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Abstract

We present a new domain adaptive self-training pipeline,

named ST3D, for unsupervised domain adaptation on 3D

object detection from point clouds. First, we pre-train the

3D detector on the source domain with our proposed ran-

dom object scaling strategy for mitigating the negative ef-

fects of source domain bias. Then, the detector is itera-

tively improved on the target domain by alternatively con-

ducting two steps, which are the pseudo label updating with

the developed quality-aware triplet memory bank and the

model training with curriculum data augmentation. These

specific designs for 3D object detection enable the detec-

tor to be trained with consistent and high-quality pseudo

labels and to avoid overfitting to the large number of easy

examples in pseudo labeled data. Our ST3D achieves state-

of-the-art performance on all evaluated datasets and even

surpasses fully supervised results on KITTI 3D object de-

tection benchmark. Code will be available at https:

//github.com/CVMI-Lab/ST3D.

1. Introduction

3D object detection aims to categorize and localize ob-

jects from 3D sensor data (e.g. LiDAR point clouds) with

many applications in autonomous driving, robotics, virtual

reality, to name a few. Recently, this field has obtained

remarkable advancements [46, 24, 36, 37, 34, 35] driven

by deep neural networks and large-scale human-annotated

datasets [13, 38].

However, 3D detectors developed on one specific do-

main (i.e. source domain) might not generalize well to novel

testing domains (i.e. target domains) due to unavoidable

domain-shifts arising from different types of 3D sensors,

weather conditions and geographical locations, etc. For

instance, a 3D detector trained on data collected in USA

cities with Waymo LiDAR (i.e. Waymo dataset [38]) suf-

fers from a dramatic performance drop (of over 45%) [41]

when evaluated on data from European cities captured by
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Figure 1. Performance of ST3D on Waymo → KITTI task using

SECOND-IoU [46], compared to other unsupervised (i.e. source

only, naive ST), weakly-supervised (i.e. SN [41]) and fully super-

vised (i.e. oracle) approaches. Dashed line denotes fully super-

vised target labeled data trained SECOND-IoU.

Velodyne LiDAR (i.e. KITTI dataset [13]). Though collect-

ing more training data from different domains could allevi-

ate this problem, it unfortunately might be infeasible given

various real-world scenarios and enormous costs for 3D an-

notation. Therefore, approaches to effectively adapting 3D

detector trained on labeled source domain to a new unla-

beled target domain is highly demanded in practical appli-

cations. This task is also known as unsupervised domain

adaptation (UDA) for 3D object detection.

In contrast to the intensive studies on UDA of the 2D im-

age setting [10, 26, 17, 7, 32, 11, 12], few efforts [41] have

been made to explore UDA for 3D detection. Meanwhile,

the fundamental differences in data structures and network

architectures render UDA approaches for image tasks not

readily applicable to this problem. For DA on 3D detec-

tion, while promising results have been obtained in [41], the

method requires object size statistics of the target domain,

and its efficacy largely depends on data distributions.

Recently, self-training has emerged as a simple and ef-

fective technique for UDA, attaining state-of-the-art perfor-

mance on many image recognition tasks [51, 54, 21]. This

motivates us to study self-training for UDA on 3D object

detection. Self-training starts from pre-training a model on
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source labeled data and further iterating between pseudo la-

bel generation and model training on unlabeled target data

until convergence is achieved. The pseudo label for 3D ob-

ject detection includes oriented 3D bounding boxes for lo-

calization and object category information. Despite of the

encouraging results in image tasks, our study illustrates that

naive self-training [44] does not work well in UDA for 3D

detection as shown in Fig. 1 (“source only” vs. “naive ST”).

In this paper, we propose ST3D, redesigning the self-

training pipeline, for UDA on 3D object detection. First,

in model pre-training, we develop random object scaling

(ROS), a simple 3D object augmentation technique, ran-

domly scaling the 3D objects to overcome the bias in object

size on the labeled source domain. Second, for pseudo la-

bel generation, we develop a quality-aware triplet memory

bank (QTMB) which encompasses an IoU-based box scor-

ing criterion to directly assess the quality of pseudo boxes,

a triplet box partition scheme to avoid assigning pseudo la-

bels to ambiguous examples, and a memory bank, integrat-

ing historical pseudo labels via ensemble and voting, to re-

duce pseudo label noise and stabilize training. Finally, in

the model training process, we design a curriculum data

augmentation (CDA) strategy, progressively increasing the

intensity of augmentation, to guarantee effective learning

at the beginning and gradually simulate hard examples to

improve the model, preventing it from overfitting to easy

examples – pseudo-labeled data with high confidence.

Experimental results on four 3D object detection datasets

KITTI [13], Waymo [38], nuSenses [4], and Lyft [20]

demonstrate the effectiveness of our approach, where the

performance gaps between source only results and fully

supervised oracle results are closed by a large percentage

(16% ∼ 75% ). Besides, we outperform the existing ap-

proach [41] by a notable margin on all evaluated settings.

It’s also noteworthy that our approach even outperforms the

oracle results on the Waymo → KITTI setting when further

combined with existing approach [41] as shown in Fig. 1.

2. Related Work
3D Object Detection from Point Clouds aims to localize

and classify 3D objects from point clouds, which is a chal-

lenging task due to the irregularity and sparsity of 3D point

clouds. Some previous work [6, 23, 47] directly projects

the irregular point clouds to 2D bird-view maps such that

the task could be resolved by previous 2D detection meth-

ods. Another line of research [46, 53, 37, 15, 34] adopts

3D convolutional networks to learn 3D features from vox-

elized point clouds, and the extracted 3D feature volumes

are also further compressed to bird-view feature maps as the

above. Recently, point-based approaches [36, 49] propose

to directly generate 3D proposals from raw point clouds

by adopting PointNet++ [29] to extract point-wise features.

There are also some other methods [28, 42] that utilize 2D

images for generating 2D box proposals which are further

employed to crop the object-level point clouds for gener-

ating 3D bounding boxes. In our work, we adopt SEC-

OND [46] and PV-RCNN [34] as our 3D object detectors.

Unsupervised Domain Adaptation aims to generalize the

model trained on source domain to unlabeled target do-

mains. [26, 27] explore domain-invariant feature learning

by minimizing Maximum Mean Discrepancy [1]. Inspired

by GANs [14], adversarial learning was employed to align

feature distributions across different domains on various 2D

vision tasks [10, 17, 7, 32]. Besides, [16, 52] try to elimi-

nate the domain gap on pixel-level by translating images.

Other approaches [31, 55, 21, 5] utilize the self-training

strategy to generate pseudo labels for unlabeled target do-

mains. Saito et al. [33] adopt a two branch classifier to re-

duce the H∆H discrepancy. [39, 9, 8] employ curriculum

learning [2] and separate cases by their difficulties to real-

ize local sample-level curriculum. Xu et al. [45] propose

a progressive feature-norm enlarging method to reduce the

domain gap. [25, 48] inject feature perturbations to obtain

a robust classifier through adversarial training.

On par with the developments on domain adaptation for

image recognition tasks, some recent works also aim to ad-

dress the domain shift on point clouds for shape classifi-

cation [30] and semantic segmentation [43, 50, 19]. How-

ever, despite of intensive studies on the 3D object detection

task [53, 36, 46, 37, 49, 34], only very few approaches have

been proposed to solve UDA for 3D object detection. Wang

et al. propose SN [41] to normalize the object size of the

source domain leveraging the object statistics of the target

domain to close the size-level domain gap. Though the per-

formance has been improved, the method needs the target

statistics information, and its effectiveness depends on the

source and target data distributions. In contrast, we propose

a novel self-training pipeline for domain adaptive 3D ob-

ject detection which achieves superior performance on all

evaluated settings without target object statistics as a prior.

3. Method

3.1. Overview

Our goal is to adapt a 3D object detector trained on

source labeled data {(P s
i , L

s
i )}ns

i=1
of ns samples to unla-

beled target domain given target unlabeled data {P t
i }nt

i=1
of

nt samples. Here, P s
i and Ls

i represent the i-th source in-

put point cloud and its corresponding label. Ls
i contains the

category and 3D bounding box information for each object

in the i-th point clouds, and each box is parameterized by

its size (l, w, h), center (cx, cy, cz), and heading angle θ.

Similarly, P t
i denotes the i-th unlabeled target point cloud.

In this section, we present ST3D, a self-training frame-

work for adapting the 3D detector trained on source domain

to target domain, which is shown in Fig. 2 and described

in Algo. 1. Starting from pre-training a detector on source

labeled data with random object scaling (ROS) (see Fig. 2

(a)), ST3D alternates between generating pseudo labels for

target data via quality-aware triplet memory bank (QTMB)
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Figure 2. Our ST3D framework consists of three phases: (a) Pre-train the object detector F with ROS in source domain to mitigate object-

size bias. (b) Generate high-quality and consistent pseudo labels on target unlabeled data with our QTMB. (c) Train model effectively on

pseudo-labeled target data with CDA to progressively simulate hard examples. Best viewed in color.

Algorithm 1 Overview of our ST3D.

Require: Source domain labeled data {(P s
i , L

s
i )}ns

i=1
, and target

domain unlabeled data {P t
i }nt

i=1
.

Output: The object detection model for target domain.

1: Pre-train the object detector on {(P s
i , L

s
i )}ns

i=1
with ROS as

detailed in Sec. 3.2.

2: Utilize the current model to generate raw object proposals

[Bt
i ]k for every sample P t

i , where k is the current number

of times for pseudo label generation.

3: Generate quality-aware pseudo labels [L̂t
i]k by triplet box par-

tition given [Bt
i ]k in Sec. 3.3.1.

4: Update the memory (i.e. pseudo labels) [M t
i ]k given pseudo

labels [L̂t
i]k from the detection model and historical pseudo

labels [M t
i ]k−1 ([M t

i ]0 = ∅) in the memory with memory

ensemble-and-voting (MEV) as elaborated in Sec. 3.3.2. The

memory bank {[M t
i ]k}nt

i=1
contains the pseudo labels for all

unlabeled examples.

5: Train the model on {P t
i , [M

t
i ]k}nt

i=1
with CDA for several

epochs as detailed in Sec. 3.4.

6: Go back to Line 2 until convergence.

(see Fig. 2 (b)) and training the detector with our curriculum

data augmentation (CDA) (see Fig. 2 (c)) until convergence.

3.2. Model Pretraining with ROS

Our ST3D starts from training a 3D object detector on

labeled source data {(P s
i , L

s
i )}ns

i=1
. The pre-trained model

learns how to perform 3D detection on source labeled data

and is further adopted to initialize object predictions for the

target domain unlabeled data.

Motivation. However, despite of the useful knowledge,

the pre-trained detector also learns the bias from the source

data, such as object size and point densities due to domain

shift. Among them, the bias in object size has direct nega-

tive impacts on 3D object detection, and results in incorrect

size for pseudo-labeled target domain bounding boxes. This

is also in line with the findings in [41]. To mitigate the is-

sue, we propose a very simple yet effective per-object aug-

mentation strategy, i.e. random object scaling (ROS), fully

leveraging the high degree of freedom of 3D spaces.

Random Object Scaling. Given an annotated 3D bound-

ing box with size (l, w, h), center (cx, cy, cz) and heading

angle θ, ROS scales the box in the length, width and height

dimensions with random scale factors (rl, rw, rh) through

transforming the points inside the box. We denote the points

inside the box as {pi}np

i=1
with a total of np points, and the

coordinate of pi is represented as (pxi , p
y
i , p

z
i ). First, we

transform the points to the local coordinate system of the

box along its length, width and height dimensions via

(pli, p
w
i , p

h
i ) = (pxi − cx, p

y
i − cy, p

z
i − cz) ·R,

R =





cos θ − sin θ 0
sin θ cos θ 0
0 0 1



 ,
(1)

where · is matrix multiplication. Second, to derive the

scaled object, the point coordinates inside the box are scaled

to be (rlp
l
i, rwp

w
i , rhp

h
i ) with object size (rll, rww, rhh).

Third, to derive the augmented data {paug
i }np

i=1
, the points

inside the scaled box are transformed back to the ego-car

coordinate system and shifted to the center (cx, cy, cz) as

p
aug
i = (rlp

l
i, rwp

w
i , rhp

h
i ) ·RT + (cx, cy, cz). (2)

Albeit simple, ROS effectively simulates objects with di-

verse object sizes to address the size bias and hence facili-

tates to train size-robust detectors that produce more accu-

rate initial pseudo boxes for subsequent self-training.
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3.3. Pseudo label Generation with QTMB

With the trained detector, the next step is to generate

pseudo labels for the unlabeled target data. Given the target

sample P t
i , the output Bt

i of the object detector is a group

of predicted boxes containing category confidence scores,

regressed box sizes, box centers and heading angles, where

non-maximum-suppression (NMS) has already been con-

ducted to remove the redundant boxes. For clarity, we call

Bt
i as the object predictions for a scene.

Motivation. Different from classification and segmentation

tasks, 3D object detection needs to jointly consider the clas-

sification and localization information, which poses great

challenges for high-quality pseudo label generation. First,

the confidence of object category prediction may not neces-

sarily reflect the precision of location as shown by the blue

line in Fig. 3 (a). Second, the fraction of false labels is much

increased in confidence score intervals with medium values

as illustrated in Fig. 3 (b). Third, model fluctuations induce

inconsistent pseudo labels as demonstrated in Fig. 3 (c).

The above factors will undoubtedly have negative impacts

on the pseudo-labeled objects, leading to noisy supervisory

information and instability for self-training.

To address the above challenges, we design quality-

aware triplet memory bank (QTMB) to parse object pre-

dictions to pseudo labels for self-training. The memory

bank at the k-th pseudo label generation stage, denoted as

{[M t
i ]k}nt

i=1
, contains pseudo labels for all target domain

data. {[M t
i ]k}nt

i=1
is derived by combining pseudo labels

{[L̂t
i]k}nt

i=1
from the object detector and historical pseudo

labels {[M t
i ]k−1}nt

i=1
in the memory via ensemble and vot-

ing. Meanwhile, given the object predictions {Bt
i}ti=1

from

the detector, {[L̂t
i]k}nt

i=1
is constructed with an IoU-based

scoring criterion to ensure the localization quality and a

triplet box partition scheme to safely avoid assigning differ-

ent labels to objects predictions with ambiguous confidence.

To differentiate pseudo labels {[L̂t
i]k}nt

i=1
from the object

detector and pseudo labels {[M t
i ]k−1}nt

i=1
in the memory,

we call {[L̂t
i]k}nt

i=1
“proxy-pseudo label” in what follows.

3.3.1 Proxy-pseudo Labels from the Object Detector

Firstly, to obtain high-quality and accurate proxy-pseudo

labels {[L̂t
i]k}nt

i=1
from the detection model, we introduce

an IoU-based quality-aware criterion to directly assess the

quality of the box, and a triplet box partition scheme to re-

duce noise from ambiguous objects predictions.

IoU-based Quality-aware Criterion for Scoring. To as-

sess the localization quality of pseudo labels, we pro-

pose to augment the original object detection model with

a lightweight IoU regression head. Specifically, given the

feature derived from RoI pooling, we append two fully con-

nected layers to directly predict the 3D box IoU between

RoIs and their ground truths (GTs) or pseudo labels. A sig-

moid function is adopted to map the output into range [0, 1].

(b)

(c) (d)

(a)

high IoU

low confidence

low IoU

high confidence

Ambiguous

Figure 3. (a) Correlation between confidence value and box IoU

with ground-truth (b) Lots of boxes with medium confidence may

be assigned with ambiguous labels. (c) The average number of

pseudo boxes fluctuates at different epochs. (d) Training loss curve

comparison between naive ST and our ST3D with CDA.

During model training, the IoU branch is optimized by a bi-

nary cross entropy loss as

Liou = −û log u− (1− û) log(1− u), (3)

where u is the predicted IoU and û is the IoU between the

ground truth (or pseudo label) box and the predicted 3D

box. The correlation between the IoU score and localiza-

tion quality (see green line in Fig. 3 (a)) is much increased

in comparison with the classification confidence. Though

IoU regression has been tried to improve supervised im-

age object detection performance [18, 3], to the best of our

knowledge, we are the first to demonstrate that it can serve

as a good criterion to assess the quality of pseudo box for

UDA self-training with encouraging results.

Triplet Box Partition to Avoid Ambiguous Samples.

Now, we are equipped with a better IoU-based quality as-

sessment criterion and object predictions [Bt
i ]k (for the i-th

sample at stage k) from the detector after NMS. Here, we

present a triplet box partition scheme to obtain the proxy-

pseudo labels [L̂t
i]k to avoid assigning labels to ambigu-

ous examples. Given an object box b from [Bt
i ]k with IoU

prediction score ub, we create a margin [Tneg, Tpos] to ig-

nore boxes with score ub inside the margin, preventing them

from contributing to training, as follows:

stateb=







Positive (Store to [L̂t
i]k), Tpos ≤ ub,

Ignored (Store to [L̂t
i]k), Tneg ≤ ub < Tpos,

Negative (Discard), ub < Tneg.

(4)

If stateb is positive, b will be cached into [L̂t
i]k as a positive

sample with its category label and pseudo box. Similarly,

the ignored boxes will also be incorporated into the [L̂t
i]k to

identify regions that should be ignored during model train-

ing due to its high uncertainty. Box b with negative stateb
will be discarded, corresponding to backgrounds.

Our triplet box partition scheme reduces noisy pseudo

labels from ambiguous boxes and ensures the quality of
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Figure 4. An instance of memory ensemble and voting (MEV).

Given proxy-pseudo labels and historical memory labels, MEV

automatically matches and merges boxes while ignoring or dis-

carding successively unmatched boxes. The weighted average

boxes merging strategy could produce wrong final box for boxes

with very different heading angles.

pseudo-labeled boxes. To be noted, objects on the ignored

regions may be evoked later if their scores are improved.

3.3.2 Memory Update and Pseudo Label Generation

Here, we combine proxy-pseudo labels {[L̂t
i]k}nt

i=1
at

stage k and the historical pseudo labels {[M t
i ]k−1}nt

i=1

([M t
i ]0 = ∅) in the memory bank via memory ensem-

ble and voting. The outputs are the updated pseudo la-

bels {[M t
i ]k}nt

i=1
that also serve as the labels for the sub-

sequent model training. During this memory update pro-

cess, each pseudo box b from [L̂t
i]k and [M t

i ]k−1 has

three attributes (ub, stateb, cntb), which are the confidence

score, state (positive or ignored) and an unmatched mem-

ory counter (UMC) (for memory voting), respectively. We

assume that [L̂t
i]k contains nl boxes denoted as [L̂t

i]k =
{(ul, statel, cntl)

k
j }nl

j=1
and [M t

i ]k−1 has nm boxes repre-

sented as [M t
i ]k−1 = {(um, statem, cntm)k−1

j }nm

j=1
.

Memory Ensemble. Instead of directly replacing [M t
i ]k−1

with the latest proxy-pseudo labels [L̂t
i]k, we propose the

memory ensemble operation to combine [M t
i ]k−1 and [L̂t

i]k
to produce more consistent and high-quality pseudo labels.

The memory ensemble operation matches two object

boxes with similar locations, sizes and angles from [M t
i ]k−1

and [L̂t
i]k, and merges them to produce a new object box.

By default, we adopt the consistency ensemble strategy for

box matching. Specifically, it calculates the pair-wise 3D

IoU matrix A = {ajv} ∈ R
nm×nl between each box in

[M t
i ]k−1 and each box in [L̂t

i]k. For the j-th object box in

[M t
i ]k−1, its matched box index ĵ in [L̂t

i]k is derived by,

ĵ = argmaxj (ajv), v = 1, · · · , nl. (5)

Note that if ajĵ < 0.1, we denote each of these two paired

boxes as unmatched boxes that will be further processed by

the memory voting operation.

We assume the successfully matched pair-wise ob-

ject boxes as (ul, statel, cntl)
k

ĵ
and (um, statem, cntm)k−1

j .

They are further merged to cache the pseudo labeled box

with a higher confidence value into the [M t
i ]k and update

its corresponding attributes as

(um, statem, 0)kj =

{

(ul, statel, cntl)
k

ĵ
, if um≤ul,

(um, statem, cntm)k−1

j , otherwise,
(6)

Here, we adopt to choose box instead of a weighted com-

bination is because weighted combination has the poten-

tial to produce an unreasonable final box if the matched

boxes have very different heading angles (see Fig. 4 “wrong

case”). We also explore two alternative strategies for box

matching, which are discussed in Sec. 4.3.

Memory Voting. The memory ensemble operation can ef-

fectively select better matched pseudo boxes. However,

it cannot handle the unmatched pseudo boxes from either

[M t
i ]k−1 or [L̂t

i]k. As the unmatched boxes often con-

tain both false positive boxes and high-quality true positive

boxes, either caching them into the memory or discarding

them all is suboptimal. To address the above problem, we

propose a novel memory voting approach, which leverages

history information of unmatched object boxes to robustly

determine their status (cache, discard or ignore). For the

j-th unmatched pseudo boxes b from [M t
i ]k−1 or [L̂t

i]k, its

UMC (cntb)
k
j will be updated as follows:

(cntb)
k
j =

{

0 , if b ∈ [L̂t
i]k,

(cntb)
k−1

j + 1 , if b ∈ [M t
i ]k−1,

(7)

We update the UMC for unmatched boxes in [M t
i ]k−1 by

adding 1 and initialize the UMC of the newly generated

boxes in [L̂t
i]k as 0. The UMC records the successive

unmatched times of a box, which are combined with two

thresholds Tign and Trm (Tign = 2 and Trm = 3 by default)

to select the subsequent operation for unmatched boxes as






Discard , (cntb)
k
j ≥ Trm,

Ignore (Store to[M t
i ]k) , Tign ≤ (cntb)

k
j < Trm,

Cache (Store to[M t
i ]k) , (cntb)

k
j < Tign.

(8)

Benefited from our memory voting, we could generate more

robust and consistent pseudo boxes by caching the occa-

sionally unmatched box in the memory bank.

3.4. Model training with CDA

Our proposed QTMB can produce consistent and stable

pseudo labels [M t
i ]k for the i-th point clouds. Now, the

detection model can be trained on {P t
i , [M

t
i ]k}nt

i=1
at stage

k as described in Algo. 1 (Line 5).

Motivation. However, our observations show that most

of positive pseudo boxes are easy examples since they are

generated from previous high-confident object predictions.

Consequently, during training, model is prone to overfitting

to these easy examples with low loss values (see Fig. 3 (d)),

unable to further mine hard examples to improve the de-

tector [2]. To prevent model from being trapped by bad
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local minimal, strong data augmentations could be an alter-

native to generate diverse and potentially hard examples to

improve the model. However, this might confuse the learner

and hence be harmful to model training at the initial stage.

Curriculum Data Augmentation. Motivated by the above

observation, we design a curriculum data augmentation

(CDA) strategy to progressively increase the intensity ǫ

of data augmentation and gradually generate increasingly

harder examples to facilitate improving the model and en-

sure effective learning at the early stages.

To progressively increase the intensity ǫ of data augmen-

tations {Di}nd

i=1
with nd types (i.e. world coordinate sys-

tem transformation and per-object coordinate system trans-

formation), we design a multi-step intensity scheduler with

initial intensity ǫi
0

for the i-th data augmentation. Specifi-

cally, we split the total training epochs into E stages. After

each stage, the data augmentation intensity is multiplied by

an enlarging ratio α (α > 1, we use α = 1.2 by default).

Thus, the data augmentation intensity for i-th data augmen-

tation at stage s (1 ≤ s ≤ E) is derived as ǫis = ǫi
0
αs−1.

Hence, the random sampling range of the i-th data augmen-

tation could be calculated as follows:
{

[−ǫis, ǫ
i
s] , if Di belongs to rotation,

[1− ǫis, 1 + ǫis] , if Di belongs to scaling.
(9)

CDA enables the model to learn from the challenging sam-

ples while making the difficulty of examples be within the

capability of the learner during the whole training process.

4. Experiments

4.1. Experimental Setup

Datasets. We conduct experiments on four widely used

autonomous driving datasets: KITTI [13], Waymo [38],

nuSenses [4], and Lyft [20]. Our experiments lie in two

aspects: Adaptation from label rich domains to label insuf-

ficient domains (i.e., Waymo to other datasets) and across

domains with different number of the LiDAR beams (i.e.,

Waymo → nuScenes and nuScenes → KITTI).

Comparison Methods. We compare ST3D with three

methods: (i) Source Only indicates directly evaluating the

source domain pre-trained model on the target domain. (ii)
SN [41] is the SOTA domain adaptation method on 3D ob-

ject detection with target domain statistical object size as

extra information. (iii) Oracle indicates the fully super-

vised model trained on the target domain.

Evaluation Metric. We follow [41] and adopt the KITTI

evaluation metric for evaluating our methods on the com-

monly used car category (also named vehicle in the Waymo

Open Dataset). We evaluate all settings on ring view point

clouds since it is more useful in real-world applications, ex-

cept for the KITTI dataset which only provides the annota-

tions in the front view. We follow the official KITTI eval-

uation metric and report the average precision (AP) over

40 recall positions, and the IoU thresholds are 0.7 for both

the bird’s eye view (BEV) IoUs and 3D IoUs. To further

demonstrate the effectiveness of different methods for adap-

tation, we also report how much the performance gap be-

tween Source Only to Oracle is closed, which is represented

as closed gap =
APmodel−APsource only

APoracle−APsource only
× 100%.

Implementation Details. We validate our proposed

ST3D on two detection backbones SECOND [46] and PV-

RCNN [34]. Specifically, we improve the SECOND detec-

tor with an extra IoU head to estimate the IoU between the

object proposals and their GTs, and name this detector as

SECOND-IoU. We adopt the training settings of the popu-

lar point cloud detection codebase OpenPCDet [40] to pre-

train our detectors on the source domain with our proposed

random object scaling (ROS) data augmentation strategy.

For the following target domain self-training stage, we use

Adam [22] with learning rate 1.5 × 10−3 and one cycle

scheduler to finetune the detectors for 30 epochs with cur-

riculum data augmentation (CDA). We update the pseudo

label with QTMB after every 2 epochs. For all the above

datasets, the detection range is set to [−75.2, 75.2]m for X

and Y axes, and [−2, 4]m for Z axis (the origins of coor-

dinates of different datasets have been shifted to the ground

plane). We set the voxel size of both SECOND-IoU and

PV-RCNN to (0.1m, 0.1m, 0.15m) on all datasets.

During both the pre-training and self-training processes,

we adopt the widely adopted data augmentation, includ-

ing random flipping, random world scaling, random world

rotation, random object scaling and random object rota-

tion. CDA is utilized in the self-training process to provide

proper hard examples for promoting the training process.

4.2. Main results and Comparison with SOTA

Main results of our ST3D. As shown in Table 1, we

compare the performance of our ST3D with Source Only,

SN [41] and Oracle. Since SN employs extra statistical

supervision on the target domain, we compare our method

with other approaches in terms of two settings, the Unsuper-

vised DA (UDA) and Weakly-supervised DA setting (with

target domain size statistics).

For the UDA setting, our method outperforms the Source

Only baseline on all evaluated UDA settings. Specifically,

without leveraging the target domain size statistics, we im-

prove the performance on Waymo → KITTI and nuScenes

→ KITTI tasks by a large margin of around 34% ∼ 43%

in AP3D, which largely closes the performance gap between

Source Only and Oracle. Furthermore, when transferring

Waymo models to other domains that have full ring view

annotations for evaluation (i.e., Waymo → nuSenses and

Waymo → Lyft 1), our ST3D also attains a considerable

performance gain which closes the Oracle and Source Only

performance gap by up to 33.93% on SECOND-IoU and

15.20% on PV-RCNN. These encouraging results validate

1Lyft dataset is constructed with different label rules from the other

3 datasets which enlarges the domain gaps and we will detail this in the

supplementary materials

10373



Task Method
SECOND-IoU PV-RCNN

APBEV / AP3D Closed Gap APBEV / AP3D Closed Gap

Waymo → KITTI

Source Only 67.64 / 27.48 - 61.18 / 22.01 -

SN [41] 78.96 / 59.20 +72.33% / +69.00% 79.78 / 63.60 +66.91% / +68.76%

ST3D 82.19 / 61.83 +92.97% / +74.72% 84.10 / 64.78 +82.45% / +70.71%

ST3D (w/ SN) 85.83 / 73.37 +116.23% / +99.83% 86.65 / 76.86 +91.62% / +90.68%

Oracle 83.29 / 73.45 - 88.98 / 82.50 -

Waymo → Lyft

Source Only 72.92 / 54.34 - 75.49 / 58.53 -

SN [41] 72.33 / 54.34 -05.11% / +00.00% 72.82 / 56.64 -24.34% / -14.36%

ST3D 76.32 / 59.24 +29.44% / +33.93% 77.68 / 60.53 +19.96% / +15.20%

ST3D (w/ SN) 76.35 / 57.99 +15.71% / +17.81% 74.95 / 58.54 -04.92% / +00.08%

Oracle 84.47 / 68.78 - 86.46 / 71.69 -

Waymo → nuScenes

Source Only 32.91 / 17.24 - 34.50 / 21.47 -

SN [41] 33.23 / 18.57 +01.69% / +07.54% 34.22 / 22.29 -01.50% / +04.80%

ST3D 35.92 / 20.19 +15.87% / +16.73% 36.42 / 22.99 +10.32% / +08.89%

ST3D (w/ SN) 35.89 / 20.38 +15.71% / +17.81% 36.62 / 23.67 +11.39% / +12.87%

Oracle 51.88 / 34.87 - 53.11 / 38.56 -

nuScenes → KITTI

Source Only 51.84 / 17.92 - 68.15 / 37.17 -

SN [41] 40.03 / 21.23 -37.55% / +05.96% 60.48 / 49.47 -36.82% / +27.13%

ST3D 75.94 / 54.13 +76.63% / +59.50% 78.36 / 70.85 +49.02% / +74.30%

ST3D (w/ SN) 79.02 / 62.55 +86.42% / +80.37% 84.29 / 72.94 +77.48% / +78.91%

Oracle 83.29 / 73.45 - 88.98 / 82.50 -

Table 1. Result of different adaptation tasks. We report APBEV and AP3D of the car category at IoU = 0.7 as well as the domain gap closed

by various approaches along Source Only and Oracle. The reported AP is moderate case for the adaptation tasks for to KITTI tasks, and is

the overall result for other adaptation tasks. We indicate the best adaptation result by bold.

that our method can effectively adapt 3D object detectors

trained on the source domain to the target domain and per-

form generally well on different detection architectures.

For the weakly-supervised DA setting, we equip our

ST3D with the SN [41] (denoted as ST3D (w/SN)) to ob-

tain the pre-trained detector. We observe that our ST3D ap-

proach and SN can work collaboratively to further boost the

performance on Waymo → KITTI where ST3D improves

SN by 14% (SECOND-IoU) and 13% (PV-RCNN) in AP3D.

Notably, our ST3D (w/ SN) performs on par with the fully

supervised 3D detector on this setting as shown in Ta-

ble 1. Moreover, our approach with SECOND-IoU obtains

over 40% AP3D improvement on the nuScenes → KITTI

setting compared with SN. For Waymo → nuScenes and

Waymo → Lyft tasks, despite performance gains are still

obtained compared to SN, only minor performance gains

or even performance degradation are observed compared to

our UDA setting ST3D due to the minor domain shifts in

object size. In contrast, our ST3D still demonstrates consis-

tent improvements on these settings.

We also observe that it is hard to adapt detectors from

the point clouds with more LiDAR beams (e.g. Waymo) to

the point clouds with fewer LiDAR beams (e.g. NuScenes),

while the opposite adaptation is relatively easy as shown in

Table 1 nuScenes → KITTI. It demonstrates that the point

density of target domain is more important than the point

density of source domain, and our ST3D could effectively

improve the performance on target domain even with a rel-

atively worse pre-trained detector on source domain.

Method APBEV / AP3D

(a) Source Only 67.64 / 27.48

(b) Random Object Scaling (ROS) 78.07 / 54.67

(c) SN 78.96 / 59.20

(d) ST3D (w/o ROS) 75.54 / 34.76

(e) ST3D (w/ ROS) 82.19 / 61.83

(f) ST3D (w/ SN) 85.83 / 73.37

Table 2. Effectiveness analysis of Random Object Scaling.

4.3. Ablation Studies

In this section, we conduct extensive ablation exper-

iments to investigate the individual components of our

ST3D. All experiments are conducted with the 3D detector

SECOND-IoU on the task of Waymo → KITTI.

Random Object Scaling. As mentioned in Sec. 3.2, by

employing our random object scaling for pre-training, the

detectors could be more robust to the variations of object

size in different domains. Table 2 (a), (b), (c) show that

our unsupervised ROS improves the performance by around

27.2% in AP3D and is only 4.5% lower than the weakly-

supervised SN method. Furthermore, as shown in Table 2

(d), (e), the ROS pre-trained model also greatly benefits

the subsequent self-training process. We also observe that

there still exists a gap between the performance of ST3D

(w/ ROS) and ST3D (w/ SN) in AP3D, potentially due to

that the KITTI dataset has a larger domain gap over object

size compared with other datasets, and in this situation, the

weakly supervised SN could provide more accurate object

size information than our fully unsupervised ROS.
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Method APBEV / AP3D

SN (baseline) 78.96 / 59.20

ST (w/ SN) 79.74 / 65.88

ST (w/ SN) + Triplet 79.81 / 67.39

ST (w/ SN) + Triplet + QAC 83.76 / 70.64

ST (w/ SN) + Triplet + QAC + MEV-C 85.35 / 72.52

ST (w/ SN) + Triplet + QAC + MEV-C + CDA 85.83 / 73.37

Table 3. Component ablation studies. ST represents naive self-

training. Triplet means the triplet box partition. QAC indi-

cates the quality-aware criterion. MEV-C is consistency memory

ensemble-and-voting. CDA means curriculum data augmentation.

Tneg Tpos APBEV / AP3D Tneg Tpos APBEV / AP3D

0.20 0.60 86.44 / 72.23 0.25 0.25 83.06 / 67.97

0.25 0.60 85.83 / 73.37 0.25 0.30 83.21 / 69.51

0.30 0.60 85.30 / 72.73 0.25 0.40 83.69 / 69.98

0.40 0.60 84.59 / 72.25 0.25 0.50 84.30 / 70.17

0.50 0.60 84.96 / 72.11 0.25 0.60 85.83 / 73.37

0.60 0.60 83.66 / 70.10 0.25 0.70 76.81 / 66.23

Table 4. Sensitivity analysis for [Tneg, Tpos] of triplet box partition.

Component Analysis in Self-training. As demonstrated

in Table 3, we investigate the effectiveness of our indi-

vidual components. Our ST3D (last line) outperforms the

SN baseline and naive ST (w/ SN) by around 14.2% and

7.5% in AP3D. Specifically, on the pseudo label genera-

tion stage, Triplet box partition and quality-aware IoU cri-

terion provide around 1.5% and 3.3% performance gains

on AP3D, respectively. MEV-C and CDA separately further

yield around 1.9% and 0.9% improvements, respectively.

Sensitivity Analysis of Triplet Box Partition. In this part,

we investigate the importance of the ignore margin [Tpos,

Tneg] for our triplet box partition. As shown in Table 4,

without triplet box partition (i.e., Tpos = Tneg), our ST3D

drops by 3.3% and 5.4% for Tpos = Tneg = 0.6 and 0.25 re-

spectively. Furthermore, our method is more sensitive to

Tpos than Tneg. Lower Tpos could introduce excessive noisy

labels while higher Tpos gives rise to a small number of pos-

itive examples that harm the self-training process.

Analysis of Memory Ensemble and Voting. As shown in

Table 5, we further investigate the memory ensemble and

memory voting schemes for updating memory bank and

generating pseudo labels. On the one hand, we propose

the other two memory ensemble strategies including NMS

ensemble and bipartite ensemble, which use NMS and bi-

partite matching separately. For the comparison of different

memory ensemble variants, ME-N and ME-C achieve sim-

ilar performance and outperform 0.8% ∼ 1% than ME-B

in terms of 3D AP. For the paired box merging strategy in

the memory ensemble stage, we compare two merging ap-

proaches max score and weighted average, where max score

obtains a 1.3% performance gain than weighted average.

This validates our analysis in Sec. 3.3.2 that the weighted

average strategy may generate inappropriate pseudo labels

when matched boxes have very different heading angles.

On the other hand, without memory voting, the perfor-

Method Memory Voting Merge APBEV / AP3D

ST3D (w/ ME-N)
√

Max 85.93 / 73.17

ST3D (w/ ME-B)
√

Max 85.65 / 72.37

ST3D (w/ ME-C)

√
Max 85.83 / 73.37√
Avg 84.08 / 72.07

× Max 84.23 / 70.86

× Avg 83.92 / 70.96

Table 5. Ablation study of memory ensemble (different variants

and merge strategies for matched boxes) and memory voting. We

denote three memory ensemble variants: consistency, NMS and

bipartite as ME-C, ME-N, ME-B separately.

Method World Object Intensity APBEV / AP3D

ST3D

× × - 83.31 / 66.73√ × Normal 84.47 / 70.60

× √
Normal 81.81 / 67.91√ √
Normal 85.35 / 72.52√ √
Strong 84.84 / 72.23√ √

Curriculum 85.83 / 73.37

Table 6. Analysis of data augmentation type and intensity.

mance drops over 2.4% since the unmatched boxes along

different memories could not be well handled. Our memory

voting strategy could robustly mine high-quality boxes and

discard low-quality boxes.

Data Augmentation Analysis. As shown in Table 6, we

also investigate the effects of data augmentation in the

self-training pipeline, where both the type (world-level and

object-level) and the intensity of augmentation are explored.

We observe that without any data augmentation, ST3D suf-

fers from over 6.6% performance degradation. Both world-

level and object-level augmentation provide improvements

and their combination can further boost the performance.

When it comes to the intensity of data augmentation, com-

pared to the normal intensity, stronger data augmentation

magnitude confuses the deep learner and slightly drops per-

formance while our CDA can bring around 0.9% gains.

5. Conclusion
We have presented ST3D – a redesigned self-training

pipeline – for unsupervised domain adaptive 3D object de-

tection from point clouds. ST3D involves random object

scaling, a quality-aware triplet memory bank, and curricu-

lum data augmentation to address fundamental challenges

stemming from the self-training on 3D object detection.

Experiments demonstrate that ST3D substantially advance

the state of the art. Our future work will be to extend our

method to other UDA tasks on image and video data.
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