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Abstract

To generate “accurate” scene graphs, almost all exist-

ing methods predict pairwise relationships in a determin-

istic manner. However, we argue that visual relationships

are often semantically ambiguous. Specifically, inspired by

linguistic knowledge, we classify the ambiguity into three

types: Synonymy Ambiguity, Hyponymy Ambiguity, and

Multi-view Ambiguity. The ambiguity naturally leads to the

issue of implicit multi-label, motivating the need for diverse

predictions. In this work, we propose a novel plug-and-

play Probabilistic Uncertainty Modeling (PUM) module. It

models each union region as a Gaussian distribution, whose

variance measures the uncertainty of the corresponding vi-

sual content. Compared to the conventional determinis-

tic methods, such uncertainty modeling brings stochasticity

of feature representation, which naturally enables diverse

predictions. As a byproduct, PUM also manages to cover

more fine-grained relationships and thus alleviates the is-

sue of bias towards frequent relationships. Extensive exper-

iments on the large-scale Visual Genome benchmark show

that combining PUM with newly proposed ResCAGCN can

achieve state-of-the-art performances, especially under the

mean recall metric. Furthermore, we show the universal ef-

fectiveness of PUM by plugging it into some existing models

and provide insightful analysis of its ability to generate di-

verse yet plausible visual relationships.
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Figure 1. Examples of semantic ambiguity in Visual Genome

dataset. The first two columns show the comparisons between

two plausible predicates for similar visual scenes and the right-

most column illustrates the corresponding phenomenons in seman-

tic space. (a) carrying and holding share overlapping defini-

tions and are interchangeable to describe the relationship between

a man and an umbrella. (b) Both on and laying on are reason-

able to describe the scene where a cat is on top o a bench, despite

their semantic specificity difference. (c) Different human annota-

tors focus on different points of view, i.e. using (actional) vs. in

front of (spatial), to describe a working man and a laptop.

1. Introduction

Scene graph generation (SGG) has been an important

task in computer vision, serving as an intermediate task

to bridge the gap between upstream object detection [21]

and downstream high-level visual understanding tasks, such

as image captioning [33, 42] and visual question answer-

ing [36]. Intuitively, the latter would get greater benefit

from more human-like scene graphs.

Almost all existing works [30, 35, 4, 24] view SGG as

an objective task and predict pairwise relationships in a de-

12527



terministic manner. Namely, given a pair of objects, they

always generate an identical predicate. However, compared

with humans, such methods pursue “accurate” scene graphs

but overlook the intrinsic semantic ambiguity of visual re-

lationships. Specifically, the collaborative annotations from

human annotators tend to be diverse, covering different de-

scriptions of relationships for similar visual scenes.

We observe that there exist multiple types of semantic

ambiguity in the large-scale Visual Genome dataset. In-

spired by linguistic knowledge, we classify the ambigu-

ity into three types. The first type is Synonymy Ambi-

guity, where multiple synonymous predicates that share

overlapping definitions are suitable to describe similar vi-

sual scenes. For example, in Figure 1 (a), carrying and

holding are interchangeable to describe the relationship

between a man and an umbrella. If we visualize these two

words in the semantic space, they should point to the same

position where the visual relationship lies. The second one

is Hyponymy Ambiguity, indicating that different humans

tend to use predicates across adjacent abstract levels. One

would simply use on to describe the visual scene where a

cat is on top of a bench, while others may choose to use

more fine-grained laying on, as shown in Figure 1 (b).

In this case, laying on is a hyponym of on. Namely,

the semantic range of the former is included by that of the

latter. As for the third type, we notice that different human

annotators often focus on different types of visual relation-

ships, which originate from different points of view. There-

fore, we refer to this phenomenon as Multi-view Ambigu-

ity. An example is illustrated in Figure 1 (c), where both

using (actional) and in front of (spatial) are plausi-

ble to describe the relationship between a working man and

a laptop. If we consider the visual scene in three-dimension

space, it can be a multicolor sphere that reflects different

colors from different views. Although most predicates have

single labels in the dataset, due to the ubiquitous semantic

ambiguity mentioned above, we argue that many of them

should have multiple labels, since similar visual scenes are

annotated as different predicates. We refer to the issue as

an implicit multi-label problem, which motivates the need

to generate diverse predictions for visual relationships.

In this work, we focus on modeling the semantic am-

biguity of visual relationships and propose a novel plug-

and-play Probabilistic Uncertainty Modeling (PUM) mod-

ule which can be easily deployed in any existing SGG

model. Specifically, we utilize a probability distribution to

represent each union region, rather than a deterministic fea-

ture vector as in previous methods. From a geometric per-

spective, the probabilistic representation allows us to map

each visual relationship to a soft region in space, instead of

merely a single point [26]. For ease of modeling, we adopt

Gaussian distributions to represent them. Namely, each

union region is now parametrized by a mean and variance.

The former acts like the normal feature vector as in the con-

ventional model, whereas the latter measures the feature un-

certainty. To some extent, in this way, the feature instance

of each union region can be viewed as a random variable

drawn from a Gaussian distribution. Thanks to this uncer-

tainty modeling, ambiguous union regions will be assigned

to Gaussian distributions with large variances, which gen-

erate diverse samples and result in diverse predictions. As

a byproduct, we find that PUM also manages to cover more

fine-grained relationships and thus well alleviates the infa-

mous issue of bias towards frequent relationships [4, 24].

We firstly demonstrate the effectiveness of PUM on the

Visual Genome benchmark. Combining with the newly pro-

posed Residual Cross-attention Graph Convolutional Net-

work (ResCAGCN) in concurrent work [39], we achieve

state-of-the-art performances under the existing evaluation

metrics, especially the mean recall. Note that our PUM can

serve as a plug-and-play component. Therefore, we plug

PUM into state-of-the-art models and observe obvious uni-

versal improvement over these baselines, which mainly lies

in the mean recall again. We owe the performance gain in

the mean recall to the ability to generate diverse relation-

ships, which improves the chances to hit the ground-truth

with infrequent predicate labels. We further propose ora-

cle recall as an indirect evaluation metric to measure the

diversity of multiple inferences, which takes results of mul-

tiple consecutive predictions as an ensemble and computes

recall. The oracle recall of the proposed model increases

with the number of predictions, indicating that the model

generates plausible diverse relationships and thus gradually

covers the ground-truth more and more.

Overall, our contributions can be summarized as follows:

• We identify the semantic ambiguity of visual relation-

ships and propose a novel plug-and-play Probabilistic

Uncertainty Modeling (PUM) module, which utilizes a

probability distribution to represent each union region

instead of a deterministic feature vector.

• Combining PUM with ResCAGCN, we achieve state-

of-the-art performances on the large-scale Visual

Genome benchmark under the existing evaluation met-

rics, especially the mean recall.

• Extensive evaluations demonstrate the superiority of

PUM to alleviate the bias towards frequent categories

when plugged into the existing SGG models, reflected

in the improvement on the mean recall.

• To the best of our knowledge, we are the first to ex-

plore diverse predictions for SGG. We conduct exper-

iments both qualitatively and quantitatively to demon-

strate that the proposed PUM module can generate di-

verse yet plausible relationships.
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Figure 2. Existing SGG framework usually includes the following steps: (a) utilizing Faster R-CNN to obtain object proposals; (b) fusing

features globally to obtain object labels, object features, and union region features; (c) conditioned on the results of the previous step,

modeling each union region as a deterministic vector to predict the relationship. In this work, we replace (c) with Probabilistic Uncertainty

Modeling (PUM) in (d), where each union region is represented by a probability distribution instead. In such way, diversity in scene graph

generation is naturally achieved.

2. Related Work

Scene Graph Generation. Visual relationships have raised

wide concern in the computer vision community since Lu

et al. [18] formalized Visual Relationship Detection as a vi-

sual task. In early works [18, 44, 43, 38, 37], objects and

pairwise relationships were detected independently. Such

models overlooked the rich visual context and led to sub-

optimal performance. To make full use of visual context,

later methods consider the whole image and utilized vari-

ous kinds of message passing mechanisms [30, 15, 16, 32,

35, 24, 8, 27, 17]. For example, Xu et al. [30] were the

first to formally define the problem of SGG and addressed

it with iterative refinement via message passing. After-

ward, Zellers et al. [35] represented the global context via

LSTM, a recurrent sequential architecture. More recently,

Chen et al. [4] incorporated statistical correlations into the

graph propagation network. Meanwhile, Tang et al. [24]

composed dynamic tree structures to allow content-specific

message passing. While all these methods overlook the se-

mantic ambiguity of visual relationships and make infer-

ences in a deterministic manner, we propose to address the

ambiguity via probabilistic modeling.

Uncertainty Modeling. Conventionally, the high-level rep-

resentation of an input instance, e.g. an image or a word, is

modeled as a fixed-length feature vector, namely, a single

point in R
D. However, such a point estimate is not suf-

ficient to express uncertainty. In recent years, Gaussian

embedding has been getting more attention in deep learn-

ing since [26] utilized it to represent words instead of the

conventional word2vec [19], where the covariance naturally

measures the ambiguity of the words. In the computer vi-

sion community, there exist prior works on modeling im-

ages as Gaussian distributions [20, 34, 3]. However, all the

existing SGG methods represent each union region as a de-

terministic vector. In this work, we are the first to focus on

the intrinsic semantic ambiguity of visual relationships and

model each union region as a Gaussian distribution.

Diverse Predictions. Generally, there are two types of ap-

proaches to generate multiple diverse predictions. One is

to train multiple models and aggregate their predictions. To

better obtain diversity in the union of predictions, Multiple

Choice Learning (MCL) [9] and other variants [14, 13, 25]

were proposed to establish cooperation among all the mod-

els and train each to specialize on one particular subset of

the data distribution. Another is to infer diverse predic-

tions from a single model. Before deep learning, this type

of methods mainly focused on probabilistic graphical mod-

els [2]. Afterward, existing single-model methods can be

roughly categorized into two types: 1) via random noise

added to Generative Adversarial Networks (GANs), applied

in image captioning [5], image annotation [28], text genera-

tion [31] and so on; 2) mapping an instance to a probability

distribution in latent space and sampling from it [6, 41, 7].

Our model can be regarded as the second category. While

the other methods in this category usually utilize Variational

Autoencoders (VAEs) in a generative way, we simply make
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use of Gaussian distributions to generate stochastic repre-

sentations without a reconstruction loss and achieve diver-

sity via this stochasticity in the inference stage.

3. Approach

Generally, a scene graph is a structured representation

that describes the contents of a visual scene, which encodes

object instances via nodes and relationships between ob-

jects via edges [10]. As defined by Xu et al. [30], the task of

Scene Graph Generation is to generate an accurate visually-

grounded scene graph associated with an image.

Mathematically, a scene graph can be defined as G =
{B,O,R}, where B is a set of bounding boxes, O is object

labels, and R is relationship labels. Conventionally, given

an image I , the probability distribution of a scene graph

P (G|I) is decomposed into three factors [35, 4]:

P (G|I) = P (B|I)P (O|B, I)P (R|O,B, I). (1)

Firstly, the widely used Faster R-CNN [21] is utilized to

model P (B|I) and generates a set of object proposals.

Next, conditioning on the candidate bounding boxes, the

object model P (O|B, I) predicts the class label regarding

each box. Finally, based on the result of object detection,

the relationship model P (R|O,B, I) infers the relationship

of each object pair, leading to the whole scene graph for the

current image. Existing works treat P (R|O,B, I) as a de-

terministic model, which always generates an identical la-

bel for the same object pair. This framework is illustrated in

Figure 2 (a)(b)(c). However, such a method overlooks the

intrinsic semantic ambiguity of visual relationships and is

likely to get stuck in the issue of biased predictions [4, 24],

with the tendency to generate frequent and “safe” labels.

In this work, we propose a plug-and-play module for the

relationship model, named Probabilistic Uncertainty Mod-

eling (PUM), which addresses the semantic ambiguity men-

tioned above in a probabilistic manner. We replace the con-

ventional deterministic modeling with PUM, as illustrated

in Figure 2 (d). To better demonstrate the effectiveness of

PUM, we adopt the newly proposed ResCAGCN [39] as our

object model, which is introduced in Section 3.1. However,

note that any object model from the existing SGG methods

will be compatible with PUM theoretically. Then, we de-

scribe our PUM module in detail in Section 3.2.

3.1. Object Model

In our approach, we take Residual Cross-attention Graph

Convolutional Network (ResCAGCN) from [39] as our ob-

ject model to fuse object features and predict object labels.

The core of ResCAGCN is the cross-attention module

(CA), which is designed to capture the semantic relevance

among the object features and the pairwise union region fea-

tures. The module is formulated as:

CA (xi,xj) =
(

W ixi ⊙ σ
(

W
′

jxj

)

⊕W ixi

)

⊙
(

W jxj ⊙ σ
(

W
′

ixi

)

⊕W jxj

)

,
(2)

where ⊙ and ⊕ denote element-wise product and sum, re-

spectively. σ is the sigmoid function to normalize the atten-

tion scores. All W ∗ denote linear transformations to embed

features into the same dimension, both here and below.

Given two object features xi and xj , and their union

region feature uij , to model the contextual information,

ResCAGCN utilizes the cross-attention module to compute

the contextual coefficient cij , which is formulated as:

cij = σ
(

W T
c (CA (CA (xi,xj) ,uij))

)

. (3)

Instead of directly using the aggregated features as the

output features, ResCAGCN uses a residual connection to

add them back to the original features:

x̂i = xi +ReLU



W 1LN



W 2

∑

j∈Ni

cij ⊗W 3xj







 ,

(4)

where ⊗ denotes Kronecker product, Ni denotes the i-th

node’s neighborhood, and LN denotes layer normaliza-

tion [1]. The refined object features x̂i are then fed into

a classifier to predict the object labels.

3.2. Probabilistic Uncertainty Modeling

Conventionally, the union of two proposals is repre-

sented as a single point in space, namely, point embed-

ding [20]. As [26] observed, however, such point estimate

does not naturally express the uncertainty induced by the in-

put. In the case of visual relationships, this could be caused

by ambiguous annotations, e.g. holding and looking

at may be both plausible to describe a scene containing a

man and a cell phone.

As shown in Figure 2 (d), in order to capture the intrin-

sic uncertainty of visual relationships, we propose to ex-

plicitly model the feature distribution of each union region

as Gaussian. That is, we represent each union region as

stochastic embedding instead of the conventional point em-

bedding. From a stochastic perspective, the final represen-

tation of each union region is no longer a deterministic vec-

tor but randomly drawn from a Gaussian distribution. As

a result, we can generate predicates diversely for the same

object pair, leading to diversity in scene graph generation.

Stochastic Representation. For each object pair, following

ResCAGCN, we first fuse their contextual object features x̂i

and x̂j , as described in Section 3.1, and their visual union

region feature uij to obtain the relationship feature:

eij = x̂i ⋄ x̂j ⋄ uij , (5)
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where ⋄ denotes the fusion function defined in [40, 24], x ⋄
y = ReLU (W xx+W yy) − (W xx−W yy)

2
. Based

on each fused relationship feature, we define the associated

representation zij in latent space as a Gaussian distribution,

p(zij |eij) = N (zij ;µij ,σ
2
ij), (6)

where µij and σ2
ij refer to mean vector and diagonal co-

variance matrix respectively. They are formulated as:

µij = W µeij , (7)

σ2
ij = W σeij . (8)

At test time, we sample multiple zijs, feed them into

the relationship classifier φr respectively and compute the

average posterior probability distribution:

Pij =
1

K

K
∑

k=1

φr(z
(k)
ij ), (9)

where z
(k)
ij ∼ N (µij ,σ

2
ij), and K is the number of samples

drawn from the Gaussian. Then we simply take the argmax

of Pij as the predicted relationship label.

Uncertainty-aware Loss. µij can be viewed as the origi-

nal deterministic representation of the union box, while the

random variable zij serves as a stochastic representation

sample. Here, we consider both representations and feed

them into φr respectively. Then, we train the relationship

model with cross-entropy loss,

Lce = (1−λ)CE(φr(µ),y)+λ(Ez∼p(z|e)CE(φr(z),y)),
(10)

where λ is the weight to trade off between deterministic

prediction and stochastic predictions, and CE means cross-

entropy loss. Note that we omit the subscripts ij for clarity.

In practice, we approximate the expectation term via

Monte-Carlo sampling from z(k) ∼ p(z|e):

Lce ≈ (1−λ)CE(φr(µ),y)+λ(
1

N

N
∑

k=1

CE(φr(z
(k)),y)),

(11)

where N is the number of samples drawn from the Gaus-

sian. It is clear that conventional deterministic training can

be seen as a special case of Eq. 11 where λ is set to 0.

Inspired by [34], as training progresses, the variance σ2

always decreases with Lce alone and reverts our stochastic

representation back to deterministic model. This problem

could be alleviated by the following regularization term:

Lreg = max(0, γ − h(N (µ,σ2))), (12)

where γ is a margin to bound the uncertainty level, and

h(N (µ,σ2)) is the differential entropy of a multivariate

Gaussian distribution which is actually only related to σ:

h(N (µ,σ2)) =
1

2
log(det(2πeσ2)). (13)

It is obvious that Lreg will maintain the uncertainty level of

the learned stochastic representations.

In conclusion, our final uncertainty-aware loss for the re-

lationship model is expressed as:

Lrel = Lce + αLreg, (14)

where α is the weight of regularization term.

Reparameterization Trick. Sampling z from N (µ,σ2)
directly will prevent gradients from propagating back to

the preceding layers. Thus, we use the reparameterization

trick [11] to bypass the problem. Specifically, we first sam-

ple a random noise ǫ from the standard Gaussian and gen-

erate z as the equivalent sampling representation,

z = µ+ ǫσ, ǫ ∼ N (0, I). (15)

4. Experiments

4.1. Experiment Setting

Dataset. We evaluate the proposed method on the popu-

lar large-scale Visual Genome (VG) benchmark [12], which

originally contains 108,077 images with average annota-

tions of 38 objects and 22 relationships per image. Since

the majority of the annotations are noisy, following pre-

vious works [35, 4, 24], we adopt the most popular split

from [30], which selects top-150 object categories and top-

50 predicate categories by frequency.

Evaluation. We follow three conventional tasks to evalu-

ate the proposed SGG model: (1) Predicate Classification

(PredCls): given the bounding boxes and their object labels

in an image, predict the predicates of all pairwise relation-

ships. (2) Scene Graph Classification (SGCls): given the

ground-truth bounding boxes in an image, predict the pred-

icate as well as the object labels in every pairwise relation-

ship. (3) Scene Graph Detection (SGDet): given merely

an image, simultaneously detect a set of objects and predict

the predicate between each pair of the detected objects.

Since the distribution of relationships in the VG dataset

is highly imbalanced, we follow [4, 24] to utilize mean Re-

call@K (short as mR@K) to evaluate each relationship in a

balanced way. For reference, all the methods are also evalu-

ated by the conventional Recall@K (short as R@K) metric.

Implementation Details. Following the prior works [35, 4,

24], we adopt the same Faster-RCNN [21] to detect object

bounding boxes and extract RoI features. For the hyperpa-

rameters in PUM, we set K to 8, N to 8, λ to 0.1, and γ

to 200. We optimize the proposed model by the Adam op-

timizer with a batch size of 8, and momentums of 0.9 and

0.999. Our method is implemented by Pytorch and Mind-

Spore. Intuitively, our uncertainty modeling would cause

variance of performances. However, in practice, under the
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Table 1. Comparisons among various methods on mR@K (%). † denotes the re-implemented version from [35]. ↑ and ↓ indicate the

performance change before and after plugging in PUM.

SGDet SGCls PredCls

Methods mR@50 mR@100 mR@50 mR@100 mR@50 mR@100 Mean

IMP† [30, 35] 3.8 4.8 5.8 6.0 9.8 10.5 6.8

FREQ [35] 4.3 5.6 6.8 7.8 13.3 15.8 8.9

SMN [35] 5.3 6.1 7.1 7.6 13.3 14.4 9.0

KERN [4] 6.4 7.3 9.4 10.0 17.7 19.2 11.7

VCTREE-SL [24] 6.7 7.7 9.8 10.5 17.0 18.5 11.7

VCTREE-HL [24] 6.9 8.0 10.1 10.8 17.9 19.4 12.2

IMP† + PUM 4.5 ↑ 0.7 5.5 ↑ 0.7 6.4 ↑ 0.6 6.8 ↑ 0.8 11.3 ↑ 1.5 12.3 ↑ 1.8 7.8 ↑ 1.0

SMN + PUM 7.5 ↑ 2.2 8.6 ↑ 2.5 9.4 ↑ 2.3 10.1 ↑ 2.5 16.4 ↑ 3.1 18.1 ↑ 3.7 11.7 ↑ 2.7

KERN + PUM 6.5 ↑ 0.1 7.4 ↑ 0.1 9.9 ↑ 0.5 10.6 ↑ 0.6 18.7 ↑ 1.0 20.4 ↑ 1.2 12.3 ↑ 0.6

VCTREE-SL + PUM 7.1 ↑ 0.4 8.2 ↑ 0.5 11.0 ↑ 1.2 11.9 ↑ 1.4 19.0 ↑ 2.0 20.9 ↑ 2.4 13.0 ↑ 1.3

ResCAGCN [39] 7.9 8.8 10.2 11.1 18.3 19.9 12.7

ResCAGCN + PUM 7.7 ↓ 0.2 8.9 ↑ 0.1 11.9 ↑ 1.7 12.8 ↑ 1.7 20.2 ↑ 1.9 22.0 ↑ 2.1 13.9 ↑ 1.2

Table 2. Comparisons among various methods on R@100 (%).

SGDet SGCls PredCls

Methods R@100 R@100 R@100

IMP† [30, 35] 24.5 35.4 61.3

FREQ [35] 30.1 32.9 62.2

SMN [35] 30.3 36.5 67.1

KERN [4] 29.8 37.4 67.6

VCTREE-SL [24] 31.1 38.6 67.9

VCTREE-HL [24] 31.3 38.8 68.1

IMP† + PUM 25.0 ↑ 0.5 35.7 ↑ 0.3 61.8 ↑ 0.5

SMN + PUM 30.6 ↑ 0.3 37.4 ↑ 0.9 67.5 ↑ 0.4

KERN + PUM 29.8 37.1 ↓ 0.3 67.5 ↓ 0.1

VCTREE-SL + PUM 30.9 ↓ 0.2 38.1 ↓ 0.5 67.6 ↓ 0.3

ResCAGCN [39] 30.9 38.7 67.9

ResCAGCN + PUM 31.3 ↑ 0.4 39.0 ↑ 0.3 68.3 ↑ 0.4

hyperparameter setting mentioned above, we observe that

the variance is always negligible enough1 to be ignored.

4.2. Comparisons with State­of­the­Art Methods

Comparing Methods. In this part, we compare our model

with existing state-of-the-art methods: (1) designed to

improve the recall, including Iterative Message Passing

(IMP) [30], frequency baseline without using visual con-

texts (FREQ) [35] and Stacked Motif Network (SMN) [35];

(2) intended for more balanced prediction on relation-

ships, including Knowledge-Embedded Routing Network

10.03% at most, with respect to mR/R@K.
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Figure 3. The R@100 improvement (%) of different predicate cat-

egories over VCTREE-HL in the PredCls setting. The x-axis la-

bels are in descending order according to their number of samples

in the dataset. Categories with the same performances are filtered

out. Blue (orange) indicates increase (decrease) in performance.

(KERN) [4] and Visual Context Tree model (VCTREE-

SL, trained by supervised learning, and VCTREE-HL,

trained by hybrid learning) [24]. Although [17] also re-

ported new state-of-the-art performances recently, we argue

that their results are not directly comparable to ours. Please

refer to the supplementary material for details.

Quantitative Results. From Table 1, compared with

the previous state-of-the-art methods, the proposed model

(ResCAGCN + PUM) shows the best performances on the

mR@K metric, with a relative improvement of 13.9% com-

pared with VCTREE-HL according to the mean. This in-

dicates that the proposed model achieves notable improve-

ment on infrequent categories. Meanwhile, it does not sac-

rifice frequent categories a lot, since its performances on

R@100 also reach state-of-the-art, as shown in Table 2.

To gain a more comprehensive understanding of this
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phenomenon, as depicted in Figure 3, we further present

the R@100 improvement of each predicate category over

VCTREE-HL in the PredCls setting. Note that the x-axis

labels are in descending order according to their number of

samples in the VG dataset and categories with the same per-

formances are filtered out. It is obvious that the proposed

model achieves significant improvement in most categories.

Importantly, the improvement is much larger for those in-

frequent categories in the long tail. We mainly owe this

phenomenon to the byproduct of PUM, which endows the

model with more chances to cover infrequent categories and

thus alleviates the issue of biased predictions.

4.3. Ablation Study

To better prove the effectiveness of PUM, in this part, we

explore the gain of PUM as a plug-and-play module. Firstly,

as illustrated in the third part of Table 1, PUM brings about

a significant increase over the vanilla ResCAGCN [39] by a

margin of 1.2% on mR@K, according to the mean. Mean-

while, from Table 2, PUM also improves the model moder-

ately on R@K. The results suggest that PUM indeed plays

a critical role in the proposed model, which especially lies

in more balanced predictions.

Then, we apply PUM to existing state-of-the-art meth-

ods, which conventionally utilize deterministic representa-

tions for visual relationships. Specifically, by regarding the

original relationship features in each model as the eij in

Eq. 5, we adopt the subsequent operations in Section 3.2

to model the uncertainty of relationships in a probabilis-

tic manner. We present comparisons on mR@K between

the existing state-of-the-art methods (IMP [30], SMN [35],

KERN [4] and VCTREE-SL2 [24]) and the counterparts

plugged in PUM in the second part of Table 1. We find that

PUM improves the performances of all models by a signifi-

cant margin, with a relative improvement of 14.7%, 30.0%,

5.1% and 11.1% compared with the baselines respectively.

The results show the universal superiority of PUM to the de-

terministic modeling, which mainly lies in the effectiveness

to alleviate the issue of biased predictions towards frequent

relationships. We also present comparisons on R@K in Ta-

ble 2. Note that PUM does not necessarily improve all base-

lines under this metric. However, according to the discus-

sions by Tang et al. [23], R@K is not a “qualified” metric

for SGG, since simply catering to frequent categories while

neglecting the infrequent ones would unfairly obtain a good

performance. Meanwhile, similar to [23], we also observe

that the performance drops caused by PUM mainly orig-

inate from classifying trivial “head” predicates into more

fine-grained “tail” classes, e.g. from on to parked on.

2Since the reinforcement learning of VCTREE is independent of our

method, we only conduct experiments on its one-stage supervised version

for simplicity.

4.4. Understand Uncertainty Modeling

We observe that the proposed model can generate diverse

relationships, which helps to address the implicit multi-label

issue caused by the semantic ambiguity. In this part, we

qualitatively and quantitatively analyze this characteristic to

gain more insights about our uncertainty modeling.

Qualitative Results. From Eq. 9, the relationship fea-

tures fed into the classifier are randomly drawn from Gaus-

sian distributions, resulting in varied predicted confidences,

even for the same union region. Therefore, given a pair of

objects, the proposed model can produce different plausi-

ble predicate at each inference. In other words, it is able

to describe the same visual scene in different ways, lead-

ing to more human-like diverse predictions. This diversity

well matches the three types of ambiguity illustrated in Fig-

ure 1. We show qualitative examples from two consecu-

tive predictions of the proposed model in the PredCls set-

ting in Figure 4. From the first row, the proposed model

generates semantically-similar predicates consecutively, i.e.

at vs. near and holding vs. carrying. Although

the ground-truth only considers a single label, we argue

that there exists such Synonymy Ambiguity, where multiple

synonyms are plausible at the same time. Hyponymy Am-

biguity is also a common phenomenon, where predicates

across adjacent abstract levels are interchangeable. In the

second row, the ground truth can be fine-grained (walking

on) or coarse-grained (on). Thanks to our uncertainty mod-

eling, the proposed model covers both levels of granularity

and thus increases the chance of hitting the ground-truth.

In Figure 1 (c), different human annotators tend to describe

similar visual scenes from different points of view, result-

ing in Multi-view Ambiguity. We observe that the proposed

model also simulates this phenomenon well. From Figure

4 (c), for the relationship between person and sheep,

the proposed model focuses on either the spatial position

(behind) or the person’s action (looking at). On the

other hand, for the scene on the right, the predictions could

be a possessive verb (has) or an actional verb (holding).

In a word, these qualitative examples suggest that seman-

tic ambiguity is quite common when describing visual re-

lationships, while the proposed model manages to generate

diverse yet plausible predictions.

Oracle Evaluation. Inspired by the oracle error rate in

Multiple Choice Learning [9, 14, 13, 25], we propose to use

oracle Recall (short as oR) to measure the diversity of pre-

dictions indirectly, which counts a hit if one of the multiple

consecutive predictions matches the ground-truth:

oR =

∑R

i=1 1(
∑M

m=1 1(ŷm,i = yi) > 0)

R
, (16)

1(x) =

{

1 x = True,

0 x = False.
(17)
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Figure 4. Qualitative examples from two consecutive predictions of the proposed model in the PredCls setting. Blue color indicates

subjects; green color indicates objects; underlining indicates predictions that hit the ground-truth. For each prediction, we also show the

top-5 classes with the highest confidences. Note that the confidences vary between two consecutive predictions, because of the stochasticity

of the relationship features.

Above, R is the number of the ground-truth relationships

in an image, M is the number of consecutive predictions,

1(·) is an indicator function, and ŷm,i = yi means the m-th

prediction on the i-th relationship hits the ground-truth. if

M is set to 1, oR is reduced to the normal recall. Note that

we omit the averaging over all images in Eq. 16 for clarity.

In order to focus on the prediction of predicates, we con-

duct experiments in the PredCls setting. It is obvious that

a model with the ability to make diverse inferences will

achieve better performance under this metric. As illustrated

in Figure 5, we evaluate the oR of the proposed model with

and without PUM, respectively. As M increases, while

the performance of ResCAGCN remains unchanged due to

the lack of diversity, ResCAGCN + PUM gets improved

steadily. The result suggests that our PUM not only boosts

the coverage of predicted relationships in a single infer-

ence (as indicated when M = 1), but generates fresh rela-

tionships diversely in the next consecutive new predictions,

which improves the opportunities to hit the ground-truth.

5. Conclusion

In this work, we considered the semantic ambiguity of

visual relationships, which could be classified into Syn-

onymy Ambiguity, Hyponymy Ambiguity and Multi-view

Ambiguity. To address the implicit multi-label issue caused

by the ambiguity, we proposed a novel plug-and-play mod-

ule dubbed PUM. Although we aimed for diverse predic-
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Figure 5. The effects of different number of consecutive predic-

tions (M ) on oR (%). The performance of ResCAGCN + PUM is

higher than that of ResCAGCN and increases with M .

tions, thanks to the byproduct of PUM, we achieved state-

of-the-art performances under the existing evaluation met-

rics when combining it with ResCAGCN. Furthermore, we

showed the universal effectiveness of PUM and explored its

ability to generate diverse yet plausible relationships both

qualitatively and quantitatively. A possible future direc-

tion would be to apply this kind of uncertainty modeling

in down-stream tasks that also emphasize diversity, such as

diverse visual captioning [5, 22, 29].

12534



References

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. Layer normalization. arXiv preprint arXiv:1607.06450,

2016.

[2] Dhruv Batra, Payman Yadollahpour, Abner Guzman-Rivera,

and Gregory Shakhnarovich. Diverse m-best solutions in

markov random fields. In Proceedings of the European Con-

ference on Computer Vision (ECCV), pages 1–16. Springer,

2012.

[3] Jie Chang, Zhonghao Lan, Changmao Cheng, and Yichen

Wei. Data uncertainty learning in face recognition. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 5710–5719, 2020.

[4] Tianshui Chen, Weihao Yu, Riquan Chen, and Liang Lin.

Knowledge-embedded routing network for scene graph gen-

eration. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 6163–6171, 2019.

[5] Bo Dai, Sanja Fidler, Raquel Urtasun, and Dahua Lin. To-

wards diverse and natural image descriptions via a condi-

tional gan. In Proceedings of the IEEE International Confer-

ence on Computer Vision, pages 2970–2979, 2017.

[6] Zhihao Fan, Zhongyu Wei, Piji Li, Yanyan Lan, and Xu-

anjing Huang. A question type driven framework to diver-

sify visual question generation. In IJCAI, pages 4048–4054,

2018.

[7] Xiang Gao, Sungjin Lee, Yizhe Zhang, Chris Brockett,

Michel Galley, Jianfeng Gao, and Bill Dolan. Jointly opti-

mizing diversity and relevance in neural response generation.

In Proceedings of the 2019 Conference of the North Ameri-

can Chapter of the Association for Computational Linguis-

tics: Human Language Technologies, Volume 1 (Long and

Short Papers), pages 1229–1238, 2019.

[8] Jiuxiang Gu, Handong Zhao, Zhe Lin, Sheng Li, Jianfei Cai,

and Mingyang Ling. Scene graph generation with external

knowledge and image reconstruction. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1969–1978, 2019.

[9] Abner Guzman-Rivera, Dhruv Batra, and Pushmeet Kohli.

Multiple choice learning: Learning to produce multiple

structured outputs. In Advances in Neural Information Pro-

cessing Systems, pages 1799–1807, 2012.

[10] Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia Li,

David Shamma, Michael Bernstein, and Li Fei-Fei. Image

retrieval using scene graphs. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

3668–3678, 2015.

[11] Diederik P Kingma and Max Welling. Auto-encoding varia-

tional bayes. arXiv preprint arXiv:1312.6114, 2013.

[12] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,

Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-

tidis, Li-Jia Li, David A Shamma, et al. Visual genome:

Connecting language and vision using crowdsourced dense

image annotations. International journal of computer vision,

123(1):32–73, 2017.

[13] Kimin Lee, Changho Hwang, KyoungSoo Park, and Jinwoo

Shin. Confident multiple choice learning. arXiv preprint

arXiv:1706.03475, 2017.

[14] Stefan Lee, Senthil Purushwalkam Shiva Prakash, Michael

Cogswell, Viresh Ranjan, David Crandall, and Dhruv Batra.

Stochastic multiple choice learning for training diverse deep

ensembles. In Advances in Neural Information Processing

Systems, pages 2119–2127, 2016.

[15] Yikang Li, Wanli Ouyang, Bolei Zhou, Jianping Shi, Chao

Zhang, and Xiaogang Wang. Factorizable net: an efficient

subgraph-based framework for scene graph generation. In

Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 335–351, 2018.

[16] Yikang Li, Wanli Ouyang, Bolei Zhou, Kun Wang, and Xi-

aogang Wang. Scene graph generation from objects, phrases

and region captions. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision, pages 1261–1270,

2017.

[17] Xin Lin, Changxing Ding, Jinquan Zeng, and Dacheng Tao.

Gps-net: Graph property sensing network for scene graph

generation. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 3746–

3753, 2020.

[18] Cewu Lu, Ranjay Krishna, Michael Bernstein, and Li Fei-

Fei. Visual relationship detection with language priors. In

Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 852–869. Springer, 2016.

[19] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado,

and Jeff Dean. Distributed representations of words and

phrases and their compositionality. In Advances in neural

information processing systems, pages 3111–3119, 2013.

[20] Seong Joon Oh, Kevin P Murphy, Jiyan Pan, Joseph Roth,

Florian Schroff, and Andrew C Gallagher. Modeling uncer-

tainty with hedged instance embeddings. In International

Conference on Learning Representations, 2018.

[21] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Advances in neural information pro-

cessing systems, pages 91–99, 2015.

[22] Rakshith Shetty, Marcus Rohrbach, Lisa Anne Hendricks,

Mario Fritz, and Bernt Schiele. Speaking the same language:

Matching machine to human captions by adversarial train-

ing. In Proceedings of the IEEE International Conference

on Computer Vision, pages 4135–4144, 2017.

[23] Kaihua Tang, Yulei Niu, Jianqiang Huang, Jiaxin Shi, and

Hanwang Zhang. Unbiased scene graph generation from bi-

ased training. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 3716–

3725, 2020.

[24] Kaihua Tang, Hanwang Zhang, Baoyuan Wu, Wenhan Luo,

and Wei Liu. Learning to compose dynamic tree structures

for visual contexts. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 6619–

6628, 2019.

[25] Kai Tian, Yi Xu, Shuigeng Zhou, and Jihong Guan. Versatile

multiple choice learning and its application to vision com-

puting. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 6349–6357, 2019.

[26] Luke Vilnis and Andrew McCallum. Word representations

via gaussian embedding. In International Conference on

Learning Representations, 2015.

12535



[27] Wenbin Wang, Ruiping Wang, Shiguang Shan, and Xilin

Chen. Exploring context and visual pattern of relationship

for scene graph generation. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

8188–8197, 2019.

[28] Baoyuan Wu, Weidong Chen, Peng Sun, Wei Liu, Bernard

Ghanem, and Siwei Lyu. Tagging like humans: Diverse and

distinct image annotation. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

7967–7975, 2018.

[29] Huanhou Xiao and Jinglun Shi. Diverse video caption-

ing through latent variable expansion with conditional gan.

arXiv preprint arXiv:1910.12019, 2019.

[30] Danfei Xu, Yuke Zhu, Christopher B Choy, and Li Fei-Fei.

Scene graph generation by iterative message passing. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 5410–5419, 2017.

[31] Jingjing Xu, Xuancheng Ren, Junyang Lin, and Xu Sun.

Diversity-promoting gan: A cross-entropy based generative

adversarial network for diversified text generation. In Pro-

ceedings of the 2018 Conference on Empirical Methods in

Natural Language Processing, pages 3940–3949, 2018.

[32] Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and Devi

Parikh. Graph r-cnn for scene graph generation. In Proceed-

ings of the European conference on computer vision (ECCV),

pages 670–685, 2018.

[33] Xu Yang, Kaihua Tang, Hanwang Zhang, and Jianfei Cai.

Auto-encoding scene graphs for image captioning. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 10685–10694, 2019.

[34] Tianyuan Yu, Da Li, Yongxin Yang, Timothy M Hospedales,

and Tao Xiang. Robust person re-identification by modelling

feature uncertainty. In Proceedings of the IEEE International

Conference on Computer Vision, pages 552–561, 2019.

[35] Rowan Zellers, Mark Yatskar, Sam Thomson, and Yejin

Choi. Neural motifs: Scene graph parsing with global con-

text. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 5831–5840, 2018.

[36] Cheng Zhang, Wei-Lun Chao, and Dong Xuan. An empirical

study on leveraging scene graphs for visual question answer-

ing. In British Machine Vision Conference (BMVC), 2019.

[37] Hanwang Zhang, Zawlin Kyaw, Shih-Fu Chang, and Tat-

Seng Chua. Visual translation embedding network for visual

relation detection. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 5532–5540,

2017.

[38] Ji Zhang, Mohamed Elhoseiny, Scott Cohen, Walter Chang,

and Ahmed Elgammal. Relationship proposal networks. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 5678–5686, 2017.

[39] Jingyi Zhang, Yong Zhang, Baoyuan Wu, Yanbo Fan, Fumin

Shen, and Heng Tao Shen. Dual resgcn for balanced scene

graphgeneration. arXiv preprint arXiv:2011.04234, 2020.

[40] Yan Zhang, Jonathon Hare, and Adam Prügel-Bennett.
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