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Abstract

Due to the memorization effect in Deep Neural Networks

(DNNs), training with noisy labels usually results in in-

ferior model performance. Existing state-of-the-art meth-

ods primarily adopt a sample selection strategy, which se-

lects small-loss samples for subsequent training. However,

prior literature tends to perform sample selection within

each mini-batch, neglecting the imbalance of noise ratios

in different mini-batches. Moreover, valuable knowledge

within high-loss samples is wasted. To this end, we pro-

pose a noise-robust approach named Jo-SRC (Joint Sample

Selection and Model Regularization based on Consistency).

Specifically, we train the network in a contrastive learning

manner. Predictions from two different views of each sample

are used to estimate its “likelihood” of being clean or out-

of-distribution. Furthermore, we propose a joint loss to ad-

vance the model generalization performance by introducing

consistency regularization. Extensive experiments have val-

idated the superiority of our approach over existing state-

of-the-art methods. The source code and models have been

made available at https://github.com/NUST-

Machine-Intelligence-Laboratory/Jo-SRC.

1. Introduction

DNNs have recently lead to tremendous progress in var-

ious computer vision tasks [14, 28, 25, 40, 21]. These suc-

cesses largely attribute to large-scale datasets with reliable

annotations (e.g., ImageNet [4]). However, collecting well-

annotated datasets is extremely labor-intensive and time-

consuming, especially in domains where expert knowledge

is required (e.g., fine-grained categorization [37, 36]). The

high cost of acquiring large-scale well-labeled data poses a

bottleneck in employing DNNs in real-world scenarios.
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Figure 1. Existing small-loss based sample selection methods

(upper) tend to regard a human-defined proportion of samples

within each mini-batch as clean ones. They ignore the fluctu-

ation of noise ratios in different mini-batches. On the contrary,

our proposed method (bottom) selects clean samples in a global

manner. Moreover, in-distribution (ID) noisy samples and out-of-

distribution (OOD) ones are also selected and leveraged for en-

hancing the model generalization performance.

As an alternative, employing web images to train DNNs

has received increasing attention recently [20, 41, 42, 34,

45, 44, 51, 52, 32]. Unfortunately, whereas web images

are cheaper and easier to obtain via image search engines

[5, 29, 46, 43], they usually yield inevitable noisy labels due

to the error-prone automatic tagging system or non-expert

annotations [23, 32, 45, 47]. A recent study has suggested

that samples with noisy labels would be unavoidably over-

fitted by DNNs and consequently cause performance degra-

dation [15, 50].

To alleviate this issue, many methods have been pro-

posed for learning with noisy labels. Early approaches

primarily attempt to correct losses during training. Some

methods correct losses by introducing a noise transition ma-

trix [31, 24, 6, 11]. However, estimating the noise transition
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matrix is challenging, requiring either prior knowledge or

a subset of well-labeled data. Some methods design noise-

robust loss functions which correct losses according to pre-

dictions of DNNs [26, 54, 34]. However, these methods are

prone to fail when the noise ratio is high.

Another active research direction in mitigating the nega-

tive effect of noisy labels is training DNNs with selected or

reweighted training samples [12, 27, 22, 8, 49, 38, 32]. The

challenge is to design a proper criterion for identifying clean

samples. It has been recently observed that DNNs have a

memorization effect and tend to learn clean and simple pat-

terns before overfitting noisy labels [15, 50]. Thus, state-of-

the-art methods (e.g., Co-teaching [49], Co-teaching+ [49],

and JoCoR [38]) propose to select a human-defined propor-

tion of small-loss samples as clean ones. Although promis-

ing performance gains have been witnessed by employ-

ing the small-loss sample selection strategy, these meth-

ods tend to assume that noise ratios are identical among all

mini-batches. Hence, they perform sample selection within

each mini-batch based on an estimated noise rate. How-

ever, this assumption may not hold true in real-world cases,

and the noise rate is also challenging to estimate accurately

(e.g., Clothing1M [39]). Furthermore, existing literature

mainly focuses on closed-set scenarios, in which only in-

distribution (ID) noisy samples are considered. In open-set

cases (i.e., real-world cases), both in-distribution (ID) and

out-of-distribution (OOD) noisy samples exist. High-loss

samples do not necessarily have noisy labels. In fact, hard

samples, ID noisy ones, and OOD noisy ones all produce

large loss values, but the former two are potentially benefi-

cial for making DNNs more robust [32].

Motivated by the self-supervised contrastive learning

[3, 7], we propose a simple yet effective approach named

Jo-SRC (Joint Sample Selection and Model Regularization

based on Consistency) to address aforementioned issues.

Specifically, we first feed two different views of an im-

age into a backbone network and predict two corresponding

softmax probabilities accordingly. Then we divide samples

based on two likelihood metrics. We measure the likelihood

of a sample being clean using the Jensen-Shannon diver-

gence between its predicted probability distribution and its

label distribution. We measure the likelihood of a sample

being OOD based on the prediction disagreement between

its two views. Subsequently, clean samples are trained con-

ventionally to fit their given labels. ID and OOD noisy sam-

ples are re-labeled by a mean-teacher model before they are

back-propagated for updating network parameters. Finally,

we propose a joint loss, including a classification term and

a consistency regularization term, to further advance model

performance. A comparison between Jo-SRC and existing

sample selection methods is provided in Figure 1. The ma-

jor contributions of this work are:

(1) We propose a simple yet effective contrastive ap-

proach named Jo-SRC to alleviate the negative effect of

noisy labels. Jo-SRC trains the network with a joint loss,

including a cross-entropy term and a consistency term, to

obtain higher classification and generalization performance.

(2) Our proposed Jo-SRC selects clean samples globally

by adopting the Jensen-Shannon divergence to measure the

likelihood of each sample being clean. We also propose to

distinguish ID noisy samples and OOD noisy ones based

on the prediction consistency between samples’ different

views. ID and OOD noisy samples are relabeled by a mean-

teacher network before being used for network update.

(3) By providing comprehensive experimental results,

we show that Jo-SRC significantly outperforms state-of-

the-art methods on both synthetic and real-world noisy

datasets. Furthermore, extensive ablation studies are con-

ducted to validate the effectiveness of our approach.

2. Related Works

Existing works on learning with noisy labels can be

briefly categorized into the following two subsets [32]: 1)

Loss Correction and 2) Sample Selection.

Loss correction. A large proportion of existing litera-

ture on training with noisy labels focuses on loss correction

approaches. Some methods endeavor to estimate the noise

transition matrix [31, 2, 24, 6, 11]. For example, Patrini et

al. [24] provided a loss correction method to estimate the

noise transition matrix by using a deep network trained on

the noisy dataset. However, these methods are limited in

that the noise transition matrix is challenging to estimate

accurately and may not be feasible in real-world scenarios.

Some methods attempt to design noise-tolerant loss func-

tions [26, 54, 34]. For example, the bootstrapping loss [26]

extended the conventional cross-entropy loss with a percep-

tual term. However, these methods fail to perform well in

real-world cases when the noise ratio is high.

Sample Selection. Another idea of dealing with noisy

labels is to select and remove corrupted data. The problem

is to find proper sample selection criteria. It has been shown

that DNNs tend to learn simple patterns first before mem-

orizing noisy data [15, 50]. Resorting to this observation,

the small-loss sample selection criterion has been widely

adopted: samples with lower loss values are more likely to

have clean labels. For example, Co-teaching [8] proposed

to maintain two networks simultaneously during training,

with one network learning from the other networks selected

small-loss samples. JoCoR [38] proposed to use a joint

loss, including the conventional cross-entropy loss and the

co-regularization loss, to select small-loss samples. How-

ever, above methods select samples within each mini-batch

based on a human-defined drop rate. In real-world scenar-

ios, noise ratios in different mini-batches are not guaranteed

to be identical, and the drop rate is challenging to estimate.
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Figure 2. The overall framework of our proposed Jo-SRC approach (a), the clean sample selection module (b), and the ID/OOD sample

selection module (c). Each image xi is augmented into two different views vi and v′i before being fed into the backbone network. The

network then predicts two probability distributions pipipi and p′ip
′
ip
′
i accordingly. Afterwards, we obtain the likelihood of xi being clean Pclean

using the Jensen-Shannon (JS) divergence between its predicted distribution pipipi and its label distribution yiyiyi. If xi is judged as “unclean”,

we obtain its likelihood of being out-of-distribution (OOD) Pood based on the prediction disagreement between pipipi and p′ip
′
ip
′
i. Finally, xi is

re-labeled as ỹĩyĩyi by a mean-teacher model. The final objective function is a joint loss, including a classification term and a consistency term.

3. The Proposed Method

Background. Generally, for a multi-class classification

task with C classes, we train DNNs using a labeled dataset

D = {(xi, yi)|1 ≤ i ≤ N}, in which xi is the i-th training

sample and yi ∈ {0, 1}
C is its corresponding one-hot label

over C classes. The conventional objective loss function is

the cross-entropy between the predicted softmax probabil-

ity distributions of training samples and their corresponding

label distributions:

LCE = −
1

N

N
∑

i=1

C
∑

c=1

yci log(p
c
i ), (1)

in which pci is a simplified form of pc(xi, θ), denoting the

predicted probability of sample xi for class c given a model

with parameters θ. However, for datasets with noisy labels

(e.g., web image datasets), labels are not guaranteed to be

correct. Thus, training DNNs using noisy datasets directly

is problematic and usually leads to a dramatic performance

drop, given the fact that DNNs have the capability to mem-

orize all training samples, including noisy ones [15].

Terminology. This paper adopts two consistency met-

rics to reveal how likely each sample could be clean or

OOD. We accordingly term them as “likelihood”, which is

different from the concept of “likelihood” in statistics.

3.1. Global clean sample selection

Regarding samples with small cross-entropy losses as

clean ones is one of the most widely-used sample selec-

tion criteria. This criterion is justified by the observation,

in which DNNs tend to learn clean patterns first and then

gradually fit noisy labels [15, 50]. Methods using this cri-

terion (e.g., Co-teaching [8] and Co-teaching+ [49]) typi-

cally select a pre-defined proportion of small-loss samples

within each mini-batch. Unfortunately, noise ratios in dif-

ferent mini-batches inevitably fluctuate in real-world sce-

narios. One solution is to record losses for all samples and

select samples in the entire training set. However, this be-

comes impractical when the dataset volume is increasingly

huge.

To this end, we propose to reformulate the clean sample

selection criterion from another perspective. Specifically,

we propose to adopt the Jensen-Shannon (JS) divergence in

Eq. (2) to quantify the difference di between the predicted

probability distribution pipipi = [p1i , p
2
i , ..., p

C
i ] and the given

ground truth label distribution yiyiyi = [y1i , y
2
i , ..., y

C
i ] of the

sample xi as follows:

di = DJS(pipipi‖yiyiyi)

=
1

2
DKL(pipipi‖

pipipi + yiyiyi
2

) +
1

2
DKL(yiyiyi‖

pipipi + yiyiyi
2

),
(2)

in which DKL(·‖·) is the Kullback-Leibler (KL) divergence

function. The JS divergence is a measure of differences

between two probability distributions. It is known to be

bounded in [0, 1], given a base 2 logarithm is used [19].

Therefore, intuitively, we can leverage di to measure the
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“likelihood” of xi being clean as follows:

Pclean(xi) = 1− di ∈ [0, 1]. (3)

In fact, Pclean(xi) reveals the consistency between pipipi and

yiyiyi. Here, we adopt smoothed label distributions [33] in cal-

culating Eq. (2) to avoid the issue of log(0). We finally

define our clean sample selection criterion as follows:

Criterion 3.1. The sample x is a clean one if its likelihood

of being clean Pclean(x) > τclean.

Why can we select clean samples globally based on

Pclean? Similar to the cross-entropy, the JS divergence is

a measurement depicting differences between two proba-

bility distributions. Since the yiyiyi in Eq. (2) is not updated

in the back-propagation process, the JS divergence between

pipipi and yiyiyi is equivalent to the cross-entropy between them.

Accordingly, our proposed Criterion 3.1 is consistent with

the small-loss sample selection criterion. However, whereas

the value of cross-entropy is not constrained, the JS diver-

gence is bounded in [0, 1], making it a natural global selec-

tion metric to describe how likely a sample could be clean.

By directly modeling the likelihood of a sample being clean

using Eq. (3), clean samples are selected more efficiently in

a global manner, alleviating the issue caused by the imbal-

ance of noise ratios within different mini-batches.

3.2. Out­of­distribution detection

Real-world scenarios contain both in-distribution (ID)

noisy samples and out-of-distribution (OOD) ones. Despite

their noisy labels, they can contribute to the model if their

labels are re-assigned properly, especially for ID samples.

Therefore, dropping all “unclean” samples directly is not

data-efficient.

DNNs are usually uncertain about OOD samples when

making predictions since their correct labels are outside the

task scope. Conversely, while ID noisy samples have cor-

rupted labels, they usually lead to consistent model pre-

dictions. Therefore, inspired by the self-supervised con-

trastive learning [3] and agreement maximization principle

[30], we propose to use the prediction consistency to distin-

guish OOD and ID samples. Specifically, we first generate

two augmented views vi = T (xi) and v′i = T ′(xi) from a

sample xi by applying two different image transformations

T (·) and T ′(·). These two views are subsequently fed into

a DNN to produce their corresponding predictions pipipi and

p′ip
′

ip
′

i, respectively. Finally, we adopt the consistency between

these two predictions to determine if this sample is out-of-

distribution or not. More explicitly, we define the “likeli-

hood” of a sample being out-of-distribution (OOD) as:

Pood(xi) = min(1, |argmax
c

pipipi − argmax
c

p′ip
′

ip
′

i|). (4)

Consequently, given τood ∈ (0, 1), our OOD/ID sample se-

lection criterion is defined as follows:

Criterion 3.2. Given a sample x that is selected as a “un-

clean” one by Criterion 3.1, it is judged as an OOD noisy

one if Pood(xi) > τood (i.e., its predictions of two differ-

ently augmented views disagree). If Pood(xi) ≤ τood (i.e.,

its predictions of two differently augmented views is con-

sistent), it is deemed as an ID noisy sample.

3.3. Label re­assignment

The proposed Criterion 3.1 and 3.2 jointly divide training

data into three subsets: a clean subset Sclean, an ID subset

Sid, and an OOD subset Sood. To leverage all training data

efficiently, we treat their labels differently before feeding

them into the network.

For samples in Sclean, we keep their labels unaltered. To

enhance the generalization performance, we adopt the label

smoothing regularization (LSR) [33] when calculating their

losses. Therefore, the label distribution of a clean sample xi

is provided as Eq. (5), given its label li ∈ {1, 2, 3, ..., C}:

ỹci =

{

1− ǫ, c = li
ǫ

C−1 , c 6= li
, (5)

in which ǫ is a hyper-parameter controlling the smoothness

of the label distribution.

For samples in ID subset Sid, inspired by the mean-

teacher model [35], we use the temporally averaged model

(i.e. mean-teacher model) to generate reliable pseudo label

distributions for providing supervision. Therefore, given an

ID sample xi, its pseudo label distribution is provided as:

ỹci = pc(xi, θmt), (6)

where θmt denotes parameters of the mean-teacher model.

Finally, for samples in Sood, we also use the mean-

teacher model to create their corresponding pseudo label

distributions. However, since OOD samples’ true labels

are outside the task scope, the DNN should be highly con-

fused when predicting their label assignments. Therefore,

we propose to enforce predictions of OOD samples to fit an

approximately uniform distribution for boosting generaliza-

tion performance. In practice, given an OOD sample xi, we

relabel it with the following pseudo label distribution:

ỹci =
ep

c(xi,θmt)/s

∑C
j=1 e

pj(xi,θmt)/s
, (7)

in which s is a large scaling constant. In our experiments,

we empirically, set s = 10 to make this label distribution

smooth enough (i.e., ∀c ∈ {1, 2, 3, ..., C}, ỹci ≈ 1/C).

It should be noted that the mean-teacher model is not up-

dated via the loss back-propagation. Instead, its parameters

θmt is an exponential moving average of θ. Specifically,

given a decay rate ω ∈ [0, 1], θmt is updated in each train-

ing step as follows:

θmt ← ωθmt + (1− ω)θ. (8)
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Algorithm 1: Jo-SRC

Input: Network θ, mean-teacher θmt, learning rate η,

iteration Imax, epoch tw and tmax.

for t = 1, 2, ..., tmax do

for iter = 1, 2, 3, ..., Imax do
Sample a mini-batch B randomly.

Predict ppp(x, θ) and p′p′p′(x, θ).
Divide samples into Bclean, Bid, and Bood based

on Criterion 3.1 and 3.2.

Re-label samples by Eq. (5), (6), and (7).

if tw ≤ t ≤ tmax then
Obtain L using entire B by Eq. (10).

Update θ ← θ − η∇L.

else
Obtain Lc using only Bclean by Eq. (11).

Update θ ← θ − η∇Lc.

end

Update θmt by Eq. (8).

end

end

Output: Updated network θ.

3.4. Consistency regularization

As stated above, we use each sample’s prediction con-

sistency to measure its likelihood of being OOD. We follow

the intuition that in-distribution samples (including clean

ones and noisy ones) tend to produce consistent predictions

while out-of-distribution samples do not. Thus, we propose

to use an auxiliary consistency loss as Eq. (9) to provide

joint supervision for enhancing the separability between ID

and OOD samples.

Lo =
1

N

N
∑

i=1

ρi(DKL(pipipi‖p
′

ip
′

ip
′

i) +DKL(p
′

ip
′

ip
′

i‖pipipi)), (9)

in which ρi = 1 if xi ∈ Sclean ∪ Sid; otherwise, ρi = −1.

On the one hand, resorting to this additional regular-

ization term, clean samples and ID ones are encouraged

to make consistent predictions. Meanwhile, this consis-

tency term also enhances the prediction divergence of OOD

noisy samples. Our approach is accordingly able to select

clean/ID/OOD samples more effectively. On the other hand,

this auxiliary consistency loss also implicitly promotes rep-

resentation learning in a self-supervised fashion.

3.5. The overall framework

Combining all submodules together, our final objective

loss function is

L = (1− α)Lc + αLo, (10)

in which α is a hyper-parameter, and

Lc =
1

N

N
∑

i=1

(−

C
∑

c=1

ỹci log(p
c
i )−

C
∑

c=1

ỹci log(p
′c
i )). (11)

Details of Jo-SRC are shown in Figure 2 and Algorithm 1.

In practice, the model gets increasingly stronger dur-

ing training and will eventually overfit noisy labels. Thus,

we proposed to dynamically adjust the selection threshold

τclean as Eq. (12):

τclean =

{

t
tw
τc, 1 ≤ t ≤ tw

(t−tw)∆τ
tmax−tw

+ τc, tw < t ≤ tmax
, (12)

in which ∆τ = τm − τc. τc is a hyper-parameter and τm
is a large constant (τm is empirically set to 0.95 in our ex-

periments). Accordingly, more samples will be treated as

clean ones in initial epochs so that the model can learn sim-

ple and easy patterns from as much samples as possible. As

the training proceeds, fewer samples are fed into the model

as clean ones for ensuring the quality of learned data.

4. Experiments

4.1. Experiment setup

Datasets. We evaluate Jo-SRC in four benchmark

datasets: CIFAR100N-C, CIFAR80N-O, Clothing1M [39],

and Food101N [16]. CIFAR100N-C and CIFAR80N-O are

two synthetic datasets created from CIFAR100 [13]. Specif-

ically, we follow JoCoR [38] to create the closed-set syn-

thetic dataset CIFAR100N-C with a noise ratio nc ∈ (0, 1).
The noise type T could be either “Symmetry” or “Asymme-

try”. To create the open-set synthetic dataset CIFAR80N-O,

we first regard the last 20 categories in CIFAR100 as out-

of-distribution ones. Then we create in-distribution noisy

samples by randomly corrupting nc percentage of remain-

ing samples’ labels in a T fashion. This finally leads to

an overall noise ratio nall = 0.2 + 0.8nc. Clothing1M

and Food101N are two large-scale real-world datasets with

noisy labels. Details are in supplementary materials.

Evaluation Metrics. For evaluating the model classifi-

cation performance, we take the test accuracy as the evalu-

ation metric. Besides, we also adopt the label precision as

the metric to evaluate our sample selection criteria.

Implementation Details. Following JoCoR [38], we

adopt a 7-layer DNN for CIFAR100N-C and CIFAR80N-

O. During training, we use Adam optimizer with a momen-

tum of 0.9. The initial learning rate is 0.001, and the batch

size is 128. We train the network for 200 epochs and start

to decay the learning rate linearly after 80 epochs. The

decay rate in updating the mean-teacher network is set to

ω = 0.99. The τm and the LSR parameter ǫ is empirically

set to 0.95 and 0.6, respectively. For Clothing1M, we follow

settings in JoCoR [38] and use ResNet-18 [10] with Ima-

geNet pre-trained weights to take a fair comparison with

results presented in JoCoR. We also conduct experiments

using ResNet-50 [10] and follow experimental settings used

in DivideMix [17] for fair comparison. For Food101N, we
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T− nc Standard Decoupling Co-teaching Co-teaching+ JoCoR Jo-SRC

Symmetry− 20% 35.14 ± 0.44 33.10 ± 0.12 43.73 ± 0.16 49.27 ± 0.03 53.01 ± 0.04 58.15 ± 0.14

Symmetry− 50% 16.97 ± 0.40 15.25 ± 0.20 34.96 ± 0.50 40.04 ± 0.70 43.49 ± 0.46 51.26 ± 0.11

Symmetry− 80% 4.41 ± 0.14 3.89 ± 0.16 15.15 ± 0.46 13.44 ± 0.37 15.49 ± 0.98 23.80 ± 0.05

Asymmetry− 40% 27.29 ± 0.25 26.11 ± 0.39 28.35 ± 0.25 33.62 ± 0.39 32.70 ± 0.35 38.52 ± 0.20

Table 1. Average test accuracy (%) on CIFAR100N-C over the last 10 epochs.

T− nc Standard Decoupling Co-teaching Co-teaching+ JoCoR Jo-SRC

Symmetry− 20% 29.37 ± 0.09 43.49 ± 0.39 60.38 ± 0.22 53.97 ± 0.26 59.99 ± 0.13 65.83 ± 0.13

Symmetry− 50% 13.87 ± 0.08 28.22 ± 0.19 52.42 ± 0.51 46.75 ± 0.14 50.61 ± 0.12 58.51 ± 0.08

Symmetry− 80% 4.20 ± 0.07 10.01 ± 0.29 16.59 ± 0.27 12.29 ± 0.09 12.85 ± 0.05 29.76 ± 0.09

Asymmetry− 40% 22.25 ± 0.08 33.74 ± 0.26 42.42 ± 0.30 43.01 ± 0.59 39.37 ± 0.16 53.03 ± 0.25

Table 2. Average test accuracy (%) on CIFAR80N-O over the last 10 epochs.
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Figure 3. Comparison on CIFAR80N-O: test accuracy (%) vs. epochs.

use ResNet-50 [10] pre-trained on ImageNet and follow ex-

perimental settings used in DeepSelf [9]. All experiments

are repeated five times and averaged results are reported ac-

cordingly. Our code implementation is based on PyTorch.

Baselines. To evaluate Jo-SRC on CIFAR100N-C and

CIFAR80N-O, we follow JoCoR [38] and compare Jo-SRC

with the following state-of-the-art sample selection meth-

ods: Decoupling [22], Co-teaching [8], Co-teaching+ [49],

and JoCoR [38]. To evaluate our approach on Clothing1M,

besides the above methods, other state-of-the-art methods

like F-correction [24], M-correction [1], Joint-Optim [34],

Meta-Cleaner [53], Meta-Learning [18], P-correction [48],

and DivideMix [17] are also compared. To perform eval-

uation on Food101N, CleanNet [16] and DeepSelf [9] are

compared with our approach. Finally, training directly on

noisy datasets is also adopted into comparison as a simple

baseline (named as Standard).

4.2. Comparison on synthetic noisy datasets

Results on CIFAR100N-C. Whereas our proposed Jo-

SRC method is designed for open-set scenarios, it is also ap-

plicable and useful in closed-set cases. Comparison in test

accuracy with state-of-the-art approaches on CIFAR100N-

C is shown in Table 1. For simplicity, the results of exist-

ing methods are drawn directly from JoCoR [38], and our

method is evaluated using the same experimental settings.

From Table 1, we can observe that our proposed Jo-SRC

method consistently outperforms state-of-the-art methods.

Although performance of all methods drops dramatically in

the most inferior case (i.e., Symmetry-80%), our methods

still obtain the highest test accuracy.

Results on CIFAR80N-O. CIFAR80N-O is created to

simulate the real-world scenario (i.e., open-set problem).

We present the comparison in test accuracy with state-of-

the-art methods on CIFAR80N-O in Table 2. We imple-

ment all these methods with default parameters. Results in

Table 2 come from experiments under the same experiment

settings. From this table, we can observe that our Jo-SRC

method performs consistently better than other methods. In

the simplest case (i.e., Symmetry-20%), while all methods

work effectively and robustly (except Standard), our method

achieves the best test accuracy. When the noise scenario be-

comes harder (i.e., Symmetry-50%, and Asymmetry-40%),

model performance inevitably starts to drop, especially De-

coupling. However, our method is still effective and out-

performs other methods. Finally, when it goes to the most

challenging case (i.e., Symmetry-80%), all approaches fail

to combat the massive noisy labels. However, Jo-SRC once

again achieves significantly higher performance than other

methods, demonstrating the superiority of our method in
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Method Backbone Test accuracy

Stardard ResNet-18 67.22

Decoupling [22] ResNet-18 68.48

Co-teaching [8] ResNet-18 69.21

Co-teaching+ [49] ResNet-18 59.32

JoCoR [38] ResNet-18 70.30

Stardard ResNet-50 69.21

F-correction [24] ResNet-50 69.84

M-correction [1] ResNet-50 71.00

Joint-Optim [34] ResNet-50 72.16

Meta-Cleaner [53] ResNet-50 72.50

Meta-Learning [18] ResNet-50 73.47

P-correction [48] ResNet-50 73.49

DivideMix [17] ResNet-50 74.76

Jo-SRC ResNet-18 71.78

Jo-SRC ResNet-50 75.93

Table 3. Comparison with state-of-the-art methods in test accuracy

(%) on Clothing1M.

Method Backbone Test accuracy

Stardard ResNet-50 84.51

CleanNet ωhard [16] ResNet-50 83.47

CleanNet ωsoft [16] ResNet-50 83.95

DeepSelf [9] ResNet-50 85.11

Jo-SRC ResNet-50 86.66

Table 4. Comparison with state-of-the-art methods in test accuracy

(%) on Food101N using ResNet-50.

coping with extremely noisy scenarios. Figure 3 shows the

test accuracy vs. epochs. From this figure, we can observe

that Jo-SRC consistently outperforms other methods by a

large margin. Moreover, the superiority in the robustness of

our method is demonstrated clearly in these curves.

4.3. Comparison on real­world noisy datasets

Results on Clothing1M. To verify the effectiveness of

our Jo-SRC, we provide experimental results on real-world

scenarios. Clothing1M is a large-scale real-world dataset.

It contains one million training images and yield a 61.54%
accuracy of noisy labels [39]. Table 3 shows comparison

with state-of-the-art methods using ResNet-18 and ResNet-

50 as the backbone network. From this table, we can ob-

serve that our proposed Jo-SRC approach achieves the best

scores on both backbones. Using ResNet-18 as the back-

bone, our method achieves an improvement of 1.48% over

the existing state-of-the-art. When ResNet-50 is adopted,

Jo-SRC boosts the test accuracy from 74.76% to 75.93%.

Results on Food101N. Food101N is another real-world

noisy dataset. It contains 310k training images in 101 food

categories and also has a large proportion of noisy labels.

Noise
ID Sample OOD Sample

best last best last

Symmetry− 20% 60.91 42.62 59.54 54.38

Symmetry− 50% 83.86 65.92 40.70 38.75

Symmetry− 80% 96.31 72.84 26.67 24.60

Asymmetry− 40% 45.86 45.52 63.97 45.37

Table 5. The precision of ID/OOD sample selection on

CIFAR80N-O at the best and last epoch.

Model Test accuracy

Standard 29.37 ± 0.09

Jo-SRC-C 57.12 ± 0.33

Jo-SRC-CI 61.32 ± 0.18

Jo-SRC-CIO 63.10 ± 0.07

Jo-SRC 65.83 ± 0.13

Table 6. Effect of different steps in test accuracy (%) on

CIFAR80N-O (Symmetry-20%) over the last 10 epochs.

Table 4 presents the performance comparison with state-of-

the-arts. As shown in Table 4, Jo-SRC achieves the best

score and outperforms the state-of-the-art DeepSelf [9] by

1.55%, validating the effectiveness of our approach in deal-

ing with real-world noisy cases.

4.4. Ablation Study

Precision of sample selection. The key reason for our

approach in obtaining state-of-the-art performance is accu-

rate and reliable sample selection. To study and verify the

superiority of our proposed sample selection strategy, we

show the precision of sample selection in Figure 4 and Ta-

ble 5. Figure 4 presents the precision of clean sample se-

lection vs. epochs. From this figure, Jo-SRC is shown to be

highly effective in selecting clean samples accurately and

reliably. In all cases, our proposed Jo-SRC achieves the best

performance in selecting clean data, compared with state-

of-the-art sample selection methods. Furthermore, in the

most demanding scenario (i.e., Symmetry-80%), while all

other methods suffer in finding clean samples, the selection

precision of our Jo-SRC increases steadily as the training

proceeds. These results validate the effectiveness of our

clean sample selection strategy. Table 5 presents the pre-

cision in selecting ID/OOD samples. In this table, the best

and last denote the selection precision at the best and last

epochs, respectively. Results shown in this table verify the

effectiveness of our Jo-SRC in selecting ID/OOD samples.

Prediction accuracy of different training samples.

The memorization effect argues that DNNs would eventu-

ally memorize all samples (including noisy ones). There-

fore, it is critical to prevent networks from overfitting noisy

labels when training with noisy datasets. To further prove

the effectiveness of our proposed Jo-SRC, we show the pre-
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Figure 4. Comparison on CIFAR80N-O: precision of clean sample selection (%) vs. epochs.
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Figure 5. The prediction accuracy (%) on different groups of CIFAR80N-O (Symmetry-20%) training data during the training process.

diction accuracy of different training samples in Figure 5.

As shown in this figure, all methods achieve increasing

prediction accuracy on clean samples. JoCoR and our Jo-

SRC achieve the lowest prediction accuracy on noisy sam-

ples (including both ID ones and OOD ones) w.r.t. given

labels (i.e., noisy labels). This indicates that JoCoR and Jo-

SRC perform best in preventing networks from memorizing

noisy labels. Although JoCoR obtains lower prediction ac-

curacy on ID and OOD training samples, it yields an under-

fitting issue in clean samples, leading to sub-optimal final

test accuracy. While Co-teaching fits clean samples slightly

better than our Jo-SRC, it suffers from overfitting on noisy

labels. This causes its final performance decrease in test

samples. Moreover, by observing the last sub-figure, we

can find that our Jo-SRC achieves the best prediction accu-

racy on ID noisy samples w.r.t. their true labels. This further

demonstrates the effectiveness of our sample selection and

model regularization, given the fact that ID noisy samples

are not supervised by their true labels during training.

Influence of different steps. Table 6 reveals the effect

of different steps in our method. The Jo-SRC-C denotes the

case in which only selected clean samples are adopted in

training. The Jo-SRC-CI denotes the case where clean sam-

ples and ID noisy samples are adopted in training. The Jo-

SRC-CIO denotes the case when all samples are adopted in

training. The mean-teacher-based re-labeling is performed

accordingly when noisy samples are leveraged in train-

ing. Lastly, the Jo-SRC denotes the final proposed method.

From this table, we can observe that the proposed clean

sample selection plays the most crucial role in addressing

the label noise issue. Moreover, appropriately treated noisy

samples (including ID and OOD ones) can contribute to the

model generalization performance. Finally, the consistency

loss promotes model performance by further regularization.

5. Conclusion

In this paper, we proposed a simple yet effective ap-

proach named Jo-SRC to address the performance degra-

dation caused by noisy labels. Jo-SRC trained DNNs in a

contrastive manner. Clean samples were identified globally

based on JS divergence, while ID and OOD noisy samples

were distinguished based on consistency. Samples were

selected and divided accordingly for subsequent network

learning. Finally, a joint loss, including a classification

term and a consistency regularization term, was proposed to

further advance the performance and robustness. Compre-

hensive experiments on both synthetic and real-world noisy

datasets validated the superiority of the proposed method.
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