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Abstract

Graph convolution networks (GCNs) are a powerful

deep learning approach and have been successfully applied

to representation learning on graphs in a variety of real-

world applications. Despite their success, two fundamental

weaknesses of GCNs limit their ability to represent graph-

structured data: poor performance when labeled data are

severely scarce and indistinguishable features when more

layers are stacked. In this paper, we propose a simple yet

effective Self-Supervised Semantic Alignment Graph Con-

volution Network (SelfSAGCN), which consists of two crux

techniques: Identity Aggregation and Semantic Alignmen-

t, to overcome these weaknesses. The behind basic idea is

the node features in the same class but learned from seman-

tic and graph structural aspects respectively, are expected

to be mapped nearby. Specifically, the Identity Aggrega-

tion is applied to extract semantic features from labeled n-

odes, the Semantic Alignment is utilized to align node fea-

tures obtained from different aspects using the class central

similarity. In this way, the over-smoothing phenomenon is

alleviated, while the similarities between the unlabeled fea-

tures and labeled ones from the same class are enhanced.

Experimental results on five popular datasets show that the

proposed SelfSAGCN outperforms state-of-the-art methods

on various classification tasks.

1. Introduction

Graphs, representing entities and their relationships,

have been successfully applied to a wide range of appli-

cations [36, 4], such as social networks [26], knowledge

graphs [34], and molecular structures [8]. In recent years,

many studies focus on developing deep learning approaches

for graph structure data [38], leading to rapid development

in the field of graph convolution networks (GCNs) [13, 7].

∗Corresponding author.

GCNs, generalizing deep convolutional neural network (C-

NN) [30] to graph-structured data, apply the linear transfor-

mation and graph aggregation to all the neighbors of a n-

ode and adopt a nonlinear activation function to obtain low-

dimensional features for graph nodes.

Normally, GCNs can be categorized into spatial and

spectral convolution methods [39, 12]. The operation on

node neighbor groups is utilized to define the graph convo-

lution layer in the spatial methods. Diffusion-Convolutional

Neural Network (DCNN) [1] adopts a graph diffusion mod-

ule to incorporate the contextual information of the node.

MoNet [24] integrates CNN and provides a unified gen-

eralization of CNN architectures on graphs. Moreover,

Graph Attention Network (GAT) [29] is utilized to semi-

supervised classification task by designing an attention lay-

er, which can learn the weight of each neighbor for feature

aggregation. For spectral methods, the graph convolution

operation is defined by the spectral representation of graphs.

The Fourier domain based on eigen-decomposition of graph

Laplacian matrix [2] is proposed to define graph convolu-

tion, and the spectral filters based on Chebyshev expansion

of the Laplacian are provided to avoid the high computa-

tional complexity of eigen-decomposition [6]. More recent-

ly, Kipf et al. [13] proposed a simple Graph Convolution-

al Network (GCN) for semi-supervised learning. Simplify-

ing Graph Convolutional (SGC) [31] is proposed to capture

higher-order information in the graph by applying the K-

th power of the graph convolution matrix in a single neural

network layer.

Despite their significant success, the performance of cur-

rent GCNs drops sharply with a diminishing number of la-

beled nodes per class. It is easy to cause the over-fitting

problem with severely scarce labeled nodes, which exhibits

a large testing error even though its training error is small.

The reason for this phenomenon is the GCNs rely on graph

structure to realize feature propagation, whereas it cannot

effectively propagate the labels to the entire graph when

16775



only a few labeled nodes are provided. Moreover, most of

the recent GCNs are shallow and achieve their best perfor-

mance with 2-layer models. Stacking more layers with non-

linearity activations tends to degrade their performances,

which is called over-smoothing [17]. Such a phenomenon

suggests that the receptive fields are extremely large with

stacking more layers and thus the node features are inclined

to converge to a certain value [20].

The propagation based on the graph structure can trans-

fer the labeled node features to the unlabeled ones in the

same class, making the node features in the same class sim-

ilar. However, the graph propagation of GCNs is not e-

nough [35], and the phenomenons of over-fitting and over-

smoothing restrict their performance in many cases. Re-

cently, some methods are taking an interest in the semantic

information of the nodes. DAGNN [20] is proposed to adap-

tively incorporate semantic information from large recep-

tive fields. GCNII [3] adopts identity mapping to preserve

the inputs information directly. Geom-GCN [25] and non-

local GNNs [21] are proposed to capture long-range depen-

dencies from the node features according to non-local ag-

gregators. But, few works discuss the relationship between

semantic information and graph structure, and solve these

problems effectively. In this paper, we present a simple yet

effective Self-Supervised Semantic Alignment Graph Con-

volution Network (SelfSAGCN), which integrates seman-

tic extraction and alignment into traditional GCNs, to si-

multaneously overcome the over-fitting and over-smoothing

problems. The behind basic idea is the node features in the

same class but from semantic and graph structural aspect-

s respectively, are expected to be mapped nearby. Mean-

while, unlabeled node features should be central similar to

the labeled ones.

The Self-Supervised Semantic Alignment Graph Con-

volution Network consists of two crux techniques: Identi-

ty Aggregation and Semantic Alignment. Specifically, we

first apply the Identity Aggregation to extract semantic in-

formation layer-by-layer from the labeled nodes, which is

not plagued by the over-smoothing problem. Moreover,

the Semantic Alignment transfers the learned semantics to

unlabeled node features obtained from the graph aggrega-

tion operations using the class central similarity optimiza-

tion. In this way, the node features from semantic and graph

structural aspects are mapped nearby, which has a dramat-

ic effect on alleviating the over-smoothing. Particularly, we

construct the class centroids of unlabeled nodes by assign-

ing pseudo-labels in the similarity optimization, and update

them gradually to suppress noise signals. The alignment of

the labeled nodes and unlabeled ones can further enhance

the performance of the model when the labeled nodes are

severely scarce. Our experiments show that the SelfSAGC-

N model outperforms state-of-the-art methods on various

classification tasks.

The main contributions of this paper are in three-folds:

• We propose a simple yet effective method called Self-

Supervised Semantic Alignment Graph Convolution

Network (SelfSAGCN), which consists of Identity Ag-

gregation and Semantic Alignment techniques in a

synergetic fashion, to jointly mitigate the over-fitting

and over-smoothing problems.

• To improve the discriminative power of node features

and boost the classification performance, we explore

the Identity Aggregation to extract discriminative se-

mantic features from the labeled nodes, which has the

consistent receptive fields in different layers. Then the

unlabeled node features obtained from the graph ag-

gregation operations are aligned with the semantic fea-

tures by the Semantic Alignment technique for seeking

extra supervised information.

• We evaluate the proposed SelfSAGCN on five popu-

lar benchmarks, including some standard citation net-

works and image datasets, and the experiments show

that the proposed model outperforms the state-of-the-

art methods on various classification tasks.

2. Related Work

A common GCNs layer performs a two-step process-

ing similar to the depth-wise separable convolution: spa-

tial graph aggregation and feature transformation. The first

step updates each node feature using feature vectors of their

neighboring nodes, which is similar to a 1 × 1 convolu-

tion. After that, each node feature vector is mapped into

a new space through a shared linear transformation. GC-

N [13] and GAT [29] compute a weighted sum of node

features within the 1-hop neighborhood, where the weight

of each node comes from the degree of the node and the

interaction between the neighboring nodes, respectively.

GraphSAGE [11] presents the max pooling, while GIN-

s [33] simply sums the node features. Different from these

works, LGCN [9] directly explores the regular convolution

through top-k ranking. Simplifying Graph Convolutional

(SGC) [31] explores to capture higher-order information in

the graph by applying the K-th power of the graph convo-

lution matrix in a single neural network layer, which cor-

responds to a low-pass-type filter on the spectral domain

and derives smoothing features across a graph. Moreover,

some methods are taking an interest in the semantic in-

formation of the nodes. Geom-GCN [25] and non-local

GNNs [21] are proposed to capture long-range dependen-

cies for disassortative graph according to non-local aggre-

gators. Shoestring [19] incorporates metric learning into the

paradigm of graph-based semi-supervised learning.

Recently, several works attempt to tackle the problem of

over-smoothing, which means that node features converge
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to indistinguishable limits. In [17], it is demonstrated that

the propagation process of the GCN model is a special sym-

metric form of Laplacian smoothing, which makes the node

features in the same class similar. Meanwhile, they showed

that stacking more layers may make node features from dif-

ferent classes indistinguishable. JKNet [34] conducts dense

skip connections to combine the output of each layer in or-

der to preserve the locality of the node features. Recently,

DropEdge [27] is proposed to alleviate the impact of over-

smoothing by randomly removing out a few edges from the

graph. The Personalized PageRank matrix (APPNP) [14] is

utilized to replace the graph convolution matrix and solve

the over-smoothing problem. GDC [15] further extends

APPNP by generalizing Personalized PageRank to an ar-

bitrary graph diffusion process. Comparatively, our method

introduces an identity aggregation operation to extract extra

semantic information from the labeled nodes, and adopt-

s the learned information to guide the graph propagation

operations according to the semantic alignment, which can

jointly mitigate the over-fitting and over-smoothing prob-

lems.

3. Preliminary

Without lose of generalization, we briefly review the fun-

damental idea of semi-supervised GCN [13]. Let X =
{x1, ...,xn} be input data, and G = (X,A) be the graph

representation of X with A encoding the pairwise relation-

ship among data X, where Aij = 1 if an edge exists be-

tween node i and node j. GCN normally contains several

propagation (hidden) layers and one final perception layer.

Given an input H(0) = X and graph A, GCN conducts the

following layer-wise propagation in hidden layers as [13]:

H
(k+1) = σ((I+D

−
1

2AD
−

1

2 )H(k)
W

(k+1)), (1)

where k = 0, ...,K − 1 represents the number of graph

convolution layers and I is an identity matrix. D =
diag(d1,d2, ...,dn) is a diagonal matrix with di =∑n

j=1 Aij . W
(k) is a layer-specific trainable weight ma-

trix. σ(·) denotes an activation function, such as ReLU.

Intuitively, GCN learns feature for each node by propagat-

ing neighbors’ features and conducting a non-linear trans-

formation after that. By the re-normalization trick [13], we

can replace the matrix I + D
−

1

2AD
−

1

2 by a normalized

version P̃ = D̃
−

1

2 ÃD̃
−

1

2 , and obtain the following Graph

Convolutional Layer.

H
(k+1) = σ(P̃H

(k)
W

(k+1)). (2)

The last layer of GCN outputs the final node features

H
(K), which can be utilized to node classification. In

this task, a softmax activation function is further em-

ployed on the final node features H
(K). Let H

out =

Pseudo-labeled Node Features 

Labeled Node Features 

Graph Layer 

Semantic  Alignment 

Figure 1. Illustration of each layer from SelfSAGCN. There are

two inputs of each graph convolutional layer, and the outputs in

the same class are aligned.

softmax(H(K)) ∈ R
n×c be the final output, where c de-

notes the number of class. Then H
out is utilized to predict

final labels for the graph nodes. The weight parameters of

GCN network W
(1),W(2), ...,W(K) are trained by mini-

mizing the cross-entropy loss over all the labeled nodes.

LSemi−GCN = −
∑

i∈L

c∑

j=1

Yij lnH
out
ij . (3)

where L indicates the set of labeled nodes and each row

Yi·, i ∈ L of Y denotes the corresponding label indication

vector for the i-th labeled node.

4. Methodology

In this section, we propose a Self-Supervised Seman-

tic Alignment Graph Convolution Network (SelfSAGCN),

which consists of two crux techniques: Identity Aggrega-

tion and Semantic Alignment, to simultaneously address

the over-fitting and over-smoothing in the deep graph neural

network. The flow chart of the proposed method is shown

in Figure 1.

4.1. Identity Aggregation

Different with tradition model GCN [13], the proposed

SelfSAGCN has two different inputs. Given an input

H
(0) = X and graph A, SelfSAGCN conducts the follow-

ing layer-wise propagation in hidden layers as,

H
(k+1) = σ(P̃H

(k)
W

(k+1)). (4)

Other than that, we adopt the Identity Aggregation to ex-

tract the semantic information of the labeled nodes, where

the input is F
(0) = X with an identity graph I, and the

output of the hidden layers is:

F
(k+1) = σ(IF(k)

W
(k+1)). (5)

The last layer of SelfSAGCN outputs the final n-

ode features H
(K) and F

(K), and the softmax activa-

tion function is utilized to generate the final outputs as
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Figure 2. Illustration of the overall architecture. We first extract the node features from semantic and graph structural aspects with different

input graphs, and the semantic alignment layer-by-layer is utilized to make the node features from different aspects being central similar.

H
out = softmax(H(K)),Fout = softmax(F(K)) ∈

R
n×c. The weight parameters of SelfSAGCN network

W
(1),W(2), ...,W(K) are trained by minimizing the cross-

entropy loss over all the labeled nodes L.

LSemi = −
∑

i∈L

c∑

j=1

(Yij lnH
out
ij +Yij lnF

out
ij ). (6)

where L indicates the set of labeled nodes and each row

Yi·, i ∈ L of Y denotes the corresponding label indication

vector for the i-th labeled node.

The node features after graph aggregation may become

consistent when the number of layers continues to increase,

whereas the second term in LSemi can effectively suppress

this phenomenon due to its receptive fields are consisten-

t. In other words, F(k) is utilized to provide correspond-

ing discriminative semantic features from the input nodes.

Then, our goal is to transfer the learned semantic informa-

tion to all node features obtained from graph aggregation

operations, while making the semantic and graph structural

features of each node more similar.

4.2. Semantic Alignment

Since F
(k) and H

(k) are obtained from the same net-

work parameters, and the distribution of nodes from the

same class should be similar ideally. F(k) is not plagued by

the over-smoothing phenomenon with stacking more layer-

s. Thus, we adopt the labeled parts of F(k) to be semantic

guidance information for the features H(k). Let F
(k)
L be the

semantic features learned from the set of labeled nodes L.

We employ the Semantic Alignment to ensure features of

the same class in F
(k)
L and H

(k) are mapped nearby.

More importantly, in the semi-supervised learning task,

we cannot obtain the labels of all nodes. Thus, we use

pseudo-labels to achieve class-level semantic alignment.

Specifically, for F
(k)
L and the labeled nodes of H

(k), we

directly apply their corresponding labels as the class infor-

mation. For the unlabeled nodes of H(k), we adopt the Self-

SAGCN to assign pseudo-labels to the nodes with current

network parameters. Particularly, the central similarity is u-

tilized to mitigate the negative impact of false pseudo-labels

on the results.

LSema =

c∑

j=1

d(Cj(F
(k)
L ),Cj(H

(k))), (7)

where Cj(F
(k)
L ) represents the centroid of the features be-

longing to the j-th class in F
(k)
L , and Cj(H

(k)) is the cen-

troid of the features belonging to the j-th class in H
(k). d

is the squared Euclidean distance function. Particularly, the

pseudo-labels of H(k) are adopted from H
out and false sig-

nals in pseudo-labeled nodes are restrained through centroid

alignment as possible [32].

The framework of the proposed SelfSAGCN is shown in

Figure 2. As the number of network layers increases, the

semantic alignment in each layer is utilized to fully pro-

vide the discriminative information to the node features ob-

tained from graph propagation operations, which can alle-

viate over-smoothing. Meanwhile, the central similarity of

labeled nodes and unlabeled ones can provide extra super-

vised information and further enhance the classification ac-

curacy of unlabeled nodes.

LSema =

K∑

k=1

c∑

j=1

d(Cj(F
(k)
L ),Cj(H

(k))). (8)

More formally, our totally objective can be written as

follows:

L = LSemi + λLSema. (9)

The centroids constructed from the pseudo-labels may

lack stability in the semi-supervised classification task.

Hence, in each iteration, we first calculate the centroids
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Algorithm 1 Self-Supervised Semantic Alignmen-

t Graph Convolution Network

Input: Input nodes X, graph A, YL of the labeled n-

odes, number of layers K and number of classes c, hyper-

parameters λ and α;

while not converge do

1: Calculate H
(k) by Eq. (4);

2: Calculate F
(k)
L by Eq. (5);

3: Calculate the centroids of each class according to E-

q. (10).

4: Jointly update all the parameters by minimizing Eq. (9).

end while

Output: Classification results Hout.

of Ct
j(F

(k)
L ) and C

t
j(H

(k)) using their corresponding fea-

tures F
(k)
L and H

(k). Then, the centroids of last iteration are

added to suppress the instability.

C
t
j(F

(k)
L )← (1− α)Ct

j(F
(k)
L ) + αC

(t−1)
j (F

(k)
L )

C
t
j(H

(k))← (1− α)Ct
j(H

(k)) + αC
(t−1)
j (H(k)),

(10)

where α ∈ [0, 1) is the balance weight. Finally, our pro-

posed SelfSAGCN algorithm is sketched in Algorithm 1.

4.3. Further Analysis

First, the class of a node can be predicted by its features

in an ideal setting. Under the assumption that the neigh-

bor nodes usually belong to the same class, the propagation

based on the graph structure can transfer semantic infor-

mation from the labeled nodes to the unlabeled nodes in the

same class. It makes the node features in the same class sim-

ilar, which is very beneficial for the semi-supervised classi-

fication task. However, the class of a node should be de-

termined by its feature, not by the relationship between the

node and other neighbor nodes [20]. Hence, we can extract

the node features two different aspects, semantic and graph

structure. The learned semantic information can be utilized

to guide the feature learning of the graph propagation oper-

ations.

In addition, the semantic alignment is utilized to guaran-

tee the obtained features from different aspects being central

similar, which mainly includes the similarity of semantic

features and graph structural features, as well as the central

similarity of labeled nodes and unlabeled nodes belonging

to the same class. The ultimate goal is to enforce the dis-

tribution of the features from different aspects tend to be

consistent, which can provide more discriminative informa-

tion to the node features and boost the performance.

Method
20 labels per class

Cora Citeseer Pubmed

MLP 61.6(0.2) 61.0(0.3) 74.2(0.2)

GCN [13] 81.2(0.4) 71.1(0.7) 78.5(1.0)

GAT [29] 83.1(0.7) 70.8(0.9) 71.1(1.2)

SGC [31] 81.7(0.6) 71.3(1.1) 78.9(1.3)

Shoestring [19] 81.9(2.1) 69.5(2.4) 79.7(4.5)

APPNP [14] 83.3(0.4) 71.8(0.9) 80.1(1.3)

DAGNN [20] 84.4(0.4) 73.3(0.7) 80.5(0.9)

SelfSAGCN 83.8(0.5) 73.5(1.2) 80.7(1.5)

Table 1. Summary of classification accuracy (%) on citation net-

works with 20 labeled nodes.

5. Experiments

In this section, we evaluate the effectiveness of the pro-

posed SelfSAGCN with five benchmarks on several semi-

supervised classification tasks.

5.1. Datasets

We test the proposed method on five datasets includ-

ing three standard citation benchmarks datasets (Cora [23],

Citeseer [10], and Pubmed [28]) and two widely used image

datasets (STL-10 and CIFAR-10 [5]). The details of these

datasets are as follows:

• Cora contains 2708 nodes and 5429 edges. Each node

has a 1433 dimension feature vector and all nodes are

falling into seven classes.

• Citeseer is a citation network that contains 3327 nodes

and 4732 edges. The nodes of this network are falling

into six classes and each node has a 3703 dimension

feature vector.

• Pubmed is a larger network data that contains 19717

nodes and 44338 edges in all. Each node has a 500

dimension feature vector and all the nodes are falling

into three classes.

• STL-10 consists of color images of 96× 96 pixel size,

in which there are ten classes with 1,300 examples

each. Following [37], we extract the deep features

of STL-10, and construct a k-nearest neighbor graph

(k = 10) with nodes denoting images and edges rep-

resenting the neighborhood relationship between im-

ages, which are then used to test the performance of

all baselines.

• CIFAR-10 is a natural image dataset with 60,000 sam-

ples from 10 classes. Then, we extract the deep fea-

tures and construct a k-nearest neighbor graph (k =
20) with nodes denoting samples and edges represent-

ing the neighborhood relationship between samples.
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(a) 1 label per class (GCN) (b) 2 labels per class (GCN) (c) 5 labels per class (GCN) (d) 20 labels per class (GCN)

(e) 1 label per class (SelfSAGCN) (f) 2 labels per class (SelfSAGCN) (g) 5 labels per class (SelfSAGCN) (h) 20 labels per class (SelfSAGCN)

Figure 3. Visualization of the discriminative capability of the node features on Cora. Colors represent node classes. Top: results from

GCN, Bottom: results from SelfSAGCNs.

Method
1 label per class 2 labels per class 5 labels per class

Cora Citeseer Pubmed Cora Citeseer Pubmed Cora Citeseer Pubmed

MLP 42.7(0.2) 28.7(0.7) 50.1(0.4) 49.6(0.5) 34.1(0.9) 56.8(0.7) 60.4(0.3) 43.5(0.8) 64.5(0.3)

GCN [13] 43.1(0.7) 29.2(0.9) 51.5(1.8) 58.0(0.6) 40.5(0.7) 60.4(2.3) 69.1(0.5) 53.7(0.9) 68.4(3.2)

GAT [29] 45.2(0.6) 32.5(1.0) 53.5(2.3) 59.7(0.4) 43.2(0.7) 62.2(2.2) 70.2(0.3) 55.2(0.7) 69.5(1.1)

SGC [31] 44.5(0.5) 31.4(0.9) 55.2(2.3) 58.6(0.5) 45.8(0.6) 63.5(2.9) 69.5(0.4) 54.6(0.8) 71.4(2.9)

APPNP [14] 45.2(0.3) 33.5(1.2) 52.3(3.2) 58.3(0.7) 50.1(0.6) 62.7(1.3) 71.2(0.5) 55.9(0.9) 70.7(1.3)

ICGN [18] 43.3(0.5) 35.0(1.1) 54.2(1.5) 63.5(2.7) 43.9(1.9) 62.6(3.2) 72.2(2.5) 55.9(0.9) 70.7(1.3)

DAGNN [20] 59.2(0.4) 45.2(0.7) 58.5(2.4) 65.6(0.8) 54.3(0.8) 65.3(2.7) 72.0(0.4) 58.1(0.9) 71.4(2.2)

Shoestring [19] 60.2(0.9) 52.2(1.3) 60.3(6.1) 68.3(0.9) 60.1(1.3) 63.5(5.7) 73.0(1.2) 64.2(1.5) 68.4(6.3)

SelfSAGCN 63.5(0.8) 57.5(3.7) 65.0(3.3) 71.7(0.6) 68.3(1.2) 70.9(1.9) 75.1(0.7) 71.9(1.3) 73.0(2.1)

Table 2. Summary of classification accuracy (%) on citation networks with severely limited labeled nodes.

5.2. Baselines

We consider the following baselines: Multilayer Per-

ceptron (MLP), Graph Convolutional Network (GCN) [13],

Graph Attention Network(GAT) [29], SGC [31], APPN-

P [14], ICGN [18], DAGNN [20], Shorstring [19]. More-

over, we adopt several works as the baselines, which try

to tackle the problem of over-smoothing, including DropE-

dge [27], ResGCN [16], JKNet [34], IncepGCN [27], GC-

NII [3]. We aim to provide a rigorous and fair comparison

between different models on each dataset by using the same

dataset splits and training procedure.

5.3. Implementation Details

We use the Adam SGD optimizer with a learning rate

of 0.01, 0.5 dropout rate, 5 × 10−4 weight decay. We set

α = 0.7 in the experiments, λ ← λ( 2
1+e−10×p − 1) is uti-

lized to suppress noisy labels at the early stages of training.

p represents the training epoch and 2
1+e−10×p − 1 ∈ (0, 1)

gradually increases with training. We adopt ReLU as the

non-linear activation and the last layer is softmax. We run

our method by 20 random trials and report the average per-

formance and the error range.

5.4. Performance with Several Limited Labels

We verify the performance of the proposed SelfSAGC-

N on different deep graph models. As shown in Table 1,

our SelfSAGCN model performs better than other baselines

with 20 labeled nodes per class. Moreover, the results for 1,

2, and 5 labeled nodes are shown in Table 2. From the ta-

ble, we can observe that the proposed method outperforms

the competing methods on these benchmark datasets when
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Method
1 label per class 2 labels per class 5 labels per class 20 labels per class

STL-10 CIFAR-10 STL-10 CIFAR-10 STL-10 CIFAR-10 STL-10 CIFAR-10

MLP 61.4(0.3) 40.8(0.9) 72.2(0.4) 48.6(0.8) 84.8(0.3) 58.3(0.5) 88.2(0.5) 64.5(0.8)

GCN [13] 82.3(0.5) 60.2(0.7) 86.4(0.4) 67.5(0.7) 88.2(0.5) 71.2(0.6) 93.1(0.7) 77.7(0.3)

GAT [29] 84.2(0.4) 58.7(0.8) 86.9(0.7) 65.5(0.9) 89.1(0.8) 71.5(0.3) 94.5(0.6) 78.5(0.7)

APPNP [14] 85.7(0.5) 59.1(0.5) 85.3(0.6) 64.7(0.7) 88.9(0.9) 68.2(0.7) 93.7(0.8) 77.3(0.5)

SGC [31] 84.7(0.7) 59.7(0.9) 85.0(0.4) 65.9(0.6) 88.1(0.7) 70.1(0.8) 93.1(0.5) 78.6(0.6)

DAGNN [20] 87.5(0.5) 61.2(0.8) 89.0(0.9) 67.7(0.5) 92.2(0.4) 72.2(0.9) 94.2(0.5) 79.4(0.4)

SelfSAGCN 92.1(0.2) 65.8(0.7) 94.3(0.3) 71.2(0.9) 95.1(0.3) 74.7(0.8) 94.9(0.2) 80.2(0.6)

Table 3. Summary of classification accuracy (%) results on various datasets with severely limited labeled samples.
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Figure 4. Results with different hyper-parameters in the terms of classification accuracy (%). a) Results with different training set sizes; b)

Results with different loss weight λ on Cora; c) Results with different balance weight α on Cora.

several limited labeled nodes are provided. The perfor-

mance of our method improves greatly when there is only

one label node per class. Particularly, the performance with

5 labels per class on Citeseer is close to the performance

with 20 labeled nodes per class. Our method has achieved

better results on various classification tasks compared with

Shoestring, which adopts a metric learning model to address

the problem in the presence of limited labeled nodes. For

a fair comparison, we choose its extension on GCN as the

comparison. More importantly, the proposed model will not

incur extra network parameters.

Figure 3 is the distributions of the node features using t-

SNE visualization [22] on Cora data with different labeled

nodes. The results demonstrate that the node features from

our method have a clearer structure, which can also be jus-

tified by the increased classification accuracy. Results with

different training label set sizes on various datasets in terms

of classification accuracy are shown in Figure 4(a). The

classification accuracy will gradually increase when the la-

beled nodes continues to increase.

Our method is also applicable to other semi-supervised

classification tasks of image datasets. For dataset STL-10

and CIFAR-10, we randomly select 1000 samples for val-

idation purpose and use 5000 samples as test samples, re-

spectively. The results shown in Table 3 demonstrate that

the proposed method can be readily applied to a variety of

datasets and achieve competitive performances.

5.5. Parameters Analysis

We also investigate the parameter sensitivity in the pro-

posed method. Figure 4(b) represents the change of ac-

curacies with different loss weight λ, which indicates that

our method is insensitive to the parameter λ in the range of

[0.1,0.5]. In addition, the proposed method becomes more

stable when more labeled nodes are utilized. Moreover, Fig-

ure 4(c) illustrates that the proposed central similarity opti-

mization method can improve the performance effectively,

which is mainly because the gradually update mechanism

can suppress the noise signals from the pseudo-labels.

5.6. Performance with Deeper Models

Table 4 summaries the results for the deep models with

various numbers of layers using 20 labeled nodes per class,

which suggests that the proposed model can alleviate the

over-smoothing problem and extend the GCN into a deep

model. From the t-SNE visualization on Cora in Figure

5, the discriminative power of the node features derived by

different numbers of GCN layers becomes similar gradual-

ly. The node features generated by multiple GCN layers,

such as 6-th and 8-th layers, are very difficult to be separat-

ed, however, the node features obtained from different Self-

SAGCN layers are still discriminative. The node features
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(a) GCN layer 2 (b) GCN layer 4 (c) GCN layer 6 (d) GCN layer 8

(e) SelfSAGCN layer 2 (f) SelfSAGCN layer 4 (g) SelfSAGCN layer 6 (h) SelfSAGCN layer 8

Figure 5. t-SNE visualization of node features derived by different models with different numbers of layers on Cora. Colors represent node

classes. Top: results from GCN, Bottom: results from SelfSAGCN.

Method
4 Layers 8 Layers 16 Layers

Cora Citeseer Pubmed Cora Citeseer Pubmed Cora Citeseer Pubmed

GCN [13] 80.4(0.4) 67.6(0.9) 79.0(1.2) 69.5(0.1) 30.2(0.3) 61.2(1.5) 64.9(1.4) 18.3(1.1) 40.9(0.7)

GCNdrop [27] 82.0(0.7) 70.2(0.8) 79.1(1.4) 75.8(0.4) 61.4(0.5) 78.1(0.7) 75.7(1.1) 57.2(0.9) 78.5(1.5)

JKNet[34] 80.2(0.5) 68.7(0.4) 78.0(1.0) 80.7(0.6) 67.7(0.3) 78.1(1.4) 80.2(1.0) 69.8(0.7) 72.6(1.4)

IncepGCN [27] 77.6(0.5) 69.3(0.6) 77.0(0.7) 76.5(0.8) 68.4(0.5) 77.9(1.2) 81.7(0.7) 70.2(0.9) 74.9(1.7)

ResGCN [16] 78.8(0.6) 70.5(0.6) 78.6(1.5) 75.6(0.5) 65.0(0.4) 78.1(1.3) 72.0(0.8) 66.5(0.5) 75.5(1.0)

DAGNN [20] 82.1(0.5) 68.5(0.9) 77.5(0.9) 83.2(0.6) 70.2(0.4) 78.4(0.9) 81.7(0.8) 68.4(0.9) 79.8(1.0)

GCNII [3] 82.0(0.4) 68.7(0.4) 78.6(0.4) 84.1(0.3) 70.6(0.5) 79.4(0.6) 84.6(0.8) 72.9(0.9) 80.2(1.0)

SelfSAGCN 82.3(0.3) 72.3(0.8) 79.5(1.2) 81.9(0.5) 71.0(1.1) 78.7(1.3) 80.5(0.3) 68.0(1.2) 78.1(1.4)

Table 4. Summary of classification accuracy (%) results on citation networks with various numbers of layers.

from semantic and graph structural aspects are enforced to

map nearby, which can provide discriminative semantic in-

formation to the node features and effectively alleviate the

over-smoothing problem.

6. Conclusion

In this paper, we attempt to integrate semantic extrac-

tion and alignment into traditional deep graph networks to

simultaneously address the over-fitting and over-smoothing

problems. To achieve this goal, we first apply the Identity

Aggregation to extract semantic information layer-by-layer

from the labeled nodes, which is not plagued by the over-

smoothing phenomenon. We then align the node features

obtained form semantic and graph structural aspects respec-

tively using the central similarity optimization, which has a

dramatic effect on alleviating the over-smoothing. Partic-

ularly, we construct the class centroids of unlabeled nodes

by assigning pseudo-labels, and update the centroids grad-

ually to suppress noise signals. In this way, the distribu-

tions of the node features from different aspects tend to be

consistent, thus the results in unlabeled nodes will be boost-

ed. We evaluate the proposed SelfSAGCN on five popular

benchmarks, and the experiments demonstrate the proposed

model outperforms the state-of-the-art methods on various

classification tasks. More importantly, the proposed model

will not incur extra network parameters.
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