinants in

Equation 2 computationally tractable.

3.2. Haar Pyramid Flow Model

Transforming a Gaussian vector into an image using only

invertible flow functions (Equation 1) requires us to compose

many of these functions together. As a result, flow models

contain significantly more parameters than other types of

generative models, and existing multi-scale flow models for

image generation that require end-to-end training [10, 26]

cannot be applied to high-resolution (i.e., 512 × 512) cell

images due to memory constraints. Therefore, we propose

a novel multi-scale flow model that successively generates

images at multiple scales based on a Haar wavelet image

pyramid, going from coarse-to-fine resolution. In contrast to

existing work [10, 26], our model scales to high-resolution

cell images, without changing the objective of maximizing

the log-likelihood of the data.

Haar Wavelet Image Pyramid. Wavelets are functions that

can be used to decompose an image into coarse and fine com-

ponents. The Haar wavelet generates the coarse component

in a way that is equivalent to nearest neighbor downsam-

pling. The coarse component is obtained by convolving the

image with an averaging matrix followed by sub-sampling

by a factor of 2, and the fine components are obtained by

convolving the image with three different matrices followed

by sub-sampling by a factor of 2:

Maverage =
1

4

[

1 1
1 1

]

,Mdiff1 =

[

1 −1
1 −1

]

, (3)

Mdiff2 =

[

1 1
−1 −1

]

,Mdiff3 =

[

1 −1
−1 1

]

.

To generate an image pyramid that captures features at

different spatial resolutions, we recursively apply Haar
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(a) Model Architecture (b) Training Strategy

Figure 2: (a) (Red box) Our flow-based model architecture based on a Haar wavelet image pyramid. Information flow follows

the black arrows during training/inference and the red arrows during generation. The dashed lines represent conditioning and

are used in both training and generation. (Green box) Molecular information is processed and input to the network via a graph

neural network g. (b) Our training strategy for effective molecule-to-image synthesis. See text for details.

wavelet transforms to the coarse image. Specifically, let

[x0,x1, · · · ,xk] be a pyramid of downsampled images,

where xi represents the image x0 after i applications of

the coarse operation. We apply the fine operation to each

downsampled image except the last, resulting in the image

pyramid [x̃0, x̃1, · · · , x̃k−1,xk]. The image at each spatial

resolution can be reconstructed recursively,

xi = I([U(xi+1), x̃i]),

where U represents spatial upsampling, the brackets indicate

concatenation, and I represents the inverse of the linear

operation corresponding to the 2D Haar wavelet transform;

see Equation (3).

Haar Pyramid Generative Flow. Our proposed multi-scale

flow model f consists of multiple blocks b0, · · · , bk, each

responsible for generating the fine features for a different

level of the Haar image pyramid conditioned on a coarse

image from the next image in the pyramid; see Figure 2a, red

box. Note that each block bi consists of multiple invertible

flow units, i.e., bi = f
(i)
1 ◦ · · · ◦ f

(i)
L and can be treated

independently as a smaller generative flow from Section

3.1. The generative process is defined as follows. First we

generate the final downsampled image of the pyramid,

zk ∼ N (µk,Σk), xk = b−1
k (zk), (4)

by sampling a latent vector that corresponds to the coarsest

features and passing it through the first block. Then we re-

cursively sample latent vectors corresponding to finer spatial

features and generate the other images in the Haar image

pyramid as follows:

zi ∼ N (µi(xi+1),Σi(xi+1)),

x̃i = b−1
i (zi,xi+1), xi = I([U(xi+1), x̃i]), 0 ≤ i < k,

where x = x0 is the final full-resolution image. To perform

conditioning on the coarse image xi+1, we provide it as an

additional input to both the prior distribution of zi and to the

individual flow units in bi. We optimize the parameters of

f by maximizing the conditional log-likelihood of the fine

features x̃i given the coarser image xi+1 for every level of

the image pyramid (except the last layer, which uses standard

log-likelihood):

L(x) =
k−1
∑

i=0

(

log pN
(

zi;µi(xi+1),Σi(xi+1)
)

+ log | det
∂zi

∂x̃i

|

)

+

(

log pN
(

zk;µk,Σk

)

+ log | det
dzk

dxk

|

)

The partial derivatives reflect that zi depends on x̃i as well

as xi+1. Note that the optimization of each flow block bi is

uncoupled from the rest, which enables our model training

to scale to high-resolution cell images. We now show that

this procedure is more than a heuristic: optimizing these

conditional log-likelihoods is equivalent to optimizing the

log-likelihood of the data given in Equation (2).

Proposition 1 Let f denote the multi-scale flow model

based on a Haar image pyramid. Given an image x ∈
R

C×W×W (c ≥ 1,W = 2K ,K ≥ k), the log-likelihood of

sampling x from f can be computed exactly as,

log p(x) = L(x) + CW 2 log 2
k−1
∑

i=0

21−2(i+1).

In other words, the log-likelihood of sampling x is equal to

the sum of (conditional) log-likelihoods of sampling each

image in the Haar pyramid, up to a constant term given by

the image dimension (CW 2) and depth k. The proof hinges

on the observation that the Haar pyramid is a complete, in-

vertible linear function of the original image and is provided

in the Supplementary Material.
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Figure 3: Example of a 5-channel 512 × 512 cell image generated by our multi-scale Haar image pyramid flow model. From

left to right: mitochondria, endoplasmic reticulum, nucleoli/cytoplasmic RNA, actin (cytoskeleton), DNA (nucleus).

3.3. Conditioning on Molecular Graph

We now describe our full conditional flow model archi-

tecture and training strategy for conditioning the output of

the multi-scale flow model on molecular structure.

Graph representation of molecules. A molecule y can be

represented as a labeled graph Gy whose nodes are the atoms

in the molecule and edges are the bonds between the atoms.

Each node v has a feature vector fv including its atom type,

valence, and other atomic properties. Each edge (u, v) is

associated with a feature vector fuv indicating its bond type.

Graph neural networks. A graph neural network (GNN) g

learns to embed a graph Gy into a continuous vector g(y).
We adopt the GNN architecture from [7, 60], which asso-

ciates hidden states hv with each node v and updates these

states by passing messages m ~uv over edges (u, v). Each

message m
(0)
~uv is initialized at zero. At time step t, the mes-

sages are updated as follows:

m
(t+1)
~uv = MLP

(

fu, fuv,
∑

w∈N(u),w 6=v
m

(t)
~wu

)

(5)

for all (u, v) ∈ Gy, where N(u) is the set of neighbor nodes

of u and MLP stands for a multilayer perceptron. After T

message passing steps, we compute the hidden states hv as,

hu = MLP
(

fu,
∑

v∈N(u)
m

(t)
~uv

)

, (6)

and we compute the final representation g(y) as

g(y) = MLP(
∑

u∈Gy

hu). (7)

Conditional Flow Model Architecture. To condition cell

image generation by the flow model f on a molecular inter-

vention y, we provide the output of a graph neural network

g(y) as an additional input to µi,Σi, which govern the dis-

tribution of the latent variables zi within each of our flow

blocks bi. Figure 2a illustrates the full architecture of our

conditional flow model, with the GNN shown in green.

Training with Auxiliary Contrastive Loss. Existing for-

mulations of conditional flow models propose to maximize

the conditional log-likelihood of the data given the condi-

tioning information g(y). For our flow model, this means

maximizing L with the modification that µi,Σi, and the

flow blocks bi now also take g(y) as input; we denote this

modified loss function as Lcond. While maximizing the con-

ditional log-likelihood has proven effective for generating

images conditioned on binary vectors or conditioned on

other images, we found that it does not sufficiently lever-

age the shared information between the input image and the

molecule. Intuitively, the flow model is sufficiently powerful

to achieve a high log-likelihood by converting the image

distribution to a Gaussian distribution without using the

conditioning information, especially when the effect of the

molecular treatment on the cells is subtle in the image space.

To ensure that the conditional flow model extracts useful

information from the molecular graph for generation, we

propose a training strategy based on contrastive learning.

Specifically, we add an auxiliary loss to our objective to

maximize the mutual information between the image latent

variables [z0, · · · , zk] = f(x) extracted by the flow model

and the molecular embeddings g(y) learned by the GNN:

Li
contrastive = −E(x1,y1)∼pxy,y2···yN∼py

[

log
hi(x

1,y1)
∑N

j=1 hi(x1,yj)

]

,

where hi(x,y) is the cosine similarity of zi and g(y), pxy
is the joint distribution of the data, and py is the marginal

distribution of x and y. Concretely, the contrastive loss

encourages zi and g(y) to be more aligned when x,y are

drawn from the same sample compared to when they are

mismatched. Minimizing the contrastive loss in Equation

(3.3) is equivalent to maximizing a lower bound on the mu-

tual information between zi and g(y) and has been used

in previous work for representation learning [43]. Our key

insight is in leveraging contrastive learning in a conditional

flow model. As shown in Figure 2b, during training, we

use an additional contrastive learning loss to maximize the

mutual information between the latent variables from the

flow model f and the molecular embedding from the graph

neural network g. During generation, information flow is

reversed through the flow model to generate an image that is
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Figure 4: Examples of cell images generated by our method vs. the baselines.

tightly coupled to the conditioning molecular information.

For a hyperparameter λ > 0 and some 0 ≤ m ≤ k, the full

objective of our conditional flow model is,

− Ex,y∼pxy
Lcond(x,y) + λ

k
∑

i=m

Li
contrastive. (8)

4. Experiments

Dataset. We perform our experiments on the Cell Painting

dataset introduced by Bray et al. [2, 3] and preprocessed by

Hofmarcher et al. [21]. The dataset consists of 284K cell

images collected from 10.5K molecular interventions. Each

image contains five color channels that capture the structure

of five cellular compartments: nucleus (DNA), mitochondria,

endoplasmic reticulum (ER), nucleolus/cytoplasmic RNA,

and actin (cytoskeleton). We divide the dataset into a train-

ing set of 219K images corresponding to 8.5K molecular

interventions, and hold out the remaining of the data for eval-

uation. The held-out data consists of images corresponding

to each of the 8.5K molecules in the training set as well as

2K molecules that are not in the training set.

Implementation Details. Our model for the molecule-to-

image generation task consists of six flow modules that use

the same flow units as Glow [26], which construct different

levels of the Haar wavelet image pyramid, generating im-

ages from resolution of 16 × 16 to 512 × 512. The lowest

resolution module consists of 64 flow units, and each of

the other modules consists of 32 flow units. Each of the

modules is trained to maximize the log-likelihood of the

data (Equation 2). Additionally, the three flow modules that

process low-resolution images (up to 64× 64 resolution) are

also trained to maximize the mutual information between

the latent variables and the molecular features using con-

trastive learning with a weight of 0.1 and τ = 0.07. We train

each flow module for approximately 50K iterations using

Adam [25] with initial learning rate of 10−4, during which

the highest resolution block sees over 1M images and the

lowest resolution block sees over 10M images.

CellProfiler Biological Evaluation Metrics. For a

molecule-to-image synthesis model to be useful to practition-

ers, it needs to generate image features that are meaningful

from a biological standpoint. It has been shown that machine

learning methods can discriminate between microscopy im-

ages using features that are irrelevant to the target content

[52, 36]. Therefore, in addition to more conventional vision

metrics, we propose a new set of evaluation metrics based

on CellProfiler cell morphology features [40] that are more

robust, interpretable, and relevant to practitioners [50]. We

specifically consider the following morphological features:

(1) Coverage, the total area of the regions covered by seg-

mented cells; (2) Cell/Nuclei Count, the total number of

nuclei/cells found in the image; (3) Cell Size, the average

size of the segmented cells found in the image; (4) Zernike

Shape, a set of 30 features that describe the shape of cells

using a basis of Zernike polynomials (order 0 to order 9);

(5) Expression Level, a set of five features that measure

the level of signal from the different cellular compartments

in the image. We extract these features from a subset of

images and compute the Spearman correlation between the

features of real and generated images corresponding to the

same molecule, focusing on a subset of molecules that cause

notable changes in cell morphology in real images, since

these are the most useful molecules to capture in a virtual

screen (see Supplementary Material for details). Due to

space constraints, we show the mean correlation for the 30

Zernike shape features and the five expression level features.
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CellProfiler Metrics Correspondence Accuracy SWD

Coverage Count Size Zernike Exp. Level Mito ER RNA Cyto DNA Overall

Ground Truth

(Upper Bound)
- - - - - 61.4 62.3 61.4 60.0 63.5 65.0 -

CGAN 7.0 4.8 -2.9 -3.9 7.4 53.4 52.3 55.9 51.3 55.7 56.6 5.65

CGlow -1.3 3.8 5.8 2.2 6.6 50.8 51.1 52.0 52.6 53.9 55.5 5.01

CGlow+Contrast 28.5 36.1 17.5 8.7 26.7 55.9 53.9 55.4 55.8 58.6 60.0 4.96

Pyramid Flow 7.7 13.4 12.0 6.8 5.3 51.7 52.4 53.7 53.1 52.9 58.8 3.68

Pyramid Flow+Contrast

(Mol2Image)
44.6 54.4 27.5 15.8 37.3 56.7 56.1 56.3 56.8 59.1 63.2 4.63

Table 1: Evaluation of Mol2Image (our model) vs. the baselines on images generated from molecules from the training

set. “CellProfiler Metrics” are Spearman correlation coefficients (×102) between biological features from real and generated

images; higher is better. “Correspondence accuracy” represents the accuracy of a pretrained correspondence classifier model

evaluated on generated images; higher is better and ground truth (upper bound) achieves between 60.0 and 65.0. “SWD” is the

sliced Wasserstein distance metric (×10−2) from [23]; lower is better. See text for details.

Correspondence Classification Accuracy Metrics. In ad-

dition to CellProfiler metrics, to assess the correspondence

between the generated images and the molecular information,

we also compute the accuracy of pretrained correspondence

classifiers on the generated images. These classifiers consist

of a visual network and GNN that are trained to perform the

following binary classification task: detect whether the input

cell image matches the input molecular intervention (positive

example) or whether they are taken from two different sam-

ples (negative example). We evaluate the correspondence

classification accuracy for individual image channels to as-

sess the generation quality of different cellular compartments

(e.g., DNA, mitochondria, ER, nucleolus/RNA, and actin), as

well as 5-channel images that take all cellular compartments

into account. We take the correspondence classification ac-

curacy on real images (i.e., ground truth data) to be the upper

bound performance of the generated images.

Other Evaluation Metrics. In addition to these specialized

metrics for biological images, we use the sliced Wasserstein

Distance (SWD) [23] to measure unconditional image gen-

eration quality. We also compute the log-likelihood of the

images to compare our proposed flow model based on the

Haar image pyramid (the unconditional version) with the

state-of-the-art Glow model [26].

Baselines. Since we present improvements to flow-based

generative models, we primarily compare our approach to

the state-of-the-art flow model, Glow, and its conditional

variant CGlow [26], and perform ablations of our model

without the proposed improvements. Furthermore, inspired

by text-to-image synthesis models that combine generative

adversarial networks with text feature extraction models [47],

we develop and compare against a GAN-based approach that

combines a generative adversarial network with a graph

neural network for molecule-to-image synthesis (CGAN).

CellProfiler Metrics Corr

Coverage Count Size Zernike Exp. Level Overall

CGAN 6.4 1.9 -1.5 -1.0 9.2 56.1

CGlow 3.1 -3.7 -3.0 -3.1 3.7 54.5

CGlow+Contrast 9.2 1.7 12.9 6.1 8.6 59.1

Pyramid Flow 5.0 9.1 6.1 2.9 9.2 55.7

Pyramid Flow

+Contrast

(Mol2Image)
15.8 19.7 11.0 4.9 13.4 62.6

Table 2: Same as Table 1, but evaluated on images gener-

ated from held-out molecules. Ground truth (upper bound)

achieves 64.2 on the correspondence accuracy (Corr) metric.

See Supplementary Materials for full table.

5. Results

Tables 1 and 2 show the results of our model in compari-

son to the baselines. Note that since the baseline flow models

are not capable of generating images at full 512 x 512 reso-

lution, we compare all of the model results at 64 x 64 spatial

resolution. Mol2Image, which uses the proposed multi-scale

flow model based on the Haar image pyramid and is trained

using contrastive learning, outperforms the baselines in gen-

erating cell images that reflect the effects of the molecular

interventions for both molecules seen during training (Table

1) and held-out molecules (Table 2). Proposed improvements

from Section 3 are analyzed below.

Haar Pyramid Flow vs. Glow [26]. One of our method-

ological contributions is a multi-scale flow model based on

the framework of a Haar image pyramid (Section 3.2). The

primary motivation for developing this model is to scale

flow-based generation to high-resolution cell images. Exist-

ing state-of-the-art flow models such as Glow [26] cannot

be trained on images larger than 256 x 256 due to memory

limits (i.e., in [26], the batch size per GPU was a single

image of this size). In contrast, our multi-scale flow model

successively generates images at multiple scales based on

an image pyramid, going from coarse-to-fine resolution, and

can be trained to generate full-resolution 512 x 512 cell

6694



images as shown in Figure 4. We provided theoretical jus-

tification in Proposition 1, which states that our approach

preserves the original log-likelihood objective of Glow, even

though the training is decoupled at different image scales.

Supplementary Table 2 shows empirical evidence that the

log-likelihoods computed by Glow and our pyramid flow

model are equivalent.

Although the primary motivation for our multi-scale flow

model was scalability, we find that the image pyramid frame-

work also improves the conditional generation of 64 x 64

images compared to the baseline model that directly gener-

ates images of this size (i.e., in Table 1, compare “CGlow” to

“Pyramid Flow”, and compare “CGlow+Contrast” to “Pyra-

mid Flow+Contrast (Mol2Image)”). We hypothesize that

it is more efficient and easier to learn the relation between

images and conditions when starting with the low-resolution

images at the bottom of the image pyramid, which can be

trained with larger batch size. Consistent with our obser-

vations, previous works have reported that training GANs

starting from lower-resolution images [23, 8] is more effec-

tive than training directly on full-resolution images.

Training using Contrastive Learning. Our proposed train-

ing strategy for conditional flow models uses contrastive

learning to maximize the mutual information between the

image latent variables and the molecular embedding (Section

3.3). The results in Table 1 show that this is essential for

effective generation of images conditioned on the molecular

intervention. In particular, there is much lower correspon-

dence between the images and the molecular intervention

when contrastive learning is omitted. This result holds both

in the case that we use the image pyramid framework (i.e.,

compare “Pyramid Flow” to “Pyramid Flow+Contrast”) and

in the case that we directly generate 64 x 64 images us-

ing the baseline Glow model (i.e., compare “CGlow” to

“CGlow+Contrast”). On the other hand, contrastive learn-

ing does not appear to improve the unconditional quality of

generated images (based on SWD).

Figure 4 shows a qualitative comparison between the

baselines (CGAN, CGlow) and our method on generating

images conditioned on molecular structure. The generated

images from our method (Figure 4, row 3) more closely

reflect the real effect of the intervention (Figure 4, row 4)

compared to other methods, both in terms of cell morphology

and in terms of channel intensities (representing expression

of different cellular components). More qualitative examples

(including full-resolution 512 × 512 images) are provided

in the Supplementary Material.

We hypothesize that contrastive learning provides a strong

signal for the conditional flow model to learn the relation be-

tween the treated cell image and the molecular structure,

which leads to better conditional generation results. To

this end, we also assess whether the molecular embeddings

learned by the GNN of the conditional flow model are more

Embeddings

(Validation)

Embeddings

(Held out)

Random 0.569 0.578

Morgan Fingerprint 0.645 0.665

GNN 0.675 0.675

GNN+Contrast 0.810 0.683

Table 3: Evaluation of molecular embeddings on predicting

morphological labels. Higher AUC is better. “Random”

refers to embeddings from a randomly initialized GNN.

“Held-out” refers to held-out molecules from the training

set. For reference, a fully-supervised model (in which the

parameters of the graph neural network are trained) achieves

an AUC of 0.702 on held-out molecules.

reflective of the morphology they induce in treated cells.

Specifically, we train linear classifiers on the molecular em-

beddings to predict a subset of 14 features curated from the

morphological analysis of Bray et al. [2] (see the Supplemen-

tary Material). For comparison, we consider embeddings

from a randomly initialized GNN, Morgan/circular finger-

prints [49], and an ablation model trained without contrastive

learning. The results suggest that contrastive learning learns

molecular embeddings that highly reflect the morphological

properties observed in the treated cells (Table 3, Column 1)

and that these embeddings generalize to unseen molecules

(Table 3, Column 2), which explains why this strategy is

effective for improving conditional generation results.

6. Discussion

We have developed a new multi-scale flow-based archi-

tecture and training strategy for molecule-to-image synthesis

and demonstrated the benefits of our approach on new eval-

uation metrics tailored to biological cell image generation.

Our work represents a first step towards image-based virtual

screening of chemicals and lays the groundwork for studying

the shared information in molecular structures and perturbed

cell morphology. A promising avenue for future work is

integrating side information (e.g., known chemical proper-

ties or drug dosage) to impose constraints on the molecular

embedding space and improve generalization to previously

unseen molecules.
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