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bility of a segment belonging to an action, and a classifica-

tion module is used to generate the class-specific Class Ac-

tivation Sequence (CAS). Then, action detection is achieved

by using the class-agnostic attention weight and the class-

specific class activation sequence.

Despite the success of these attention based methods,

without the ground-truth supervision on attention weight

learning, these methods cannot separate action and non-

action segments well, which hinders their detection perfor-

mance. To learn more robust attention weights for action

and non-action segments separation, it naturally comes in-

to mind that is it possible to provide pseudo labels to guide

attention weight learning? To achieve this goal, two issues

need to be considered. The first issue is how to generate

segment-level pseudo labels. It should be both efficient and

effective, so as to promote the model performance with little

sacrifice of training time. The second issue is how to handle

label noise effects in the pseudo labels, since it is inevitable

that the generated pseudo labels may be noisy.

Motivated by the above discussions, we propose an Un-

certainty Guided Collaboratively Training (UGCT) strategy

for weakly supervised temporal action detection, and the

framework is shown in Figure 2. To generate reliable pseu-

do labels, we design an online pseudo label generation mod-

ule to generate pseudo labels with teacher models, which is

inspired by the teacher-student approaches [43]. In specific,

we use an exponential moving average strategy to ensemble

the network weight in each training iteration to update the

teacher model. In this way, the teacher model can take the

historical information into consideration and provide more

reliable pseudo labels. Instead of training RGB and FLOW

streams independently, we propose to train them collabora-

tively. The teacher model in the RGB stream provides pseu-

do labels for the FLOW stream and the teacher model in the

FLOW stream provides pseudo labels for the RGB stream.

In this way, the teacher models serve as a bridge to train RG-

B and FLOW models collaboratively, which enables them

to enhance and promote each other. To mitigate the noise

in the generated pseudo labels, we propose an uncertain-

ty aware learning module to reduce the affection of noisy

labels. In specific, we add an uncertainty prediction mod-

ule to predict the uncertainty about the pseudo label. The

uncertainty prediction module is only used during training,

so it does not bring any extra computations during testing.

Based on the predicted uncertainty, a noise-robust pseudo

label loss function is developed, in which the predicted un-

certainty serves as a loss decay term. Segments with noisy

pseudo labels tend to be assigned large uncertainties, so that

the negative impact of noisy labels can be reduced.

In summary, the contributions of this paper are as fol-

lows: (1) We propose a novel uncertainty guided collab-

oratively training (UGCT) strategy for weakly supervised

temporal action detection, which can significantly improve

the performance of attention based methods without intro-

ducing any additional computational cost during testing. (2)

We conduct comprehensive experiments on two benchmark

datasets with three attention based methods to evaluate the

effectiveness of the proposed training strategy, and the re-

sults demonstrate that the proposed UGCT can consistently

improve the performance of these methods. With the pro-

posed training strategy, we set a new state-of-the-art perfor-

mance on both THUMOS14 and ActivityNet datasets.

2. Related Work

In this section, we briefly overview methods that are re-

lated to fully supervised and weakly supervised temporal

action detection.

Fully Supervised Action Detection. Fully supervised

action detection methods can be divided into two direction-

s: two-stage methods [7, 39, 46, 55] and one-stage meth-

ods [3, 24, 27]. For two-stage methods, candidate action

proposals are generated first and then each proposal is fed

into a classifier. Early work adopts the sliding window or

uniform sampling [34, 42, 51] to generate a large number

of candidate action proposals, which leads to huge com-

putation cost in later processing. And later work gener-

ates candidate proposals with content-dependent algorithm-

s [7, 55, 4], relieving the computation burden to an extent.

For example, SST [4] utilizes a recurrent GRU-based mod-

el to generate candidate proposals in one pass. And several

one-stage methods have been proposed recently [3, 27, 49],

where action proposals and classification scores are gener-

ated simultaneously. For example, SS-TAD [3] adopts the

Recurrent Neural Network to jointly predict action cate-

gories and temporal boundaries. Different from two-stage

methods, one-stage methods have higher efficiency while

lower accuracy. However, fully supervised methods rely on

substantial temporal action boundary annotations, which is

time-consuming and expensive.

Weakly Supervised Action Detection. To address the

limitation of fully supervised action detection, weakly su-

pervised action detection has been drawing increasing re-

search attention. In [44], it is the first method by using

video-level category labels as supervision for action de-

tection via a classification module and a selection module.

And later work can be mainly grouped into three categories.

The first group of works is attention based methods, which

aims at highlighting foreground segments and suppressing

background segments. In [31], a class-agnostic attention

mechanism together with a sparsity loss is used to identi-

fy key segments associated with actions. And Nguyen et

al. [32] extend this framework by introducing several back-

ground modeling losses to encourage the class-agnostic at-

tention weight to be consistent with the learned classifier.

Later, several other methods have been proposed by im-

posing different constrains on the attention weight, such
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as DGAM [36], Bas-Net [21], STAR [47] and TSCN [53].

These methods achieve superior performances in this area,

which indicates that the foreground-background separation

is of vital importance. The second group of works aim at

learning more discriminative features, and the basic idea

of these methods is to encourage more compact intra-class

feature representations by imposing different loss function-

s. In WTALC [35], a Co-Activity Loss is used to encourage

class-specific features from two videos with the same label

to be closer. And a Center Loss is proposed in 3C-Net [30]

for the same goal. Inspired by above two works, more so-

phisticated losses are proposed in later work [13, 29, 10].

Although attention based methods and learning discrim-

inative feature based methods have achieved remarkable

progress, a common issue for these methods is that they

tend to focus on the most discriminative action segments but

ignore trivial action segments, which results in incomplete

action localization. To mitigate this issue, the third group

of works resort to the erasing mechanism to highlight less

discriminative segments. For example, Hide-and-Seek [40]

proposes to randomly erase input segments during training,

which can force the model to discover less discriminative

segments. And more sophisticated erasing mechanisms are

used in later work such as Zhong et al. [56] and ASSG [54].

In this paper, we focus on the first group of works and de-

velop an uncertainty guided collaborative training strategy,

which can help to learn more robust attention weights.

3. Our Proposed Approach

In this section, we introduce some basic notations first

in Section 3.1. In Section 3.2, we review the basic frame-

work of attention based methods and introduce three meth-

ods based on which we conduct our experiments, includ-

ing one pioneer work (STPN [31]) and two recent works

(WSAL-BM [32], TSCN [53]). We then introduce the pro-

posed training strategy in Section 3.3, and discuss the dif-

ferences with existing work in Section 3.4.

3.1. Notations and Preliminaries

Given an untrimmed video V , we first divide it in-

to non-overlapping 16-frame segments V = {vi ∈
R16×H×W×3}Ni=1 as in previous methods [35, 38, 25, 31],

where N denotes the number of segments. Each segment vi
is then fed into a pre-trained feature extraction network (for

example, I3D [6]) to generate a d dimension feature vector

xi, and feature vectors of N segments are stacked togeth-

er to form a feature sequence X = [x1, x2, ..., xN ]⊤ as the

video representation. During training, each video is associ-

ated with a ground truth label Y = [y1, y2, ..., yC ], where

C denotes the number of action categories, yi = 1 indicates

that the i-th action happens in the current video and 0 oth-

erwise. If there may be multiple different action categories

in one video, Y is normalized with L1 normalization [32].

3.2. Review of Attention Based Methods

A typical framework for attention based methods is

shown in Figure 2 (a). Since models in the RGB and FLOW

streams are trained independently, we introduce them in a

unified perspective in this section. Given the extracted fea-

ture sequence X, the first step is to feed X into an attention

module to get the attention weight [λ1, λ2, ..., λN ] ∈ RN .

Then the attention weight is used to aggregate segment-

level features into a video-level feature as follows,

x =
1

N

N∑

i=1

λi ∗ xi. (1)

The video-level feature is further fed into the classifier to

get the video-level prediction Ỹ = [ỹ1, ỹ2, ..., ỹC ], and the

classification loss is calculated as

Lcls = −

C∑

i=1

yi log ỹi. (2)

Besides from the classification loss, attention based

methods usually have another attention loss Latt to make

the attention weight focus on action-related segments. In

this work, we experiment with three attention-based meth-

ods and their attention losses are introduced as follows. For

STPN [31], a sparsity constrain is imposed on the attention

weight to focus on action-related segments as

Latt =
1

N

N∑

i=1

λi. (3)

In WSAL-BM [32], a background class is added in the clas-

sifier and the background feature is generated as

xbg =
1

N

N∑

i=1

(1− λi) ∗ xi. (4)

The background feature is fed into the classifier and the at-

tention loss is computed as the cross-entropy loss between

the prediction and a background label 1. In TSCN [53], an

attention normalization loss is proposed to encourage the

attention weight to act like a binary selection as

Latt =
1

l
min

Λ ∈ {λi}
|Λ| = l

∑

λ∈Λ

λ−
1

l
max

Λ ∈ {λi}
|Λ| = l

∑

λ∈Λ

λ, (5)

where l is set to be N/8.

We use {R,F} as the modality indicator for RGB and

FLOW streams respectively, and the RGB and FLOW mod-

els are trained with the weighted sum of the classification

loss and the attention loss as

L∗
base = L∗

cls + βL∗
att, ∀∗ ∈ {R,F}. (6)

Following the practice of the original papers [31, 53, 32],

the weight β for the attention loss is set to be 0.1.

1There are another two losses in the original paper, but we find that they

cannot further promote the performance in our re-implementation.
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is multiplied with e−α < 1, thus the affection of λ̃ on the

model training will be decreased. This idea is wildly ac-

knowledged in the area of learning from noisy labels, and

the losses of samples with noisy labels are larger than those

of clean samples because clean samples quickly get fit at

that beginning [12, 15]. However, directly using the analyt-

ical solution ignores the input, which treats segments with

noisy labels and hard segments with correct labels in the

same way. But in our case, pseudo labels are generated by

the teacher model in another modality, label noise is not

random and usually depends on the content of input. Thus

instead of using the analytical solution, we use an uncer-

tainty prediction module to achieve our goal, which takes

the input feature into consideration and may discover the

common characteristics of segments that may have noisy

labels. With the noise-robust loss, the pseudo label losses

for RGB and FLOW streams are calculated as

LR
ps =

1

N

N∑

i=1

e−αR

i D(λR
i ,G(Λ

FT )i) + ταR
i , (10)

LF
ps =

1

N

N∑

i=1

e−αF

i D(λF
i ,G(Λ

RT )i) + ταF
i . (11)

There are two important factors in the uncertainty aware

learning module: (1) The choice of τ . As shown in Equa-

tion (9), τ can be regarded as a soft threshold for consider-

ing pseudo labels to be noisy, and it should be set according

to the choice of distance measure function D. In this paper,

we adopt the mean square error and set it to be 0.1. (2) The

weight initialization of the uncertainty prediction module.

In the beginning, we do not know which segment has noisy

label, and all segments should be assigned low uncertain-

ties. To achieve this goal, we initialize the weights of the

uncertainty prediction module with a random Gaussian ini-

tialization, and the standard deviation and mean are set to

0.0001 and 0 respectively.

By combining the basic loss and the pseudo label loss,

the models in RGB and FLOW streams are collaboratively

trained with

L∗ = L∗
base + w(t)L∗

ps, ∀∗ ∈ {R,F}. (12)

And w(t) is set as a time-varying parameter as in Equa-

tion (13), and it is gradually increased to 1 during the net-

work training, since the pseudo label supervision is less re-

liable in the early training stage.

w(t) =

{
e−5∗(1−2t/MaxIter), if t <= MaxIter/2

1, otherwise.

(13)

For model updating, in the t-th iteration, θR and θF are

updated with the loss backward propagation

θ∗t = θ∗t−1 − η
∂L∗

∂θ∗t−1

, ∀∗ ∈ {R,F}, (14)

where η is the learning rate. For the teacher models, θRT

and θFT are updated with exponential moving average as

θ∗Tt = γθ∗Tt−1 + (1− γ)θ∗t , ∀∗ ∈ {R,F}, (15)

where γ is a hyper-parameter and is set to be 0.999.

3.4. Discussions

Pseudo labels are also used in TSCN [53] and EM-

MIL [28] for attention weight learning, and the differences

are discussed as follows: (1) TSCN is an off-line method.

The RGB and FLOW models are trained first, and the

trained models are then used to generate pseudo labels on

attention weights. Based on the pseudo labels, they train the

RGB and FLOW models from start again. After retraining,

pseudo labels are generated again. This procedure repeats

until no performance gain is observed. While in our UGCT,

the pseudo labels are used as the bridge to train RGB and

FLOW models collaboratively. Besides, the pseudo labels

are generated in an online manner by teacher models, which

enables the models to be trained efficiently in one pass. (2)

In EM-MIL, the class-agnostic attention weight and class

activation sequence provide pseudo labels for each other in

an iterative way, which is significantly different from our

method. Besides, both two methods ignore the noise in the

pseudo labels, while we propose an uncertainty aware learn-

ing module to deal with this issue.

4. Experiment
4.1. Datasets and Evaluation Metrics

Datasets. We evaluate our method on two benchmark

datasets including THUMOS14 [14] and ActivityNet [5].

Here, ActivityNet consists of ActivityNet1.2 and Activi-

tyNet1.3. In THUMOS14 dataset, there are 200 validation

videos and 213 test videos that are annotated with temporal

action boundaries belonging to 20 categories. And there are

15 action clips per video in average on this dataset, which

makes it very challenging. Follow the protocol in previous

work [31, 44, 47, 35, 30, 56, 25, 38], the validation set is

used for training and the test set is used for evaluation in

this work. ActivityNet1.2 dataset contains 4819 training

videos, 2383 validation videos and 2480 testing videos be-

longing to 100 action categories. And ActivityNet1.3 con-

sists of 10024 training videos, 4926 validation videos and

5044 testing videos belonging to 200 action categories. S-

ince the annotations for the test set are not released, we train

our model on the training set and evaluate it on the valida-

tion set as in [31, 44, 47, 35, 30, 56, 25, 38].

4.2. Implementation Details

In this work, we use the I3D network [6] for feature ex-

traction, and the output feature dimension d is 1024. And

TV-L1 optical flow [52] is used to generate optical frames

for the FLOW stream. To verify the effectiveness of our

training strategy, we re-implement three attention based

methods in the same experiment setting. The model is

trained with the mini-batch size of 32 using the Adam [19]
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Table 1. Detection performance comparison with state-of-the-art methods on the THUMOS14 test set. Note that weak+ represents methods

that utilize external supervision information besides from video labels, and (ours) represents our re-implementation.

Supervision Method Feature
mAP@IoU

Fully

0.1 0.2 0.3 0.4 0.5 0.6 0.7 Average(0.1:0.5)

S-CNN [39], CVPR2016 - 47.7 43.5 36.3 28.7 19.0 - - 35.0

CDC [37], CVPR2017 - - - 40.1 29.4 23.3 13.1 7.9 -

R-C3D [46], ICCV2017 - 54.5 51.5 44.8 35.6 28.9 - - 43.1

SSN [55], ICCV2017 - 66.0 59.4 51.9 41.0 29.8 - - 49.6

TAL-Net [7], CVPR2018 - 59.8 57.1 53.2 48.5 42.8 33.8 20.8 52.3

GTAN [27], CVPR2019 - 69.1 63.7 57.8 47.2 38.8 - - 55.3

weak+ STAR [47], AAAI2019 I3D 68.8 60.0 48.7 34.7 23.0 - - 47.0

3C-Net [30], ICCV2019 I3D 59.1 53.5 44.2 34.1 26.6 - 8.1 43.5

weak

UntrimmedNet [44], CVPR2017 - 44.4 37.7 28.2 21.1 13.7 - - 29.0

Hide-and-Seek [40], ICCV2017 - 36.4 27.8 19.5 12.7 6.8 - - 20.6

Zhong et al. [56], MM2018 - 45.8 39.0 31.1 22.5 15.9 - - 30.9

AutoLoc [38], ECCV2018 UNT - - 35.8 29.0 21.2 13.4 5.8 -

Clean-Net [26], ICCV2019 UNT - - 37.0 30.9 23.9 13.9 7.1 -

STPN [31], CVPR2018 I3D 52.0 44.7 35.5 25.8 16.9 9.9 4.3 35.0

WTALC [35], ECCV2018 I3D 55.2 49.6 40.1 31.1 22.8 - 7.6 39.8

CMCS [25], CVPR2019 I3D 57.4 50.8 41.2 32.1 23.1 15.0 7.0 40.9

ASSG [54], MM2019 I3D 55.6 49.5 41.1 31.5 20.9 13.7 5.9 39.7

TSM [50], ICCV2019 I3D - - 39.5 31.9 24.5 13.8 7.1 -

WSAL-BM [32], ICCV2019 I3D 60.4 56.0 46.6 37.5 26.8 19.6 9.0 45.5

DGAM [36], CVPR2020 I3D 60.0 54.2 46.8 38.2 28.8 19.8 11.4 45.6

TCAM [10], CVPR2020 I3D - - 46.9 38.9 30.1 19.8 10.4 -

Bas-Net [21], AAAI2020 I3D 58.2 52.3 44.6 36.0 27.0 18.6 10.4 43.6

RPN [13], AAAI2020 I3D 62.3 57.0 48.2 37.2 27.9 16.7 8.1 46.5

A2CL-PT [29], ECCV2020 I3D 61.2 56.1 48.1 39.0 30.1 19.2 10.6 46.9

EM-MIL [28], ECCV2020 I3D 59.1 52.7 45.5 36.8 30.5 22.7 16.4 44.9

TSCN [53], ECCV2020 I3D 63.4 57.6 47.8 37.7 28.7 19.4 10.2 47.0

STPN [31] (Ours) I3D 59.6 54.4 45.6 34.8 21.8 11.7 4.1 43.2

STPN [31] with UGCT I3D 67.0 61.7 55.0 44.1 32.4 19.6 8.9 52.2

WSAL-BM [32] (Ours) I3D 65.8 59.4 51.1 40.5 30.3 19.1 8.7 49.4

WSAL-BM [32] with UGCT I3D 69.2 62.9 55.5 46.5 35.9 23.8 11.4 54.0

TSCN [53] (Ours) I3D 65.6 60.0 51.0 39.5 29.0 17.3 7.9 49.0

TSCN [53] with UGCT I3D 67.5 62.1 55.3 45.2 33.3 20.7 9.5 52.7

optimizer, the learning rate is set to be 10−4, and the number

of iterations is set to be 6K for THUMOS14 and 30K for

ActivityNet. It is worth noting that the performance of our

re-implementation is much better than the original papers

except for TSCN on ActivityNet dataset 2, and the results

are listed in Table 1, Table 2 and Table3.

4.3. Comparison with State-of-the-art Methods

Results on THUMOS14 dataset. In Table 1, we com-

pare our method with state-of-the-art weakly supervised

methods and several fully supervised methods on THU-

MOS14 dataset. By combining three important tricks used

in previous methods (random dropout [25], all segments in

one video are used during training [32], context informa-

tion aggregation [10]), our re-implemented WSAL-BM [32]

and TSCN [53] have already achieved a comparable per-

formance with state-of-the-art weakly supervised methods.

When further applying the proposed UGCT on these two

methods, the performances of both methods are significant-

ly improved (4.6% and 3.7% on average mAP). Without

bells and whistles, WSAL-BM [32] with UGCT sets a new

state-of-the-art performance, surpassing the previous best

2The performance of the original paper is achieved by off-line pseudo

label supervision, which is not included in our re-implementation.

method by 7% on average mAP. And on STPN, we have the

most impressive result. Although our re-implemented result

already outperforms the original paper with a large margin,

e.g., 43.2% vs 35.0% on average mAP, it is still far behind

state-of-the-art performance. However, with the proposed

training strategy, the average mAP is boosted to 52.2% with

9.0% performance gain, which surpasses the previous best

performance (TSCN [53] 47.0%) by 5.2%. When compared

with fully supervised methods, although the performance

gap in high IoU thresholds is still large, we have a compet-

itive performance in low IoU thresholds.

Results on ActivityNet dataset. Different from THU-

MOS14, following the standard protocol in ActivityNet [5],

we report the mAP score at IoU=0.5, 0.75, 0.95 and the

average mAP for IoU=0.5:0.05:0.95. Results on Activ-

ityNet1.2 and ActivityNet1.3 datasets are shown in Ta-

ble 2 and Table 3. On ActivityNet1.2 dataset, the pro-

posed UGCT strategy can improve STPN [31] by 2.6%,

WSAL-BM [32] by 2.1% and TSCN [53] by 7.4% in terms

of average mAP. And without bells and whistles, STPN

with UGCT outperforms the previous best methods by 1.2%

and 1.3% in average mAP on ActivityNet1.2 and Activi-

tyNet1.3 respectively. It is worth noting that among these
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Table 2. Detection performance comparison with state-of-the-art

methods on the ActivityNet1.2 validation set, where (Ours) repre-

sents our re-implementation.

Methods
mAP@IoU

0.5 0.75 0.95 Average

UntrimmedNet [44] 7.4 3.9 1.2 3.6

WTALC [35] 37.0 14.6 - 18.0

AutoLoc [38] 27.3 17.5 6.8 16.0

Zhong et al. [56] 27.3 14.7 2.9 15.6

CMCS [25] 36.8 22.0 5.6 22.4

TSM [50] 28.3 17.0 3.5 -

Clean-Net [26] 37.1 20.3 5.0 21.6

DGAM [36] 41.0 23.5 5.3 24.4

TCAM [10] 40.0 25.0 4.6 24.6

Bas-Net [21] 38.5 24.2 5.6 24.3

RPN [13] 37.6 23.9 5.4 23.3

TSCN [53] 37.6 23.7 5.7 23.6

EM-MIL [28] 37.4 23.1 2.0 20.3

STPN (Ours) 39.6 22.5 4.3 23.2

STPN with UGCT 41.8 25.3 5.9 25.8

WSAL-BM (Ours) 38.5 21.5 4.4 22.6

WSAL-BM with UGCT 40.9 24.3 5.4 24.7

TSCN (Ours) 30.0 15.9 3.4 16.9

TSCN with UGCT 40.0 23.6 5.6 24.3

three methods, STPN has the worst performance on THU-

MOS14 dataset but the best performance on ActivityNet

dataset. This result is not beyond expectation since THU-

MOS14 and ActivityNet datasets have different character-

istics. Each video in THUMOS14 dataset contains multiple

action clips with short duration and small interval among

adjacent action clips, and it is of vital importance to recog-

nize the background among clips. While each video in Ac-

tivityNet dataset usually contains only one action clip with

a long duration, and it is important to detect the long action

clip as a whole. Due to different designs in the attention

loss, we find that STPN tends to recognize background as

foreground, so adjacent actions clips in THUMOS14 tend

to be recognized as one action clip. While both TSCN and

WSAL-BM tend to recognize foreground as background, a

long action clip in ActivityNet dataset is usually cut into

several small clips. As a result, STPN is more suitable for

ActivityNet dataset.

4.4. Ablation Studies

To look deeper into the proposed training strategy, we

perform a series of ablation studies on the THUMOS14

dataset, and detailed results and analysis are as follows.

4.4.1 Effectiveness of Each Design.

As shown in Table 4, the performances of all three method-

s are significantly improved with the help of collaborative

training. The mAP@IoU=0.5 is promoted from 21.8 to 32.4

for a weaker baseline STPN [31], with 10.6% performance

gain. And for a stronger baseline (WSAL-BM [32]), the

mAP@IoU=0.5 is also promoted from 30.3 to 34.4. These

results verify the effectiveness of the collaborative training,

this is because the collaborative training can help the model

Table 3. Detection performance comparison with state-of-the-art

methods on the ActivityNet1.3 validation set, where (Ours) repre-

sents our re-implementation.

Methods
mAP@IoU

0.5 0.75 0.95 Average

STPN [31] 29.3 16.9 2.6 16.3

CMCS [25] 34.0 20.9 5.7 21.2

ASSG [54] 32.3 20.1 4.0 18.8

WSAL-BM [32] 36.4 19.2 2.9 19.5

STAR [47] 31.1 18.8 4.7 18.2

TSM [50] 30.3 19.0 4.5 -

Bas-Net [21] 34.5 22.5 4.9 22.2

TSCN [53] 35.3 21.4 5.3 21.7

A2CL-PT [29] 36.8 22.0 5.2 22.5

STPN (Ours) 38.0 21.5 5.7 22.7

STPN with UGCT 39.1 22.4 5.8 23.8

WSAL-BM (Ours) 36.9 20.7 4.2 20.6

WSAL-BM with UGCT 39.0 21.4 5.1 23.0

TSCN (Ours) 29.1 14.2 3.3 15.4

TSCN with UGCT 38.1 21.2 5.4 22.8

Table 4. Ablation studies about the proposed UGCT on the THU-

MOS14 test set. Results indicate each design is necessary.
Collaborative

Training

uncertainty

Guidance
mAP@IoU=0.5

STPN

✗ ✗ 21.8

✓ ✗ 31.4

✓ ✓ 32.4

WSAL-BM

✗ ✗ 30.3

✓ ✗ 34.4

✓ ✓ 35.9

TSCN

✗ ✗ 29.0

✓ ✗ 32.2

✓ ✓ 33.3

to suppress false positives and false negatives by referring

to the information in another modality. To move a step fur-

ther, when taking the label noise into consideration, we get

our Uncertainty Guided Collaborative Training strategy. As

shown in Table 4, the performance of three methods can be

consistently improved, which indicates the effectiveness of

our uncertainty aware learning module.

4.4.2 Ablations on Pseudo Label Generation

Teacher models are necessary. To verify the effective-

ness of our teacher models in pseudo label generation, we

use the RGB and FLOW models to replace the correspond-

ing teacher models, and the results are shown in Table 5.

Without teacher models for pseudo label generation, al-

l three methods suffer from significant performance drop.

The results indicate that the teacher model is more reliable

for pseudo label generation, and we owe this property to

the specific updating strategy of teacher models. When the

training process is converged, the teacher model and student

models have a similar performance, but the teacher model

can make more reliable prediction when the training process

is not converged.

Different ways for pseudo label generation. In this sec-

tion, we compare three different ways to pseudo label

generation (Self-supervision, Mean-supervision and Cross-
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Table 5. Performance comparison on the THUMOS14 test set with

and w/o teacher models for pseudo label generation.
Methods Teacher Model mAP@IoU=0.5

STPN
✓ 32.4

✗ 26.6

WSAL-BM
✓ 35.9

✗ 31.2

TSCN
✓ 33.3

✗ 32.0

Table 6. Different ways for pseudo label generation.
Self Mean Cross

Λ̃R = G(ΛRT ) G((ΛRT + ΛFT )/2) G(ΛFT )

Λ̃F = G(ΛFT ) G((ΛRT + ΛFT )/2) G(ΛRT )

Table 7. Performance comparison on the THUMOS14 test set with

different ways for pseudo label generation.
Methods Pseudo generation 0.3 0.5 0.7

STPN

✗ 45.6 21.8 4.1

Self 51.8 28.6 7.5

Mean 52.5 29.5 7.9

Cross 54.5 31.4 8.4

WSAL-BM

✗ 51.1 30.3 8.7

Self 53.2 34.6 9.4

Mean 53.7 33.0 10.6

Cross 54.7 34.4 9.9

TSCN

✗ 51.0 29.0 7.9

Self 53.2 30.8 8.5

Mean 53.2 31.6 8.9

Cross 54.2 32.2 9.3

supervision), and the details are shown in Table 6. In

the Self-supervision, the RGB and FLOW streams pro-

vide pseudo labels for themselves and are trained inde-

pendently, and the Cross-supervision represents the way

we adopt in this paper. From the results in Table 7, all

three ways can improve the performance, which indicates

that the pseudo label supervision is of great importance.

Note that when the RGB/FLOW streams are trained inde-

pendently, the Self-supervision gets the worst performance.

When the RGB/FLOW streams work collaboratively for

pseudo label generation, the Mean-supervision and Cross-

supervision can achieve much better performance.

Hard pseudo labels vs soft pseudo labels. In our method,

we use binarization function G to generate {0, 1}-value hard

pseudo labels. It is also feasible to directly use soft labels,

as shown in Table 8, and the results indicate that hard pseu-

do labels work better than soft pseudo labels. Note that for

STPN and WSAL-BM, hard pseudo labels can yield more

significant performance gain, and this is due to that the hard

pseudo labels can force the attention weight to act like a

binary selection. While in TSCN, the attention loss is al-

ready designed for this purpose, thus the advantage of hard

pseudo labels is less significant on this method.

4.4.3 Ablations on Uncertainty Estimation

In the proposed training strategy, we add an uncertainty

prediction module to mitigate the noise in the pseudo la-

bels, and we denote this method as Uncertainty-P. And the

Table 8. Performance comparison between hard and soft pseudo

labels on the THUMOS14 test set.
Methods Pseudo label 0.3 0.5 0.7

STPN
soft 53.6 25.3 5.3

hard 54.5 31.4 8.4

WSAL-BM
soft 54.1 32.4 9.4

hard 54.7 34.4 9.9

TSCN
soft 53.7 31.6 8.3

hard 54.2 32.2 9.3

Table 9. Results on the THUMOS14 test set with different ways

for uncertainty estimation.

Methods
mAP@IoU=0.5

Uncertainty-P Uncertainty-C Uncertainty-A

STPN 32.4 32.1 31.6

WSAL-BM 35.9 35.8 34.3

TSCN 33.3 31.5 32.5

analytical solution introduced in Section 3.3 is denoted as

Uncertainty-A. Besides, we also design a consistency based

method for label uncertainty estimation, which is denoted

as Uncertainty-C. To be specific, we feed the input to the

teacher network twice with different random noise and get

two pseudo labels for each segment, segments with incon-

sistent two pseudo labels may encounter high uncertainty,

thus they are ignored during training. Note that the con-

sistency based method need to feed-forward input twice, it

brings more computation cost. Results are shown in Ta-

ble 9, which indicates that the prediction based method can

achieve better performance with less computation cost.

5. Conclusion

In this paper, we propose a simple yet effectively Un-

certainty Guided Collaboratively Training strategy for at-

tention based weakly supervised temporal action detection

methods. An online pseudo label generation module is de-

signed to provide reliable pseudo labels for attention weight

learning, and an uncertainty aware learning module is fur-

ther designed to deal with the label noise. We conduct

experiments on two benchmark datasets with three atten-

tion based methods, and experimental results indicate that

the proposed method can significantly improve the perfor-

mance of these methods.
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