
Slimmable Compressive Autoencoders for Practical Neural Image Compression

Fei Yang1,2, Luis Herranz2, Yongmei Cheng1, Mikhail G. Mozerov2

1 School of Automation, Northwestern Polytechnical University, Xi’an, China
2 Computer Vision Center, Universitat Autonoma de Barcelona, Barcelona, Spain

{fyang,lherranz,mozerov}@cvc.uab.es, chengym@nwpu.edu.cn

Abstract

Neural image compression leverages deep neural net-

works to outperform traditional image codecs in rate-

distortion performance. However, the resulting models are

also heavy, computationally demanding and generally opti-

mized for a single rate, limiting their practical use. Focus-

ing on practical image compression, we propose slimmable

compressive autoencoders (SlimCAEs), where rate (R) and

distortion (D) are jointly optimized for different capacities.

Once trained, encoders and decoders can be executed at

different capacities, leading to different rates and complex-

ities. We show that a successful implementation of Slim-

CAEs requires suitable capacity-specific RD tradeoffs. Our

experiments show that SlimCAEs are highly flexible models

that provide excellent rate-distortion performance, variable

rate, and dynamic adjustment of memory, computational

cost and latency, thus addressing the main requirements of

practical image compression.

1. Introduction

Visual information (e.g. images, videos) plays a central

role in human content creation, communication and interac-

tion. Efficient storage and transmission through constrained

channels requires compression. We can thus consider the

basic (lossy) image compression problem, where the goal

is to obtain the shortest binary representation (i.e. lowest

rate bitstream) that can represent the input image at a cer-

tain level of fidelity (i.e. minimum distortion). Thus, low

rate and low distortion are fundamentally opposing objec-

tives, in practice involving a rate-distortion (RD) tradeoff.

The more challenging problem of practical image compres-

sion further includes real-world constraints such as mem-

ory, computation and latency, related with their implemen-

tation in resource-constrained devices (e.g. mobile phones)

and networks. Similarly, video compression addresses the

same problem for sequences of images, where low com-

plexity and latency become even more critical [41]. Many

applications also require dynamic control of the RD tradeoff

Method
Rate-dist.
perform.

Total
memory

Variable Training

timeRate Memory FLOPs
JPEG,JP2K Low Very low Yes - - -

BPG High Low Yes - - -
Single CAE Optimal Medium No No No Low

Multiple CAEs Optimal High Yes Yes Yes High
BScale[36] Medium Medium Yes No No Low

MAE[42],cAE[10] High Medium Yes No No Low
SlimCAE Optimal Medium Yes Yes Yes Low

Table 1: Comparison of compression methods.

Complexity

(MB,FLOPs)

D
is

to
rt

io
n

 (
P

S
N

R
)

Rate (bpp)

BitstreamEncoder Decoder

Optimal

Naive

Figure 1: Variable rate and complexity adaptive image com-

pression with a slimmable compressive autoencoder.

to adapt to specific rate requirements (i.e. variable rate).

Traditional methods (e.g. JPEG [40], JPEG2000 [25,

31], BPG [32]) follow the transform coding paradigm with

carefully designed linear transforms and coding tools, to ef-

fectively address practical image compression. Encoding is

block-based and iterative. RD is optimized during encoding

by exhaustively searching optimal block partitions and cod-

ing and prediction modes. Complexity can be controlled by

limiting the range of coding and prediction modes, or using

heuristics. The rate can be estimated from previous blocks,

and controlled by adjusting quantization parameters.

A more recent paradigm is neural image compression

(NIC) [37, 6, 11, 38, 36, 15, 20, 21, 22, 19] (or learned im-

age compression), which exploits flexible nonlinear trans-

forms and entropy models parametrized as deep neural net-

works. The framework typically consists of an autoen-

coder followed by quantization and entropy coding (hence-

forth a compressive autoencoder -CAE- [36]). While they

can outperform traditional image codecs in RD, they are

4998

typically only optimal for a single target rate, and at the

cost of much heavier and computationally expensive mod-

els that require specialized hardware (e.g. GPUs), making

them unattractive in practical resource-limited scenarios. In

contrast to block-based codecs, NIC approaches are typi-

cally image-based and feed-forward, resulting in a constant

processing cost. While some approaches address variable

rate [36, 8, 42, 10], practical concerns related with effi-

ciency still remain largely unaddressed (see Table 1).

The challenge of deploying deep neural networks in

resource-limited devices (e.g. smartphones, tablets) has

motivated research on lightweight architectures [12, 29], in-

teger and binary networks [16, 27, 13] and automatic ar-

chitecture search [34]. However, only few works have ad-

dressed efficiency in NIC [28, 14]. We borrow the idea of

slimmable neural networks [44], where the width of the lay-

ers (i.e. number of channels) of a classifier can be adjusted

to trade off accuracy for computational efficiency.

In this paper, we propose the slimmable compressive

autoencoder (SlimCAE) framework, where we show that

the slimming mechanism can enable both variable rate and

adaptive complexity (see Fig. 1). We propose and study dif-

ferent variants of slimmable generalized divisive normaliza-

tion [5] (GDN) layers, and slimmable probability models.

Naive training of SlimCAEs, with the different subnetworks

(i.e. subCAEs) optimizing the same loss on all widths, re-

sults in suboptimal performance. We crucially observe that

each RD tradeoff has an corresponding minimum capacity.

This suggest that, in contrast to other slimmable networks,

each width should have different objectives, i.e. different

D + λR, determined by the corresponding tradeoff λ. This

characteristic makes SlimCAEs more difficult to train, and

unlikely to benefit from implicit or explicit distillation [44].

Addressing this problem, we propose λ-scheduling an algo-

rithm that alternates between training the model and adjust-

ing the different λs. Via slimming, SlimCAEs can address

the main requirements of practical neural image compres-

sion (PNIC) in a simple and integrated way.

Our main contributions are: (1) a novel rate and com-

plexity control mechanism via layer widths, motivated by a

key insight connecting optimal RD tradeoffs and capacity;

(2) the SlimCAE framework, which enables control of com-

putation, memory and rate, required for PNIC; (3) an effi-

cient training algorithm for SlimCAEs; (4) novel slimmable

modules (i.e. GDNs, entropy models). In addition, Slim-

CAEs can be easily adapted to obtain scalable bitstreams.

2. Related work

2.1. Neural image compression

The modern non-linear deep autoencoding framework

with quantization and entropy coding (which here we refer

to as compressive autoencoder [36]), trained by backpropa-

gation to minimize a (fixed) combination of rate and distor-

tion, is relatively recent [37, 36, 6]. Encoders and decoders

often integrate multi-scale structures [8, 28, 24] and gen-

eralized divisive normalization (GDN) layers [5, 6]. End-

to-end training requires replacing non-differentiable quan-

tization by differentiable proxies such as additive noise [6],

identity in the backward pass [36] and soft-to-hard vec-

tor quantization [1]. Entropy coding also benefits from

learnable CNNs, via hyperpriors [7] and contextual mod-

els [21, 17, 18, 22, 23]. More recently, adversarial training

has been used to target very low rates [28, 39, 2].

2.2. Variable rate image compression

Many practical applications require certain control of the

target rate. Traditional image compression methods enable

this functionality via quantization tables that scale DCT co-

efficients according to the target rate. Similar to traditional

methods, Theis et al. [36] learns a set of rate-specific pa-

rameters to scale the bottleneck feature before quantization

(we refer to this as bottleneck scaling, see Fig. 2a). Mod-

ulated autoencoders (MAEs) [42] and conditional autoen-

coders (cAEs) [10] show that modulating also intermediate

features improves RD performance (see Fig. 2b). Recurrent

neural networks can also realize variable rate coding [37],

yet are demanding computationally. Cai et al. [8] proposed

a multi-scale decomposition network, each scale targeting

a different rate. None of these methods provides explicit

control over complexity. Our approach (see Fig. 2c), in

contrast, can jointly reduce significantly the memory and

computational cost for low rates.

2.3. Efficiency

Lightweight architectures, such as GoogleNet [33] and

MobileNet [12, 29], are designed for resource-limited de-

vices by reducing the number of parameters and computa-

tion. At the cost of small drop in performance, integer or

binary weights can further improve efficiency [16, 27, 13].

Network architecture search (NAS) [45, 3, 34] includes de-

sign hyperparameters (e.g. width, number of layers) in the

optimization space. Slimmable neural networks [44, 43] en-

able models that can be run at different accuracy-efficiency

tradeoffs. Regarding NIC, Johnston et al. [14] use NAS to

achieve 2-3× coding speed-up. Cai et al. [9] use progres-

sive coding to reduce initial latency, although memory and

computational cost remain similar. While tackling run-time

or latency, these methods still focus on a single RD tradeoff,

not providing rate, memory nor computation control.

3. Slimmable compressive autoencoders

3.1. Slimmable autoencoders

The basic structure of an autoencoder (AE) is a learn-

able encoder z = f (x; θ) parametrized by θ that maps an

4999

Bottleneck scaling Feature modulation Slimming

(a) (b) (c)

Figure 2: Mechanisms to achieve variable rate in compressive autoencoders: (a) bottleneck scaling [36], (b) feature mod-

ulation [42, 10], and (c) proposed method (SlimCAE). Adaptation from high rate (left) to low rate (right). Changes are

highlighted in red. Only SlimCAE reduces memory and computation. GDN layers are not included for simplicity.

input image x ∈ R
N to a transformed (latent) representa-

tion z ∈ R
D, followed by a learnable decoder x̂ = g (z;φ)

parametrized by φ that maps the latent representation to

x̂ ∈ R
N , with the objective of reconstructing the input im-

age x. Hence the combination of encoder and decoder is

autoencoding x, and the objective is to learn the parameters

ψ = (θ, φ) by minimizing a lossL (θ, φ;X) given a training

dataset X = {xi}
|X |
i=1. The loss measures the reconstruction

error, possibly combined with other objectives.

We are interested in AEs whose layers are

slimmable [44], i.e. slimmable autoencoders (Sli-

mAEs), thus enabling dynamic control over the memory

and computation costs. An slimmable layer allows for

discarding part of the layer parameters (in most cases is

equivalent to setting them to zero) while still performing

a valid operation, trading off expressiveness for lower

memory and computational cost. We consider SlimAEs

containing K subautoencoders (subAEs), each of them

parametrized by a pair ψ(k) =
(

θ(k), φ(k)
)

∈ Ψ =
{(

θ(1), φ(1)
)

, . . . ,
(

θ(K), φ(K)
)}

, where we assume that

θ(1) ⊂ · · · ⊂ θ(K) = θ and φ(1) ⊂ · · · ⊂ φ(K) = φ

(we assume these conditions are met for every layer

in the SlimAE). Similarly, we can define the loss for

the subAE k as L(k)
(

θ(k), φ(k);X
)

, and train the

SlimAE with the joint loss or a weighted average

L (Ψ;X) =
∑

k L
(k)

(

θ(k), φ(k);X
)

.

3.2. Compressive autoencoders

A compressive autoencoder (CAE) is an AE, where the

output of the encoder is a binary stream (bitstream), typi-

cally stored or transmitted through a communications chan-

nel. The objective is to maximize the quality of the recon-

structed image (i.e. minimize the distortion) while minimiz-

ing the number of bits transmitted (i.e. minimize the rate).

CAEs are based on AEs, where the encoder is followed by

a quantizer q = Q (z), where q ∈ Z
D is a discrete-valued

symbol vector. A losseless entropy encoder then binarizes

(a) (b)

(c)

Figure 3: GDN variants: (a) SwitchGDN, (b) SlimGDN, (c)

SlimGDN+ (SlimGDN with switch. param. modulation).

and serializes q into the bitstream b, exploiting its statisti-

cal redundancy to achieve code lengths close to its entropy.

These operations are reversed in the decoder.

CAEs are typically trained by solving a rate-distortion

optimization (RDO) problem with loss

L (θ, φ;X , λ) = D (θ, φ;X) + λR (θ;X) , (1)

where X is the training dataset, λ is the (fixed) tradeoff be-

tween rate and distortion. To allow end-to-end optimization

with backpropagation, during training non-differentiable

operations, such as quantization and entropy coding, are re-

placed by differentiable proxies, such as additive noise and

entropy estimation.

Without loss of generality, we focus on the CAE frame-

work of Balle et al. [6], which combines convolutional

layers, generalized divisive normalization (GDN) and in-

verse GDN (IGDN) layers, scalar quantization to the near-

est neighbor (i.e. i.e. q = ⌊z⌋) and arithmetic coding.

During training, quantization is replaced by additive uni-

form noise (i.e. z̃ = z + ∆z, with ∆z ∼ U
(

− 1
2 ,

1
2

)

).

Similarly, arithmetic coding is bypassed and rate is ap-

proximated by the entropy of the quantized symbol vector

R (b) ≈ H [Pq] ≈ H [pz̃ (z̃; ν)], where ν are the param-

5000

eters of the entropy model used in [6]. Distortion is mea-

sured as the reconstruction mean square error (MSE), i.e.

‖x− x̂‖
2
. The CAE is thus parametrized by ψ = (θ, φ, ν).

3.3. Slimmable CAEs

In order to obtain a slimmable compressive autoencoder

(SlimCAE), all operations in the CAE are required to be

non-parametric, slimmable or efficiently switchable. Quan-

tization is non-parametric in our case, and convolutional

layers are implemented slimmable [44]. For GDN/IGDN

layers, we propose and compare several variants (see next

subsection) layers. Finally, we use switchable entropy mod-

els, i.e. each subCAE k has its own parameters ν(k), which

can be easily switched since the size is negligible compared

to the other parameters θ(k) or φ(k).

Our approach can also be extended to more complex

frameworks including hyperpriors [7] and autoregressive

context models [22].

3.4. Switchable and slimmable GDN/IGDN layers

While GDN [4] was proposed to Gaussianize the local

joint statistics of natural images, Balle et al. [6] proposed

an approximate inverse operation (IGDN), and showed that

GDN/IGDN layer pairs are highly beneficial in learned

image compression, and since then have been adopted

by many CAE frameworks. Both GDN and IGDN are

parametrized by γ ∈ R
w×w and β ∈ R

w, where w is the

number of input (and output) channels.

In the case of a SlimCAE with K subCAEs, the input to

the GDN layer has the following possible channel dimen-

sions w(1), . . . , w(K). We consider three possible variants:

• Switchable GDNs1. We use independent sets of pa-

rameters γ(k) ∈ R
w(k)×w(k)

and β(k) ∈ R
w(k)

for ev-

ery subGDN k (see Fig. 3 a). The normalized repre-

sentation for an input y(k) ∈ R
w(k)

is then

ỹ
(k)
i =

y
(k)
i

(

β
(k)
i +

∑

j γ
(k)
ij |y

(k)
j |

2
)

1
2

(2)

While flexible, the total number of parameters is rela-

tively high
∑K
k=1

(

w(k) + 1
)

w(k), and switching may

be not very efficient.

• Slimmable GDN (SlimGDN). A more compact op-

tion is to reuse parameters from smaller subGDNs by

imposing γ(1) ⊂ · · · ⊂ γ(K) and β(1) ⊂ · · · ⊂ β(K).

Now the total number of parameters in a SlimGDN

layer is
(

M (K) + 1
)

w(K) (see Fig. 3b).

• SlimGDN with switchable parameter modulation.

SlimGDNs usually performs worse than switchable

1In the following, we omit IGDN for clarity (the same analysis applies).

GDNs, since they are less flexible to adapt to the statis-

tics of the different y(k). We propose a variant us-

ing switchable parameter modulation, where a global

scale and bias are learned separately for every sub-

GDN (i.e. switchable), i.e. γ
(k)
ij = s

(k)
γ γ′

(k)
ij + b

(k)
γ

and β
(k)
i = s

(k)
β β′(k)

i + b
(k)
β , where γ′

(k)
and β′(k)

are shared and slimmable and s
(k)
γ , b

(k)
γ , s

(k)
β and b

(k)
β

are switchable scalars specific for the subGDN k. This

variant requires only 4 additional parameters per sub-

GDN (see Fig. 3c), for a total number of parameters
(

w(K) + 1
)

w(K) + 4K.

3.5. (Naive) training of SlimCAEs

We can extend Eq. (1) and optimize the joint loss of all

K subCAEs argminψ
∑

ψ∈Ψ L (ψ;X , λ), with parameters

Ψ =
{

ψ(1), . . . , ψ(K)
}

. The problem can be solved us-

ing stochastic gradient descent (SGD) and backpropagation.

We refer to this case as naive SlimCAE.

4. SlimCAEs with multiple rate-distortion

tradeoffs

4.1. Rate­distortion and capacity

While a naive SlimCAE can already control the rate of

the output bitstream and the complexity of the model, it is

limited to a relatively narrow range of rates with suboptimal

RD performance. This can be observed in Fig. 4, where

we show the RD curves obtained with independent CAEs

with different capacities controlled via the layer width w

(i.e. number of filters per convolutional layer) compared

with one SlimCAE with the same layer widths.

Fig. 4 shows that there is a limit in the minimum achiev-

able distortion by a CAE (i.e. at high rates), which is in turn

related to its capacity (the lower the capacity, the higher the

minimum distortion). Additionally, the figure shows that,

when the rate is low enough, additional capacity is unneces-

sary since the curves converge before that point, (i.e. an op-

timal capacity for every segment of the optimal RD curve).

Note also that the RD points of the SlimCAE are located

over the RD curves of independent CAEs with the same

capacity, suggesting that a slimmable version does not en-

tail RD penalty. We aim at training the SlimCAE so it can

achieve optimal RD performance at the different capacities.

We define the multi-RD optimization (MRDO) loss as

L (Ψ;X ,Λ) =
K
∑

k=1

D
(

ψ(k);X
)

+λ(k)R
(

ψ(k);X
)

, (3)

where Λ =
{

λ(1), . . . , λ(K)
}

is a given set of RD tradeoffs

for the differentK subCAEs, and the corresponding MRDO

problem is argminΨ
∑

ψ(k)∈Ψ L (Ψ;X ,Λ).
An important aspect to note is that in this case each sub-

CAE solves a different optimization problem determined by

5001

the specific tradeoff λ(k). This is an important difference

with slimmable networks and SlimAEs in general (includ-

ing naive SlimCAEs), where every subnetwork or subAE

solves exactly the same problem, just with different capac-

ity. This has implications, such as more difficulty to jointly

solve all the subproblems and also makes implicit distilla-

tion [44] across subCAEs more unlikely. The problem now

is to find appropriate values of Λ and train the SlimCAE.

w=48

w=72

w=96
w=144

w=192

Independent CAEs

SlimCAE (same λ)
Estimated optimal

R

D

Figure 4: Comparison of RD curves of independent CAEs

and SlimCAE with shared λ. Better choices in the RD

curves are also highlighted.

4.2. Estimating optimal λs from RD curves

One possible way is to leverage the RD curves of in-

dependent CAEs and try to estimate the optimal points to

switch to the next subCAE, which is where the curves start

diverging because RD performance saturates for that capac-

ity. We can then estimate λ(k) as the slope of the corre-

sponding curve at that optimal point (see Fig. 4).

4.3. Automatic estimation via λ­scheduling

While knowing in advance the empirical RD curves leads

to better RD performance and wider rate ranges, it has the

important drawback of having very high computation cost,

since we need to compute K RD curves, one for each tar-

get capacity, and every curve requires training a number of

independent CAE exploring different λs.

MRDO training with λ scheduling In order to address the

previous limitation, we propose an effective MRDO train-

ing algorithm to automatically estimate Λ without requiring

independent CAEs curves (see Alg. 1).

The algorithm is based on progressively varying the val-

ues of every λ(k) following a predefined schedule. We alter-

nate phases of updating Λ and updating the SlimCAE using

SGD. The initial stage is a naive SlimCAE, where λ is set

to target high rate and low distortion, which requires full

use of the capacity. Once trained, the SlimCAE is already

optimized for that full capacity. We fix λ(K) and update the

remaining k = 1, . . . ,K − 1 as λ
(k)
t = κλ

(k)
t−1 with a factor

κ > 1. Then we update the SlimCAE for another number

D

R

R

R

D

D

λ scheduling

CAE optimization

(a) (b)

(c) (d)
R

DD

Figure 5: Training SlimCAEs: (a) naive training with a sin-

gle RD tradeoff λ leads to small ranges and suboptimal RD

performance, (b) varying the λ progressively for smaller

subCAEs changes the target RD point and stretches the RD

range, (c) the slope ξ of RD segments is used to monitor

convergence of the proposed training algorithm, and (d) il-

lustration of how λ scheduling changes the RD target and

SlimCAE optimization stretches the RD range.

of iterations, which tends to reduce the rate and moves the

RD of subCAE K − 1 closer to the optimal RD curve. Ge-

ometrically, this results in the slope of the segment between

the RD points of the two consecutive subCAEs K − 1 and

K decreasing (see Fig. 5b and c). When this slope does

not decrease anymore, we fix λ(K−1) and continue the pro-

cess recursively. The overall effect of the λ scheduling is

to progressively accommodate the target RD point for each

subCAE so training can approximate the optimal RD points.

5. Experiments

5.1. Experimental settings

We implemented2 and evaluated the proposed ap-

proaches building upon the widely used image compres-

sion framework proposed by Balle at al. [6] which typically

uses layers with a width of 192 filters (encoder: 3 conv, 3

GDN; decoder: 3 deconv, 3 IGDN). To address different

complexities and rates, we consider five different widths

(w ∈ {48, 72, 96, 144, 192}), which also control the total

capacity of the model. The models are trained and evaluated

2https://github.com/FireFYF/SlimCAE

5002

Algorithm 1 SlimCAE training with λ-scheduling

Input: Xtr, Xval ⊲ Training, val. data

Input: SlimCAE with K subCAEs and parameters Ψ
Input: λ(K) ⊲ RD tradeoff for largest subCAE

Input: κ, T , M ⊲ Other hyperparameters

Output: Ψ,Λ
1: Λ0 ←

[

λ(K), . . . , λ(K)
]

2: Ψ0 ← argminΨL (Ψ;Xtr,Λ0) ⊲ Naive training

3: Calculate R
(K−1)
0 , R

(K)
0 ,D

(K−1)
0 ,D

(K)
0 over Xval

4: ξ0 ←
D

(K)
0 −D

(K−1)
0

R
(K)
0 −R

(K−1)
0

5: t← 1
6: for i← K − 1 to 1 do

7: for m← 1 to M do

8: Λi ←
[

κλ
(1)
i−1, . . . , κλ

(i)
i−1, λ

(i+1)
i−1 , . . . , λ

(K)
i−1

]

9: for j ← 1 to T do

10: Ψt ← argminΨL (Ψt−1;Xtr,Λi)
11: t← t+ 1
12: end for

13: if R
(i+1)
t < R

(i)
t then

14: continue

15: else

16: Calculate ξt ←
D

(i+1)
t

−D
(i)
t

R
(i+1)
t

−R
(i)
t

over Xval

17: if ξt > ξt−T then

18: break

19: end if

20: end if

21: end for

22: end for

on the CLIC dataset3. In Section 5.6 we evaluate on the Ko-

dak 4 and Tecnick5 datasets to compare to other methods.

We evaluate both RD performance and efficiency (memory

footprint, computational cost and latency).

SlimCAE variants. We consider three GDN/IGDN

variants (SwitchGDN, SlimGDN and SlimGDN+ corre-

sponding to Fig. 3a, b and c respectively) and three train-

ing strategies (naive, estimated λs and λ-scheduling, cor-

responding to the methods described in Sections 3.5, 4.2

and 4.3). We used a switchable entropy model (i.e. one in-

dependent entropy model per width), since the number of

parameters is negligible compared to the overall model.

Baselines. We compare SlimCAE to independently

trained CAEs for different widths (five models in total fol-

lowing [6]). We also compare to three approaches to pro-

vide variable rate in a single model: bottleneck scaling

(BScale) [36]6, modulated autoencoders (MAE) [42] and

3https://www.compression.cc/2019/challenge
4http://r0k.us/graphics/kodak
5https://testimages.org/sampling
6Note that [36] actually introduces the term compressive autoencoder.

s in a general sense, and in our experiments CAE refers to our baseline [6],

Encoder Decoder

w
=
4
8

w
=
7
2

w
=
9
6

w
=
1
4
4

w
=
1
9
6

Figure 6: Filters in the first convolutional layer (encoder)

and last convolutional layer (decoder) for different widths.

conditonal autoencoders (cAE) [10].

Training details. We use 240 × 240 pixel crops and

a batch size of 8. Some methods are trained in one step,

while other require two steps. The former includes indepen-

dent CAEs, MAE, cAE, SlimCAE with naive training and

training with estimated λs. In these cases we use a learn-

ing rate of 1e-4 (1e-3 for the entropy model) during 1.2M

iterations, and then halve them for an additional 200K iter-

ations. SlimCAE with λ-scheduling uses a SlimCAE after

naive training 1.2M iteration, followed by training with λ-

scheduling (κ = 0.8, T = 2000 and M = 7 in Alg. 1)7

during 28K iterations and then fine tuned (by halving the

learning rates) until a total of 1.5M iterations with the final

λs fixed. We measure distortion as MSE during training and

as PSNR during λ-scheduling. BScale uses a CAE trained

during 1.2M iterations, which is then fixed and scaling pa-

rameters are learned during 300K iterations.

5.2. Qualitative analysis

SlimCAE can effectively distribute and optimize the ca-

pacity in a way that each subCAE can focus on the pat-

terns relevant to its own optimal RD tradeoff. For example,

the first convolutional layer of the smallest subencoder (see

Fig. 6) contains only filters sensitive to low frequency pat-

terns, while larger subencoders progressively include filters

related with higher frequency, since they are necessary to

achieve lower distortion. The latent representation in the

bottleneck is also structured in a similar way from coarse

reconstruction to fine details (see Fig. A2 a-b in supp. mat.).

5.3. Rate­distortion

Fig. 7a shows the rate-distortion performance obtained

with different GDN variants. Sharing GDN parameters

while BScale denotes the variable rate approach in [36]
7We extend the implementation of [6], which optimizes λD + R. We

adapt λ-scheduling correspondingly.

5003

(a) GDN variants (with estimated λs) (b) Training strategies and scalability (c) Variable rate methods

Figure 7: Rate-distortion performance comparison (CLIC dataset).

across different widths (i.e. SlimGDN) results in worse per-

formance than independent ones (i.e. SwitchGDN). How-

ever, this loss can be recovered when parameter modulation

(i.e. SlimGDN+) at a negligible parameter increase.

Fig. 7b shows that naive training suffers from the lim-

itations of using a single shared tradeoff λ, while training

with more adequate width-specific λs (those estimated in

Fig. 4) results in an RD curve closer to the obtained with

independent CAEs. Fig. 7b also illustrates the effect of λ-

scheduling in the RD curve, which gets progressively closer

until it essentially achieves the same performance as inde-

pendent CAEs (see Fig. A1 in supplementary for more de-

tails), but without requiring training auxiliary models.

Finally, we compare SlimCAE to other baselines en-

abling variable rate in a single model. SlimCAE obtains the

best RD performance, overlapping with that of independent

CAEs, but with a much lower training and memory cost, as

we see next.

5.4. Efficiency

We also evaluate the efficiency of SlimCAE in terms of

memory footprint (in MB), computational cost (in FLOPs)

and latency (in ms)8. Values in features and parameters are

represented with 4 bytes, and the features are calculated

for input images of size 768 × 512 pixels. We consider a

baseline with five independent CAEs optimized for differ-

ent RD tradeoffs. For fair comparison we use the minimum

width that guarantees that the RD performance at a particu-

lar tradeoff λ remains optimal (see Fig. 4).

Fig. 8 shows the memory footprint in the encoder and

decoder at different widths. Features require significantly

more memory than model parameters, especially at small

widths. While for the largest width all methods require sim-

ilar memory, an independent CAE and SlimCAE can re-

duce significantly the memory footprint for small widths.

This reduction also results in a significantly lower compu-

tational cost (see Table 2), and much lower latency during

8We only compare to NIC codecs, since traditional codecs run in differ-

ent hardware (CPU instead of GPU). As reference, our BPG baseline takes

on CPU (for 0.1-1.0 bpp) 3.2-4.5 s/img (enc) and 95-131 ms/img (dec).

Table 2: Computational cost of trained models (millions of

FLOPs). Some methods adjust layer widths.

Methods Low rate → Medium rate → High rate

Independent
15.34M 31.69M 53.81M 115.53M 200.28M

(w=48) (w=72) (w=96) (w=144) (w=192)

BScale [36]
200.28M 200.28M 200.28M 200.28M 200.28M

(w=192) (w=192) (w=192) (w=192) (w=192)

MAE [42]
200.40M 200.40M 200.40M 200.40M 200.40M

(w=192) (w=192) (w=192) (w=192) (w=192)

cAE [10]
200.31M 200.31M 200.31M 200.31M 200.31M

(w=192) (w=192) (w=192) (w=192) (w=192)

SlimCAE
15.34M 31.69M 53.81M 115.53M 200.28M

(w=48) (w=72) (w=96) (w=144) (w=192)

Table 3: Encoding and decoding latency (ms) for a 768×512
input image (i.e. batch size 1) on a NVIDIA GTX 1080Ti

GPU (excluding data loading/writing and arithmetic coding.

Methods Low rate → Medium rate → High rate

E
n

c
o

d
in

g

Independent 1.9± 0.19 2.2± 0.17 2.8± 0.22 4.0± 0.19 5.1± 0.20
BScale [36] 5.2± 0.11 5.2± 0.16 5.2± 0.22 5.2± 0.15 5.2± 0.13
MAE [42] 5.4± 0.20 5.4± 0.20 5.4± 0.13 5.4± 0.10 5.4± 0.11
cAE [10] 5.5± 0.18 5.5± 0.11 5.5± 0.14 5.5± 0.21 5.5± 0.28
SlimCAE 1.9 ± 0.15 2.2 ± 0.27 2.8 ± 0.12 4.0 ± 0.17 5.1 ± 0.10

D
e
c
o

d
in

g

Independent 2.9± 0.20 3.5± 0.10 4.3± 0.07 6.1± 0.07 8.0± 0.13
BScale [36] 8.0± 0.21 8.0± 0.13 8.0± 0.18 8.0± 0.11 8.0± 0.13
MAE [42] 8.4± 0.15 8.4± 0.13 8.4± 0.08 8.4± 0.07 8.4± 0.14
cAE [10] 8.5± 0.20 8.5± 0.07 8.5± 0.09 8.5± 0.13 8.5± 0.21
SlimCAE 2.9 ± 0.10 3.5 ± 0.07 4.3 ± 0.10 6.1 ± 0.16 8.0 ± 0.13

Figure 8: Memory footprint comparison for different rates.

both encoding and decoding (see Table 3). Now we con-

sider the total memory required to provide the five different

rates. It requires to store the model parameters of the inde-

pendent CAEs (31.1 MB), in contrast to just a single model

5004

Table 4: BD-rate (%) over BPG. Lower means better.

Dataset
PSNR (opt. for MSE) MS-SSIM (opt. for MS-SSIM)

[7] [23] Slim[7] Slim[23] [7] [23] Slim[7] Slim[23]

Kodak 9.68 -8.94 9.52 -6.17 -41.46 -46.92 -41.41 -47.88

Tecnick 2.95 -11.77 5.23 -10.43 -41.50 -43.24 -40.34 -48.94

for BScale (15.3 MB), MAE (15.7 MB), cAE (15.3 MB)

and SlimCAE (15.3 MB with SlimGDN+). If we consider

the memory used to store features (note that at only one

model is use at a time), the memory footprint of multiple

CAEs varies from 42.9 to 78.3 MB, depending on the se-

lected rate, and similarly to SlimCAE (27.1 to 62.5 MB). In

contrast, other methods cannot adapt the complexity and re-

main with a higher and constant footprint (BScale 62.5 MB,

MAE 63 MB and cAE 62.6 MB)9. The SlimGDN+ layers

require 0.85 MB (compared to 1.71 MB and 0.85 MB in

SwitchGDN and SlimGDN, respectively).

Finally, Table 1 summarizes the main advantages and

drawbacks of different methods. SlimCAE is the most com-

plete of them providing variable rate with a single model

and controllable memory and computational requirements,

while achieving optimal RD performance. Training and

switching between multiple CAEs suffers from a higher

memory footprint (that increases with the number of target

RD points), and the much higher cost of training multiple

models. The other baselines can adapt rate, but not memory

and computational costs, which remain high at low rates.

5.5. Scalable bitstreams

Motivated by SlimCAE’s structured latent respresenta-

tion, we consider a variant where each group of channels

are encoded independently, allowing quality scalability and

progressive decoding. The resulting bitstreams (i.e. base[+

enhancement stream(s)]) are all decodable by the SlimCAE

decoder. On the other hand, the SlimCAE is no longer

slimmable, so enabling quality scalability disables memory

and computation scalability since the SlimCAE is no longer

slimmable, and also has certain penalty in RD performance

(see Fig. 7b and Fig. A2 in supp. mat), a usual compromise

in scalable image and video coding [35, 26, 30].

5.6. Slimmable entropy models

Our approach is general and can be easily extended in-

cluding slimmable versions of entropy models to achieve

state-of-the-art RD performance. Following [7, 22], we

train10 a larger capacity autoencoder11 with a three conv

layer slimmable hyperprior12 [7] and conditional convolu-

tions [10]. We also include a slimmable autoregressive con-

9Note that, in practice, an optimized implementation could save some

memory by discarding intermediate features once they are processed.
103M iter., batch 8, 256×256 crops, λ-sched (κ=0.8,T =104,M=7).
11w ∈ {96, 144, 192, 288, 384}
12w ∈ {48, 72, 96, 144, 192}, and Leaky ReLUs (same in decoder)

Figure 9: Rate-distortion performance of SlimCAE with

slimmable entropy model (Kodak dataset).

text model13 [22]. We trained these models14 and evaluated

on Kodak and Tecnik datasets. Fig. 9 shows that our ap-

proach can be integrated with almost no penalty in RD per-

formance, while providing the aforementioned advantages

in terms of rate and complexity control of SlimCAEs. The

same conclusions hold when optimizing MS-SSIM, keep-

ing a significant gain over BPG (see Table 4).

6. Conclusion

Neural image compression is a new paradigm for im-

age (and by extension video) coding, with numerous ad-

vantages over the traditional handcrafted linear transform

coding. However, current approaches are also resource de-

manding, and usually tied to a particular rate, which limits

their application in practice.

Our approach is thus a step further towards practical and

adaptive learned image compression, combining in a sin-

gle model important functionalities, such as excellent rate-

distortion performance, low and dynamically adjustable

memory footprint, computational cost and latency, all of

them easily controlled via a lightweight switching mech-

anism. This makes our approach attractive to resource-

limited devices (e.g. smartphones), when rate and computa-

tion needs to be controlled dynamically (e.g. video coding,

multi-tasking) or to deploy different models to heteroge-

neous devices, adapted to their computational capabilities.

SlimCAE can also generate scalable bitstreams, which can

be useful in streaming and broadcasting scenarios with het-

erogeneous devices. In this paper we also study the funda-

mental connection between rate-distortion performance and

network capacity, and propose an efficient and effective ap-

proach to train the slimmable model in a single pass.

13One masked conv layer with w ∈ {96, 144, 192, 288, 384}
14On CLIC extended with 20k high quality images from flickr.com

5005

References

[1] Eirikur Agustsson, Fabian Mentzer, Michael Tschannen,

Lukas Cavigelli, Radu Timofte, Luca Benini, and Luc V

Gool. Soft-to-hard vector quantization for end-to-end learn-

ing compressible representations. In Advances in Neural In-

formation Processing Systems, pages 1141–1151, 2017.

[2] Eirikur Agustsson, Michael Tschannen, Fabian Mentzer,

Radu Timofte, and Luc Van Gool. Generative adversarial

networks for extreme learned image compression. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 221–231, 2019.

[3] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh

Raskar. Designing neural network architectures using re-

inforcement learning. In 5th International Conference on

Learning Representations, ICLR 2017, 2017.

[4] Johannes Ballé, Valero Laparra, and Eero Simoncelli. Den-

sity modeling of images using a generalized normalization

transformation. In 4th International Conference on Learn-

ing Representations, ICLR 2016, 2016.

[5] Johannes Ballé, Valero Laparra, and Eero P Simoncelli. Den-

sity modeling of images using a generalized normalization

transformation. arXiv preprint arXiv:1511.06281, 2015.

[6] Johannes Ballé, Valero Laparra, and Eero P Simoncelli.

End-to-end optimized image compression. arXiv preprint

arXiv:1611.01704, 2016.

[7] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin

Hwang, and Nick Johnston. Variational image compres-

sion with a scale hyperprior. In International Conference

on Learning Representations, 2018.

[8] Chunlei Cai, Li Chen, Xiaoyun Zhang, and Zhiyong Gao.

Efficient variable rate image compression with multi-scale

decomposition network. IEEE Transactions on Circuits and

Systems for Video Technology, 2018.

[9] Chunlei Cai, Li Chen, Xiaoyun Zhang, Guo Lu, and Zhiyong

Gao. A novel deep progressive image compression frame-

work. In 2019 Picture Coding Symposium (PCS), pages 1–5.

IEEE, 2019.

[10] Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Vari-

able rate deep image compression with a conditional autoen-

coder. In Proceedings of the IEEE International Conference

on Computer Vision, pages 3146–3154, 2019.

[11] Karol Gregor, Frederic Besse, Danilo Jimenez Rezende, Ivo

Danihelka, and Daan Wierstra. Towards conceptual com-

pression. In Advances In Neural Information Processing Sys-

tems, pages 3549–3557, 2016.

[12] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017.

[13] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,

Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry

Kalenichenko. Quantization and training of neural networks

for efficient integer-arithmetic-only inference. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2704–2713, 2018.

[14] Nick Johnston, Elad Eban, Ariel Gordon, and Johannes

Ballé. Computationally efficient neural image compression.

arXiv preprint arXiv:1912.08771, 2019.

[15] Nick Johnston, Damien Vincent, David Minnen, Michele

Covell, Saurabh Singh, Troy Chinen, Sung Jin Hwang, Joel

Shor, and George Toderici. Improved lossy image com-

pression with priming and spatially adaptive bit rates for re-

current networks. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 4385–

4393, 2018.

[16] AH Khan and EL Hines. Integer-weight neural nets. Elec-

tronics Letters, 30(15):1237–1238, 1994.

[17] Jooyoung Lee, Seunghyun Cho, and Seung-Kwon Beack.

Context-adaptive entropy model for end-to-end optimized

image compression. In International Conference on Learn-

ing Representations, 2018.

[18] Mu Li, Kede Ma, Jane You, David Zhang, and Wangmeng

Zuo. Efficient and effective context-based convolutional en-

tropy modeling for image compression. IEEE Transactions

on Image Processing, 29:5900–5911, 2020.

[19] Mu Li, Wangmeng Zuo, Shuhang Gu, Debin Zhao, and

David Zhang. Learning convolutional networks for content-

weighted image compression. In conference on Computer

Vision and Pattern Recognition, pages 3214–3223, 2018.

[20] Dong Liu, Haichuan Ma, Zhiwei Xiong, and Feng Wu. Cnn-

based dct-like transform for image compression. In Inter-

national Conference on Multimedia Modeling, pages 61–72.

Springer, 2018.

[21] Fabian Mentzer, Eirikur Agustsson, Michael Tschannen,

Radu Timofte, and Luc Van Gool. Conditional probability

models for deep image compression. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 4394–4402, 2018.

[22] David Minnen, Johannes Ballé, and George D Toderici.

Joint autoregressive and hierarchical priors for learned image

compression. In Advances in Neural Information Processing

Systems, pages 10771–10780, 2018.

[23] David Minnen and Saurabh Singh. Channel-wise autoregres-

sive entropy models for learned image compression. In 2020

IEEE International Conference on Image Processing (ICIP),

pages 3339–3343. IEEE, 2020.

[24] Ken M Nakanishi, Shin-ichi Maeda, Takeru Miyato, and

Daisuke Okanohara. Neural multi-scale image compression.

In Asian Conference on Computer Vision, pages 718–732.

Springer, 2018.

[25] Majid Rabbani. Jpeg2000: Image compression fundamen-

tals, standards and practice. Journal of Electronic Imaging,

11(2):286, 2002.

[26] Hayder M Radha, Mihaela Van der Schaar, and Yingwei

Chen. The mpeg-4 fine-grained scalable video coding

method for multimedia streaming over ip. IEEE Transac-

tions on multimedia, 3(1):53–68, 2001.

[27] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,

and Ali Farhadi. Xnor-net: Imagenet classification using bi-

nary convolutional neural networks. In European conference

on computer vision, pages 525–542. Springer, 2016.

5006

[28] Oren Rippel and Lubomir Bourdev. Real-time adaptive im-

age compression. In International Conference on Machine

Learning, pages 2922–2930, 2017.

[29] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 4510–4520, 2018.

[30] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand.

Overview of the scalable video coding extension of the h.

264/avc standard. IEEE Transactions on circuits and sys-

tems for video technology, 17(9):1103–1120, 2007.

[31] Athanassios Skodras, Charilaos Christopoulos, and Touradj

Ebrahimi. The jpeg 2000 still image compression standard.

IEEE Signal processing magazine, 18(5):36–58, 2001.

[32] Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and

Thomas Wiegand. Overview of the high efficiency video

coding (hevc) standard. IEEE Transactions on circuits and

systems for video technology, 22(12):1649–1668, 2012.

[33] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1–9, 2015.

[34] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-

net: Platform-aware neural architecture search for mobile.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2820–2828, 2019.

[35] David Taubman. High performance scalable image compres-

sion with ebcot. IEEE Transactions on image processing,

9(7):1158–1170, 2000.

[36] Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc

Huszár. Lossy image compression with compressive autoen-

coders. arXiv preprint arXiv:1703.00395, 2017.

[37] George Toderici, Sean M O’Malley, Sung Jin Hwang,

Damien Vincent, David Minnen, Shumeet Baluja, Michele

Covell, and Rahul Sukthankar. Variable rate image com-

pression with recurrent neural networks. arXiv preprint

arXiv:1511.06085, 2015.

[38] George Toderici, Damien Vincent, Nick Johnston, Sung

Jin Hwang, David Minnen, Joel Shor, and Michele Covell.

Full resolution image compression with recurrent neural net-

works. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 5306–5314, 2017.

[39] Michael Tschannen, Eirikur Agustsson, and Mario Lucic.

Deep generative models for distribution-preserving lossy

compression. In Advances in Neural Information Process-

ing Systems, pages 5929–5940, 2018.

[40] Gregory K Wallace. The jpeg still picture compression

standard. IEEE transactions on consumer electronics,

38(1):xviii–xxxiv, 1992.

[41] Thomas Wiegand and Heiko Schwarz. Source coding: Part I

of fundamentals of source and video coding. Now Publishers

Inc, 2011.

[42] Fei Yang, Luis Herranz, Joost van de Weijer, José A Iglesias

Guitián, Antonio M López, and Mikhail G Mozerov. Vari-

able rate deep image compression with modulated autoen-

coder. IEEE Signal Processing Letters, 27:331–335, 2020.

[43] Jiahui Yu and Thomas S Huang. Universally slimmable net-

works and improved training techniques. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 1803–1811, 2019.

[44] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and

Thomas Huang. Slimmable neural networks. In 7th Interna-

tional Conference on Learning Representations, ICLR 2019,

2019.

[45] Barret Zoph and Quoc Le. Neural architecture search with

reinforcement learning. In 5th International Conference on

Learning Representations, ICLR 2017, 2016.

5007

