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Abstract

In this paper, we propose Text-Aware Pre-training (TAP)

for Text-VQA and Text-Caption tasks. These two tasks

aim at reading and understanding scene text in images for

question answering and image caption generation, respec-

tively. In contrast to conventional vision-language pre-

training that fails to capture scene text and its relationship

with the visual and text modalities, TAP explicitly incorpo-

rates scene text (generated from OCR engines) during pre-

training. With three pre-training tasks, including masked

language modeling (MLM), image-text (contrastive) match-

ing (ITM), and relative (spatial) position prediction (RPP),

pre-training with scene text effectively helps the model learn

a better aligned representation among the three modali-

ties: text word, visual object, and scene text. Due to this

aligned representation learning, even pre-trained on the

same downstream task dataset, TAP already boosts the ab-

solute accuracy on the TextVQA dataset by +5.4%, com-

pared with a non-TAP baseline. To further improve the per-

formance, we build a large-scale scene text-related image-

text dataset based on the Conceptual Caption dataset,

named OCR-CC, which contains 1.4 million images with

scene text. Pre-trained on this OCR-CC dataset, our ap-

proach outperforms the state of the art by large margins on

multiple tasks, i.e., +8.3% accuracy on TextVQA, +8.6%
accuracy on ST-VQA, and +10.2 CIDEr score on TextCaps.

1. Introduction

The Vision-language tasks incorporating scene text [7,

18, 49, 46], e.g., Text-VQA [49, 8, 40, 56] and Text-

Caption [46], pose new challenges to vision-language mod-

els of reading and understanding scene text in image con-

text. Extended from Visual Question Answering (VQA) [6],

Text-VQA aims to answer questions by understanding the

∗This work was done while Z.Yang was an intern at Microsoft.
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{"image_id": "949c2a96fdc2d21a", 
"image_classes": ["Person", 
"Billboard", "Man", "Scoreboard", 
"Sports equipment", "Clothing", 
"Sports uniform"], 
"flickr_original_url": 
"https://c3.staticflickr.com/4/3401/4
627066763_8d58de7a5a_o.jpg", 
"flickr_300k_url": 
"https://c7.staticflickr.com/4/3401/4
627066763_dd7c4dee3c_z.jpg", 
"image_width": 1024, 
"image_height": 683, "set_name": 
"val", "image_name": 
"949c2a96fdc2d21a", 
"image_path": 
"train/949c2a96fdc2d21a.jpg", 
"caption_id": 200003573, 
"caption_str": "The San Francisco 
Giants stadium jumbo screen with a 
Coors Light ad above it.", 
"caption_tokens": ["<s>", "the", 
"san", "francisco", "giants", 
"stadium", "jumbo", "screen", "with", 
"a", "coors", "light", "ad", "above", 
"it", "</s>"], "reference_strs": ["The 
San Francisco Giants stadium 
jumbo screen with a Coors Light ad 
above it.", "In between the clock 
and the big screen at the San 
Francisco Giants field, is a large 
banner advertisement for Coors 
light.", "The jumbo TV at a stadium 
with a coors light banner", "A Coors 
Light logo can be seen on a large 
sign.", "the word Coors is on the 
sign outside in daytime"], 
"reference_tokens": [["<s>", "the", 
"san", "francisco", "giants", 
"stadium", "jumbo", "screen", "with", 
"a", "coors", "light", "ad", "above", 
"it", "</s>"], ["<s>", "in", "between", 
"the", "clock", "and", "the", "big", 
"screen", "at", "the", "san", 
"francisco", "giants", "field", "is", "a", 
"large", "banner", "advertisement", 
"for", "coors", "light", "</s>"], ["<s>", 
"the", "jumbo", "tv", "at", "a", 
"stadium", "with", "a", "coors", 
"light", "banner", "</s>"], ["<s>", "a", 
"coors", "light", "logo", "can", "be", 
"seen", "on", "a", "large", "sign", 
"</s>"], ["<s>", "the", "word", 
"coors", "is", "on", "the", "sign", 
"outside", "in", "daytime", "</s>"]]},

Caption: In between the clock and 
the big screen at the San Francisco 
Giants field, is a large banner 
advertisement for Coors light.

Text-VQA: what is the company name to 
the left of the coors logo? A: Safeway

Caption: In between the clock and the big 
screen at the San Francisco Giants field, is 
a large banner advertisement for Coors light.

(b) 

18.2% 11.0%
23.4%

(a) 

w/o TAP with TAP
region attention scores on text word “coors”

Q: what is the company name to the left of the 
coors logo? A: Safeway
Caption: In between the clock and the big 
screen at the San Francisco Giants field, is 
a large banner advertisement for Coors light.

(b) 
0.880.09

(a) 

Text-Caption: In between the clock and 
the big screen at the San Francisco 
Giants field, is a large banner 
advertisement for Coors light.

18.2% 11.0%
23.4%

Figure 1. (a) Text-VQA and Text-Caption tasks aim at reading and

understanding scene text in images for question answering and im-

age caption generation, respectively. We highlight the scene text-

related words in bold. (b) By explicitly incorporating scene text in

pre-training, Text-Aware Pre-training (TAP) significantly outper-

forms both the non-TAP baseline and previous state of the art on

multiple tasks (bars shown in red and blue colors, respectively).

scene text in the image-question context. Text-Caption

seeks to generate an image caption [54, 4] that describes

both the visual and scene text information in the image, as

shown in Figure 1 (a). These tasks have many potential

applications, including robotics [5], document understand-

ing [40], assisting visually-impaired people [7, 18], etc.

A typical Text-VQA/Text-Caption framework consists

of 1) a feature encoder for each single modality (text word,

visual object, and scene text), 2) a multi-modal fusion

module, and 3) a decoding module for prediction gener-

ation. Previous studies [49, 17, 16, 20, 25, 46, 55] im-

prove the model’s performance by designing stronger net-

work architectures. Among them, LoRRA [49] added an

OCR attention branch for scene text encoding to a VQA

model [24]. M4C [20, 46] proposed a transformer-based

multi-modal fusion module [52] and a multi-step multi-

choice decoding module. Despite the effective network de-

sign, most previous models are optimized with a sole ob-
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jective directly towards the correct answer/caption. Such

a single answer/caption loss tries to predict each word in

the ground-truth but is less effective in learning a joint

representation among text word, visual object, and scene

text. Without a good joint representation, directly optimiz-

ing for question-answering/image-captioning could be chal-

lenging. Inspired by the success of Vision-Language Pre-

training (VLP) [37, 32, 12, 51, 34, 23, 11] in image-text

joint representation learning, we leverage the effective Text-

VQA/Text-Caption network designs and explore to further

improve Text-VQA/Text-Caption by pre-training.

Vision-Language Pre-training (VLP) shows its effective-

ness in learning task-agnostic joint representations of image

and text. The main idea is to first pre-train the model with

pre-training tasks on image-caption datasets [45, 29, 54,

41, 43], and then fine-tune the model for a specific vision-

language task [6, 60, 28, 54]. However, conventional VLP

methods are designed intuitively for vision-language tasks

and do not include scene text in pre-training. Therefore,

previous methods fail to capture the scene text modality and

its relationship with the visual and text modalities, and are

thus less effective in Text-VQA/Text-Caption.

In this study, we propose Text-Aware Pre-training (TAP),

which incorporates the scene text modality in pre-training

to learn a joint representation of text word, visual object,

and scene text. In TAP, we design text-aware pre-training

tasks to better fuse scene text (including both scene text

words and their visual regions detected by OCR) with the

text words and visual objects. For the former, we refine the

pre-training tasks in VLP [37, 34] to support the extra scene

text input. We find it particularly important to include the

detected scene text words as extra language inputs. The ex-

tra inputs anchor the scene text and language modalities and

make the aligned representation learning easier. For the lat-

ter, previous studies [25, 55] show that the spatial relation-

ships between scene text and object regions are important,

e.g., the relationship “left” in Figure 1 (a). Therefore, we

propose a “relative (spatial) position prediction” task that

learns regions’ spatial relationships by predicting their rela-

tive spatial positions in pre-training.

The extra scene text modality, together with the specially

designed pre-training tasks, effectively helps the model

learn a better aligned representation among the three modal-

ities: text word, visual object, and scene text. This aligned

representation learning, even pre-trained and fine-tuned on

the same downstream task dataset, leads to significant im-

provement over the non-TAP baseline and helps the TAP

model achieve the new state of the art.

To further unleash the power of TAP, we clean and gen-

erate a large-scale scene text-related image-caption dataset

for pre-training. In general image-caption datasets [45, 29,

54, 41, 43], many image-text pairs contain either no scene

text-related visual regions or no scene text-related language

referring, and are thus less helpful to Text-VQA/Text-

Caption. On the visual side, we run an OCR detector to fil-

ter out images with no scene text. On the language side, we

include the detected OCR text tokens as the additional cap-

tion input to obtain scene text-related language descriptions.

In the end, we build a large-scale dataset named OCR-CC

with around 1.4 million scene text-related image-text pairs

based on the Conceptual Captioning dataset [45]. By using

this large-scale dataset for pre-training, we observe further

improvement on the Text-VQA and Text-Caption tasks.

We experiment with the TAP approach on the M4C

network architecture [20] and benchmark it on the

TextVQA [49], ST-VQA [8], and TextCaps [46] datasets.

With the identical network architecture and training data,

TAP improves the accuracy on the TextVQA dataset [49]

from 44.50% to 49.91%, compared with a non-TAP base-

line. Our final model ranks No.11 on multiple Text-

VQA/Text-Caption challenges, and outperforms previous

methods by large margins: TextVQA [49] (+8.3% in abso-

lute accuracy), ST-VQA [8] (+8.6% in absolute accuracy),

and TextCaps [46] (+10.2 in CIDEr score).

Our main contributions are:

• To the best of our knowledge, we are the first to explore

pre-training for Text-VQA and Text-Caption.

• By explicitly incorporating scene text with three spe-

cially designed pre-training tasks, Text-Aware Pre-

training (TAP) effectively learns a better aligned rep-

resentation that leads to significant performance im-

provement on Text-VQA/Text-Caption.

• We build a large-scale dataset named OCR-CC with

around 1.4 million scene text-related image-text pairs.

TAP with OCR-CC leads to the new state of the art

on multiple tasks: TextVQA [49] (+8.3% in absolute

accuracy), ST-VQA [8] (+8.6% in absolute accuracy),

and TextCaps [46] (+10.2 in CIDEr score). We will

release the dataset and the models.

2. Related Work

Vision-language tasks incorporating scene text. Text-

VQA [49, 8, 40, 56] and Text-Caption [46] aim at read-

ing and understanding scene text in images for question an-

swering and image caption generation. Various datasets [49,

8, 40] are built for the Text-VQA task, e.g., the TextVQA

dataset [49], the ST-VQA dataset [8], etc. TextCaps [46] is

a dataset recently proposed for the Text-Caption task.

Recent studies [49, 17, 16, 20, 25, 55, 36, 19]

proposed various network architectures to improve the

Text-VQA/Text-Caption performance. Among them,

LoRRA [49] approached Text-VQA by extending a VQA

model Pythia [24] with an OCR attention branch. The an-

swer vocabulary is a combination of a static vocabulary

1According to the official leader-boards (Nov. 2020)
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Figure 2. An overview of Text-Aware Pre-training (TAP). (a) In pre-training, the framework takes text words w, visual objects vobj,

scene text vocr, and a special begin token p0 as inputs, and improves the aligned representation learning by performing pre-training

tasks (MLM, ITM, RPP) on fused feature f . (b) In fine-tuning, we train the same model to step-by-step generate the answer/caption

prediction, conditioned on w, vobj, vocr, and the previous word predictions p = {pt}
T−1

t=0
at decoding step T . Text word, visual object,

and scene text-related tokens are highlighted by the green, cyan, and yellow colors, respectively.

and detected OCR tokens. Multi-modal Multi-Copy Mesh

(M4C) [20] boosted the Text-VQA performance by propos-

ing a transformer-based multi-modal fusion module [52]

and a multi-step multi-choice decoding module that sup-

ports multi-step answer decoding. M4C’s variants M4C-

Captioner [46] set a strong baseline on TextCaps [46] with

the question text inputs removed. SA-M4C [25] further im-

proved M4C by encoding the spatial relationships among

visual regions as the attention masks in the multi-modal

transformer. Similar explorations [55] on the spatial rela-

tionships are studied in the Text-Caption task.

Despite the effective network design, all previous studies

directly optimize towards the sole objective for the Text-

VQA/Text-Caption task. We contend that such a single

answer/caption loss could be ineffective in aligned rep-

resentation learning and thus limits the Text-VQA/Text-

Caption performance. In this study, we leverage the effec-

tive network designs and explore to further improve Text-

VQA/Text-Caption by pre-training.

Vision-Language Pre-training (VLP). VLP [37, 32, 1, 31,

51, 50, 61, 12, 38, 34, 23] shows its effectiveness in learning

task-agnostic vision-language joint representations. Most

studies [37, 51, 12] focused on vision-language understand-

ing tasks, e.g., image-text retrieval [60], visual question an-

swering [6], visual grounding [28, 58], etc. Recent stud-

ies [61, 34, 21] unified the pre-training framework to cover

generation tasks, e.g., image captioning [54, 4].

However, conventional VLP methods do not capture

scene text during pre-training and are therefore less ef-

fective for Text-VQA/Text-Caption. The proposed Text-

aware Pre-training (TAP) explicitly incorporates scene text

to learn a better aligned representation among the three

modalities: text word, visual object, and scene text.

3. Text-Aware Pre-training (TAP)

TAP explicitly incorporates scene text in pre-training

to improve Text-VQA/Text-Caption. We first pre-train the

model with the scene text-aware pre-training tasks and then

fine-tune it for a specific downstream task.

In this section, we first introduce the design of scene text-

aware pre-training tasks. We then present the data corpus

used for TAP and our proposed OCR-CC dataset. We post-

pone the model details to Section 4.2.

3.1. Textaware pretraining tasks

Figure 2 overviews TAP in pre-training and fine-tuning.

In pre-training, the input to the fusion module are embed-

dings of K text words w, M object regions vobj, N scene

text regions vocr, and a special begin token p0. In the

text word embedding, each word in the extended text in-

put w =
[

wq,wobj,wocr
]

is encoded as a feature vector,

where wq,wobj,wocr are the question text, detected ob-

ject labels, and detected scene text words. In the object and

scene text embedding, object and scene text regions are de-

tected and encoded by object detectors and OCR engines.

Taking the fused feature f =
[

fw, fobj, focr, fp
]

as in-

puts, TAP improves multi-modal fusion by performing text-

aware pre-training tasks. The proposed pre-training tasks

consist of two parts, focusing on fusing scene text vocr with

text words w and visual objects vobj, respectively.

Scene-text language pre-training tasks. To better fuse

the scene text vocr with the text words w, we design two

scene-text language pre-training tasks based on the masked

language modeling (MLM) and image-text (contrastive)

matching (ITM) tasks in VLP [15, 37, 12]. For MLM on the

extended text input w =
[

wq,wobj,wocr
]

, we randomly
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mask each text token in w with a probability of 15%. The

masked words wmask are replaced with a special MASK to-

ken 80% of the time, a random word 10%, and remains un-

changed 10%. The MLM task takes the fused feature at the

masked position fwmask as the input, and aims to recover the

masked word wmask with two fully-connected layers. For

ITM, w is polluted 50% of the time by replacing text sub-

sequence wq, wobj, or wocr with a randomly-selected one

from another image. The polluted text words w are thus

not paired with the visual regions vobj and vocr. The ITM

task takes the sequence feature f
p
0 as the input and aims to

predict if the sequence has been polluted or not.

We find that the extra scene text word input wocr is crit-

ical for learning the scene-text language aligned represen-

tation. As a comparison to the extended text input w, pre-

training with the original MLM and ITM [15, 37] on ques-

tion text wq leads to limited improvement over the non-pre-

training baseline. The failure is due to the limited number

of scene text-related words in the language input wq. In

this case, since many randomly masked words w
q
mask and

polluted sequences are not relevant to scene text, scene text

regions vocr are less important for solving the pre-training

tasks (MLM, ITM) and are thus often overlooked. wocr in

the extended text input w generates extra scene text refer-

ring in the language modality and thus makes TAP effective.

Scene-text visual pre-training tasks. Understanding the

spatial relationships between the visual object vobj and

scene text vocr benefits Text-VQA/Text-Caption [25, 55].

The extra feature input of bounding box coordinates helps

the spatial relationship learning [20, 17, 16], but hasn’t fully

solved the problem. Recent studies [25, 55] hard code the

coordinate features as the regions’ relationships in feature

fusion and obtain further improvement. In this study, we

explore spatial relationship learning by pre-training.

Specifically, we design a scene-text visual pre-training

task in TAP. The main idea is to predict the relative spa-

tial position between two randomly sampled visual regions.

Therefore, we refer to the task as “relative (spatial) position

prediction” (RPP). The input to the pre-training task is a

randomly sampled visual object feature f
obj
i and scene text

feature focrj , where i ∈ {1, · · · ,M} and j ∈ {1, · · · , N}.

The objective is to predict the relative spatial position be-

tween the two sampled regions v
obj
i and vocr

j . We start

with a single relationship of whether “scene text region

vocr
j is on object v

obj
i ,” and thus model RPP as a binary

classification problem. We then extend the task to a 12-class

relative position prediction problem with the classes defined

by Yao et al. [59], including on, cover, overlap, eight-way

relative orientation, and unrelated.

3.2. Pretraining corpus

TAP works well even without extra pre-training data. We

first experiment with “TAP without extra data,” where we

only use the downstream Text-VQA/Text-Caption dataset

for pre-training, i.e., the training set of the TextVQA [49],

ST-VQA [8], or TextCaps [46] datasets. These datasets [49,

8, 46] all contain less than 30K images and 150K image-text

pairs. We detail the pre-training and fine-tuning pipeline for

each downstream task in Section 4.2.

We then experiment with “TAP with large-scale data.”

We build a large-scale scene text-related image-caption

dataset named OCR-CC based on the Conceptual Caption

(CC) dataset [45], and use the dataset for pre-training.

Among the image-caption datasets [45, 29, 54, 41, 43], only

the CC dataset contains a reasonable portion of images with

meaningful scene text regions. Therefore, we run the Mi-

crosoft Azure OCR system2 on all images in the CC dataset

and filter out the images with no scene text, watermarks

only, and tiny scene text regions only. In the end, we obtain

1.367 million image-caption pairs with a mean and median

of 11.4 and 6 scene text detected per image. As a refer-

ence, the mean and median are 23.1 and 12 in the TextVQA

dataset [20], and 8.03 and 6 in the ST-VQA dataset [8]. We

adopt the same region feature extraction method used in the

TextVQA dataset [49] to provide object and scene text re-

gion embedding. By including scene text words wocr as

additional text inputs, OCR-CC provides scene text-related

image-caption pairs for TAP. We keep the caption text from

CC in OCR-CC and use it as the question text wq in pre-

training. We show the details of dataset collection, scene

text number distribution, and additional qualitative exam-

ples of OCR-CC in the supplementary material.

4. Experiments

We benchmark TAP for both the Text-VQA task on the

TextVQA [49] and ST-VQA [8] datasets, and the Text-

Caption task on the TextCaps dataset [46]. We use our pro-

posed OCR-CC dataset for large-scale pre-training.

4.1. Datasets

TextVQA. The TextVQA dataset [49] contains 28,408 im-

ages from the Open Images dataset [30]. We follow

the same training/validation/test split used in the previous

work [49] in our experiments. The methods are evaluated

by the soft-voting accuracy of 10 answers.

ST-VQA. The ST-VQA dataset [8] contains 21,892 images

from multiple sources including ICDAR 2013 [27], ICDAR

2015 [26], ImageNet [13], VizWiz [18], IIIT STR [39], Vi-

sual Genome [29], and COCO-Text [54]. The methods are

evaluated by both accuracy and Average Normalized Lev-

enshtein Similarity (ANLS) [8].

TextCaps. The TextCaps dataset [46] augments the 28,408

images in TextVQA [49] with 145,329 captions. The cap-

2Public Microsoft OCR API: https://docs.microsoft.com/en-us/azure/

cognitive-services/computer-vision/concept-recognizing-text
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tions are evaluated by the caption metrics (BLEU [42], ME-

TEOR [14], ROUGE L [35], SPICE [3], and CIDEr [53]).

OCR-CC. Our OCR-CC dataset contains 1.367 million

scene text-related image-caption pairs from the Conceptual

Captioning (CC) dataset [45]. More details of OCR-CC are

in the supplementary material.

4.2. Experiment settings

Network architecture. We conduct experiments based on

the M4C network architecture [20, 48, 47]. We extend text

input wq with object label wobj and scene text word wocr.

We keep all remaining settings the same as in the original

M4C [20], including the feature embedding, network archi-

tecture, training parameters, and layer initialization.

M4C’s text encoder is a three-layer trainable trans-

former [52] initialized from the first three layers of

BERTBASE [15]. A pre-trained Faster R-CNN [44] detects

objects and represents the detected region with its visual

and coordinate features. The final layer (fc7) of the detector

is fine-tuned. An offline OCR detector [10] detects scene

text regions and represents the region with its visual, co-

ordinates, FastText [9], and Pyramidal Histogram of Char-

acters (PHOC) [2] features. The fusion module in M4C

is a four-layer multi-modal transformer that has the same

hyper-parameters as BERTBASE. The fusion module is ini-

tialized from scratch. A multi-step decoding module then

takes fused features focr, fp as inputs, and word-by-word

predicts the final answer. The predicted answer word at

each decoding step T is selected either from a fixed frequent

word vocabulary or from the dynamic OCR tokens. The

word classification loss is applied to each decoding step.

Adapting to Text-VQA. By taking the fused feature f as

input, we pre-train the feature encoder and fusion module

with the pre-training tasks (MLM, ITM, RPP). MLM is only

computed on the sequences that have not been polluted by

ITM. The pre-trained model with the highest pre-training

task accuracy is used to initialize the feature encoder and fu-

sion module. In fine-tuning, the model step-by-step predicts

the answer with an extra decoding module, and is trained

with the answer classification loss in each step.

Adapting to Text-Caption. We keep the framework archi-

tecture the same for Text-Caption as for Text-VQA, except

increasing the maximum answer decoding length from 12
words [20] to 30 words [46]. wq is left blank in both pre-

training and fine-tuning. The input text sequence w consists

of wocr, wobj, and the blank wq. During fine-tuning, the

framework is trained with the same multi-step word classi-

fication loss as used in Text-VQA.

Compared methods. We compare TAP with other state of

the art [49, 17, 20, 25, 16, 36, 19, 55] and systematically

study the following baselines and variants of our method.

• TAP (Ours). We first experiment with “TAP without

extra pre-training data.” We use the same downstream

task dataset for both pre-training and fine-tuning, and

follow the same training parameters as used in M4C.

For the Text-VQA task, we pre-train the model for

24K iterations with the pre-training tasks (MLM, ITM,

RPP) and then fine-tune it with the answer loss for

another 24K iterations. The numbers of pre-training

and fine-tuning iterations are both 12K for the Text-

Caption task following M4C-Captioner [46].

• M4C†. “M4C†” is the non-TAP baseline. Based on

M4C, we include the detected object labels wobj and

scene text tokens wocr as the additional text input fol-

lowing “TAP.” We train the model for 48K iterations

with the answer loss to match TAP’s total iteration

number. Compared with “TAP,” the only difference

is that “M4C†” trains the first 24K iterations with the

answer loss, instead of the pre-training tasks.

• TAP†† (Ours). “TAP††” reports our best performance

achieved with extra pre-training data (TextVQA, ST-

VQA, TextCaps, OCR-CC) and other minor modifica-

tions. We pre-train “TAP††” for 480K iterations. Sec-

tion 4.4 details the benefits of each extra data source.

4.3. TextVQA/TextCaption results

TextVQA. Table 1 reports the accuracy on the TextVQA

dataset [49]. The top part of the table shows the results in

the constrained setting that only uses TextVQA for training

and Rosetta [10] for OCR detection. The bottom compares

our best performance with the state of the art [49, 17, 20,

25, 16, 36, 19, 55] in the unconstrained setting.

We list the adopted OCR detector in the “OCR system”

column. LoRRA [49] and M4C [20] adopted the Rosetta

OCR system [10]. SA-M4C [25] and SMA [16] experi-

ment with both Rosetta and other OCR systems (Google-

OCR, SBD-Trans OCR). In this study, we experiment with

Rosetta and the Microsoft Azure OCR system (Microsoft-

OCR). We use Microsoft-OCR to detect the single OCR

words appeared in the image, i.e., each detected scene text

region contains only a single word. The “Extra data” col-

umn shows the used training data other than the TextVQA

dataset. Previous methods [20, 25, 16] adopt the ST-VQA

dataset for joint training. Other than ST-VQA, TAP enables

the use of weak data with no ground-truth answer in pre-

training, e.g., TextCaps and OCR-CC. “TAP††” reports the

final performance with all extra datasets.

Three major observations can be made from Table 1:

1) “TAP” significantly outperforms the non-TAP baseline

“M4C†” with the identical training data and network archi-

tecture, in both the constrained setting (top part of Table 1)

and the unconstrained setting (bottom part). In the con-

strained setting, TAP improves the non-TAP baseline accu-

racy from 39.55% to 44.06%. In the unconstrained setting,

“TAP” with Microsoft-OCR obtain 5.4% and 5.3% absolute

accuracy improvement over the corresponding non-TAP
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Table 1. Text-VQA results on the TextVQA dataset [49]. The top part reports results in the constrained setting that only uses TextVQA

for training and Rosetta for OCR detection. The bottom part compares our best performance with other state-of-the-art methods in the

unconstrained setting. The methods “M4C†,” “TAP,” “TAP††” are detailed in Section 4.2.

Method OCR System Extra Data Val Acc. Test Acc.

LoRRA [49] Rosetta-ml ✗ 26.56 27.63

MM-GNN [17] Rosetta-ml ✗ 31.44 31.10

M4C [20] Rosetta-en ✗ 39.40 39.01

SMA [16] Rosetta-en ✗ 40.05 40.66

CRN [36] Rosetta-en ✗ 40.39 40.96

LaAP-Net [19] Rosetta-en ✗ 40.68 40.54

M4C† [20] Rosetta-en ✗ 39.55 -

TAP (Ours) Rosetta-en ✗ 44.06 -

M4C [20] Rosetta-en ST-VQA 40.55 40.46

LaAP-Net [19] Rosetta-en ST-VQA 41.02 40.54

SA-M4C [25] Google-OCR ST-VQA 45.4 44.6

SMA [16] SBD-Trans OCR ST-VQA - 45.51

M4C† [20] Microsoft-OCR ✗ 44.50 44.75

M4C† [20] Microsoft-OCR ST-VQA 45.22 -

TAP (Ours) Microsoft-OCR ✗ 49.91 49.71

TAP (Ours) Microsoft-OCR ST-VQA 50.57 50.71

TAP†† (Ours) Microsoft-OCR ST-VQA, TextCaps, OCR-CC 54.71 53.97

Table 2. Text-VQA results on the ST-VQA dataset [8].

Method Val Acc. Val ANLS Test ANLS

SAN+STR [8] - - 0.135

M4C [20] 38.05 0.472 0.462

SA-M4C [25] 42.23 0.512 0.504

SMA [16] - - 0.466

CRN [36] - - 0.483

LaAP-Net [19] 39.74 0.497 0.485

M4C† [20] 42.28 0.517 0.517

TAP (Ours) 45.29 0.551 0.543

TAP†† (Ours) 50.83 0.598 0.597

baselines “M4C†” and “M4C† +STVQA,” respectively. The

improvement achieved with the same network and training

data validates the effectiveness of our pre-training approach

for Text-VQA/Text-Caption. 2) “TAP” outperforms the pre-

vious state of the art [49, 17, 20, 16, 36, 19] by large mar-

gins, even without large-scale pre-training. 3) Large-scale

pre-training with the OCR-CC dataset further improves the

accuracy. “TAP††” adopts OCR-CC in pre-training and im-

proves the accuracy from 49.91% to 54.71%. The improve-

ment shows that TAP benefits from extra training data, and

indicates the effectiveness of our proposed OCR-CC.

ST-VQA. Table 2 shows the Text-VQA accuracy on the ST-

VQA dataset [8] in the unconstrained setting. “TAP” uses

the Microsoft-OCR and is pre-trained and fine-tuned on the

training set of ST-VQA. “TAP††” uses TextVQA, ST-VQA,

TextCaps, and OCR-CC in pre-training. Similar conclu-

sions as in Table 1 can be drawn from Table 2. First, “TAP”

outperforms the state of the art [20, 25, 16, 36, 19] by large

margins, and significantly improves the non-TAP baseline

“M4C†.” Second, large-scale pre-training further improves

the accuracy by +5.5% as shown in bottom two rows.

TextCaps. Table 3 shows the CIDEr score on the TextCaps

dataset [46]. We report only the CIDEr score in the table

Table 3. Text-Caption CIDEr scores on the TextCaps dataset [46].

The full result table can be found in the supplementary material.

Method Val CIDEr Test CIDEr

BUTD [4] 41.9 33.8

AoANet [22] 42.7 34.6

M4C [46] 89.6 81.0

MMA-SR [55] 98.0 88.0

CNMT [57] 101.7 93.0

M4C† [46] 99.89 93.36

TAP (Ours) 105.05 99.49

TAP†† (Ours) 109.16 103.22

and present the full table with other metrics in the supple-

mentary material. We draw similar observations that with

the same training data, “TAP” improves the CIDEr score

of “M4C†” from 99.89 to 105.05. Large-scale pre-training

“TAP††” further improves the CIDEr score to 109.16.

4.4. Ablation studies

Pre-training tasks. We experiment with different pre-

training tasks (MLM, ITM, RPP) as well as their variants.

We conduct ablation studies on TextVQA with Microsoft-

OCR and no extra data. We examine the effectiveness of

scene-text language pre-training (MLM, ITM) and scene-

text visual pre-training (RPP). We verify the importance of

the extra scene-text token input wocr in MLM and ITM.

As shown in Table 4, the scene-text language pre-

training in row (d) and scene-text visual pre-training in row

(e) improve the non-TAP baseline (row (b)) from 44.50% to

49.01% and 46.42%, respectively. “TAP” performs all pre-

training tasks and further improves the accuracy to 49.91%.

The extra scene text token input wocr is essential for

TAP. Rows (a-d) in Table 4 show that neither extra wocr

inputs (c.f . rows (a, b)) nor pre-training (c.f . rows (b, c))
alone lead to an improvement from the Non-TAP base-
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Table 4. Ablation studies on different pre-training tasks (MLM,

ITM, RPP), and the variant of excluding the extra scene-text token

input wocr in MLM and ITM. We highlight “TAP” by underline.

+MLM,ITM +RPP Val Acc.

(a) Non-TAP w/o wocr - - 44.48
(b) Non-TAP - - 44.50
(c) + MLM,ITM w/o wocr X - 44.63
(d) + MLM,ITM X - 49.01
(e) + RPP - X 46.42
(f) TAP X X 49.91

Table 5. Ablation studies on pre-training with extra data. We use

the listed data only in pre-training and then fine-tune the model

with the TextVQA dataset only. (3, 4) and (0, 12) indicate the

layer numbers of the text and multi-modal transformers, respec-

tively. We highlight “TAP” and “TAP††” by underline and bold.

TextVQA ST-VQA TextCaps OCR-CC
Val Acc.

(3, 4) (0, 12)

(a) X - - - 49.91 48.78

(b) X X - - 50.57 49.64

(c) X X X - 51.86 50.13

(d) - - - X 52.10 54.03

(e) X X X X 52.90 54.71

line (row (b)). In contrast, TAP with the extra wocr input

(row (d)) boosts the accuracy to 49.01%. The bottom rows

(e, f) show the effectiveness of RPP. RPP with a single spa-

tial relationship “on” improves the accuracy from 44.50%
to 46.42% (c.f . rows (b, e)). Combining RPP with MLM

and ITM improves the accuracy from 49.01% to 49.91%
(c.f . rows (d, f)). Extending spatial relationship classes to

12 [59] leads to an improvement from 49.91% to 50.17%.

Pre-training with extra data Table 5 breaks down the ben-

efits of adopting different sources of extra data. We conduct

experiments on the TextVQA dataset with Microsoft-OCR.

TAP enables the use of weak data with no answer annota-

tions in the pre-training stage such like TextCaps and OCR-

CC, in addition to the Text-VQA datasets. Compared with

“TAP” with no extra data, pre-training with ST-VQA and

TextCaps improves the accuracy from 49.91% to 50.57%
and 51.86% (c.f ., rows (a, b), rows (b, c)). The large-scale

pre-training with OCR-CC (row (d)) achieves the accuracy

of 52.10%. Including all data during pre-training (row (e))
further improves the accuracy to 52.90%.

Furthermore, we find that the extra data benefits the use

of large models. The original architecture consists of a 3-

layer text-only transformer and a 4-layer multi-modal trans-

former. We experiment with a 12-layer multi-modal trans-

former with the same structure as BERTBASE [15]. We

initialize the model from BERTBASE and remove the sepa-

rate text transformer. We represent the two architectures as

(3, 4) and (0, 12) in Table 5, where the numbers indicate the

text and multi-modal transformer layer numbers. With ex-

tra transformer layers, the accuracy without extra data drops

from 49.91% to 48.78% (row (a)), while the accuracy with

extra data increases from 52.90% to 54.71% (row (e)).

Table 6. The coreference scores with and without TAP. Num-

bers represent the attention score between two semantically corre-

sponded tokens, averaged across all such token pairs in TextVQA.

Higher coreference scores imply a better aligned representation.

Coref Type W/O TAP With TAP

Text Word → Scene Text 0.0477 0.3514

Scene Text → Text Word 0.0473 0.5206

Visual Object → Scene Text 0.0045 0.0130

Scene Text → Visual Object 0.0337 0.0680

4.5. How does TAP help?

In this section, we analyze how TAP helps Text-

VQA/Text-Caption. We empirically show that with TAP,

certain attention heads in the multi-modal transformer

ground the scene text vocr to the semantically corresponded

text word w or visual object vobj. By learning such latent

alignments, TAP improves the aligned representation learn-

ing and thus helps Text-VQA/Text-Caption.

Recent VLP analyses [11, 33] show that VLP [51, 12, 32]

learns the latent alignments between the semantically cor-

responded region-word or region-region pairs. Specifically,

certain attention heads in the transformer generate higher

attention scores between such corresponded pairs. The at-

tention scores between corresponded pairs are also referred

to as coreference scores [11]. Similarly, we analyze the

change in the coreference score of scene text-related pairs

to better understand TAP.

There exist (4 layers×12 heads) = 48 attention scores

between any two positions in our multi-modal transformer.

Following VALUE [11], we define the coreference score as

the maximum attention score among all 48 heads between

two semantically corresponded positions. A text word and a

scene text region are corresponded if they refer to the same

scene text token, e.g., the text word and scene text region

“coors” in Figure 3. We collect all corresponded pairs be-

tween the extended text input w and scene text regions vocr

in the TextVQA dataset, and report the averaged score over

all pairs. A scene text vocr and a visual object vobj are

corresponded if they share the spatial relationship “on.”

As shown in Table 6, we analyze TAP by comparing the

change in the coreference score before and after TAP, i.e.,

“M4C†” and “TAP.” The first two rows show that TAP im-

proves the scene-text language coreference scores by seven

times. The bottom two rows show that TAP increases the

scene-text visual coreference scores by two times. These

increases validate that TAP successfully learns the latent

alignment and thus improves joint representation learning.

Furthermore, Figure 3 visualizes the attention score be-

tween a text word and all visual regions. Qualitatively, we

observe a higher coreference score with TAP (bottom row)

than the non-TAP baseline (top row). For example, in Fig-

ure 3 (a), TAP grounds the text word “must” and “survive”

to the corresponded scene text regions.
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co 0.8258325 117
##ors 0.94547707 117

co 0.13192154
##ors 0.05317599

(a) who must survive? (b) what is the company name 
to the left of the coors logo?M4C†:    survive

GT:        yaam M4C†:    coors light
GT:        safeway

Ours:     yaam
GT:        yaam

Ours:     safeway
GT:        safeway

must survive

must survive coors

coors

must 0.5498331 104
survive 0.38139015 105

must 0.061800703 
survive 0.20708187

(a) who must 
survive?

(b) what is the 
company name to the 
left of the coors logo?

w/o TAP:    survive
w/   TAP:    yaam
GT:             yaam

w/o TAP:    coors light
w/   TAP:    safeway
GT:             safeway

0.88

0.38

0.21

0.09

0.55

0.06

must survive

must survive coors

coorsw/o TAP

w/ TAP

Figure 3. Visualization of region attention scores with respect to each word in the question text w, extracted from the multi-modal fu-

sion transformers with (bottom row) and without (top row) TAP. The score by a region indicates its attention strength. TAP generates

interpretable attentions on scene text-related question words like “must” and “survive.”

(a) who must survive? (b) what football league is the jacket from 
on the man pointing?

(c) what is the company name to the left 
of the coors logo?

(d) who edited the book?

M4C†:            survive
Ours:             yaam
GT:                yaam

https://c3.staticflickr.com/5/4051/4501484098
_1282198a30_z.jpg

M4C†:            little league
Ours:             ryman
GT:                ryman

M4C†:            coors light
Ours:             safeway
GT:                safeway

M4C†: jeff mieville
Ours: jeff vandermeer & mark roberts
GT:    jeff vandermeer & mark roberts

(e) what number is on 
the bike on the right?

(f) what number is on the 
middle bike?

(g) what is the advertisement 
in the white board?

(h) what is the number 
for southern homes?

M4C†:            30
Ours:             317
GT:                317

M4C†:            44
Ours:             30
GT:                30

M4C†:            fsl
Ours:             southern homes
GT:                southern homes

M4C†:           22
Ours:            648-home
GT:               648-home

(a) what does the picture 
say the other ride is?

(b) what football league 
is the jacket from on the 
man pointing?

(c) hat is the company 
name to the left of the 
coors logo?

(d) who edited the book?

Ours-M4C: my 
other ride
Ours: your mom
GT: your mom

Ours-M4C: little 
league
Ours: ryman
GT: ryman

Ours-M4C: coors 
light
Ours: safeway
GT: safeway

Ours-M4C: jeff mieville
Ours: jeff vandermeer 
& mark roberts
GT: jeff vandermeer & 
mark roberts

(e) who must survive? (f) what kind of bar is 
being advertised?

(g) what is the 
advertisement in the 
white board?

(h) what is the number 
for southern homes?

Ours-M4C: survive
Ours: yaam
GT: yaam

Ours-M4C: 
unanswerable
Ours: winter bar
GT: winter

Ours-M4C: FSL
Ours: southern 
homes
GT: southern 
homes

Ours-M4C: 22
Ours: 648-home
GT: 648-home

(a) what does the picture say the other 
ride is?

Ours-M4C:    my other ride
Ours:             your mom
GT:                your mom

(e) who must survive?

(f) what kind of bar is 
being advertised?

Ours-M4C:    survive
Ours:             yaam
GT:                yaam

Ours-M4C:    unanswerable
Ours:             winter bar
GT:                winter

Figure 4. Failure cases of the non-TAP baseline “M4C†” that can be corrected by “TAP.”

4.6. Qualitative results

Figure 4 shows representative failure cases of the non-

TAP baseline “M4C†” that can be corrected by “TAP.”

These cases show that TAP improves Text-VQA/Text-

Caption by learning better aligned representations.

• TAP shows a good performance on challenging ques-

tions that require paraphrasing the scene text sen-

tences. For example, in Figure 4 (a), the model an-

swers “who must survive” by the scene text “yaam

must survive” in the image. The attention in Figure 3

further visualizes the latent region-word alignments.

• TAP also performs better on questions that refer to a

scene text via an intermediate object. For example, in

Figure 4 (b), the model grounds the object region “the

jacket on the man pointing” and generates the correct

answer “ryman” with the scene text “ryman football

league” on the man’s jacket.

• Figure 4 (c) shows an example that TAP correctly un-

derstands the relative spatial relationship in question.

• Furthermore, TAP helps the model read a large piece of

text. For example, in Figure 4 (d), the model correctly

answers the question “who edited the book” by finding

the editors’ names “jeff vandermeer & mark roberts.”

We note that each word is detected as a separate scene

text region, e.g., “jeff,” “&,” etc., which makes the an-

swer sequence prediction non-trivia.

The bottom row of Figure 4 shows examples of multiple

questions on the same image. For example, (e,f) (g,h) show

that the model selects correct scene text regions as the an-

swer based on the input questions. More qualitative results

are included in the supplementary material.

5. Conclusion

We have presented Text-Aware Pre-training (TAP) that

explicitly incorporates scene text in pre-training and effec-

tively learns a better aligned multi-modality representation

for Text-VQA/Text-Caption. With the identical framework

and training data, TAP boosts the non-TAP baselines by

+5.4% in absolute accuracy on the TextVQA challenge.

Furthermore, we build a large-scale dataset named OCR-

CC and further improve the TAP performance. TAP outper-

forms the state-of-the-art methods by large margins. Analy-

ses show that TAP helps the aligned representation learning

among text word, visual object, and scene text.
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