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Abstract

Semantic segmentation aims to classify every pixel of an

input image. Considering the difficulty of acquiring dense

labels, researchers have recently been resorting to weak

labels to alleviate the annotation burden of segmentation.

However, existing works mainly concentrate on expanding

the seed of pseudo labels within the image’s salient region.

In this work, we propose a non-salient region object mining

approach for weakly supervised semantic segmentation. We

introduce a graph-based global reasoning unit to strengthen

the classification network’s ability to capture global rela-

tions among disjoint and distant regions. This helps the

network activate the object features outside the salient area.

To further mine the non-salient region objects, we propose

to exert the segmentation network’s self-correction ability.

Specifically, a potential object mining module is proposed

to reduce the false-negative rate in pseudo labels. More-

over, we propose a non-salient region masking module for

complex images to generate masked pseudo labels. Our

non-salient region masking module helps further discover

the objects in the non-salient region. Extensive experi-

ments on the PASCAL VOC dataset demonstrate state-of-

the-art results compared to current methods. The source

codes are available at https://github.com/NUST-

Machine-Intelligence-Laboratory/nsrom.

1. Introduction

Semantic segmentation is the task of classifying every

pixel of an input image. It plays a vital role in many com-

puter vision tasks, such as image editing and medical im-

age analysis [32, 47]. Benefiting from the recent advances

of deep learning, semantic segmentation has achieved re-

markable progress. However, the training of deep convolu-
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Figure 1. Comparison between the traditional methods and ours.

(a) Input image. (b) The saliency map. (c) Results of the tra-

ditional methods. They mainly focus on expanding the seed of

pseudo labels within the salient region of the image. They only

obtain good segmentation results in conspicuous regions. (d) Our

results. Our method also mines the object in the non-salient region

and can get better results both in and outside the salient region.

Best viewed in color.

tional neural networks (CNNs) usually requires large-scale

datasets [56, 55, 59, 57, 58]. Moreover, obtaining precise

pixel-wise annotations for semantic segmentation demands

intensive labor efforts and is quite time-consuming. One

promising approach to address the annotation problem for

semantic segmentation is to learn from weak labels, such as

image-level annotations [29, 51, 21, 8, 23, 2, 52, 24], bound-

ing boxes [14, 26, 43], points [4], and scribbles [33, 46].

Among these weak supervisions, image-level labels are the

easiest format to annotate and have been widely studied

in various weakly supervised methods. However, seman-

tic segmentation supervised with image-level labels remains

a challenging task. Therefore, this paper follows the cur-

rent trend and focuses on leveraging image-level labels to

achieve weakly supervised semantic segmentation (WSSS).

To tackle the task of WSSS with only image-level la-

bels, visualization-based approaches [63] have been widely
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adopted to narrow the annotation gap between classifica-

tion and segmentation [53, 54]. The typical methods train a

classification network with image-level labels. Then they

leverage class activation maps (CAMs) [63] to generate

pseudo labels to train the segmentation network. However,

these activation maps obtained from the classification net-

work are sparse and incomplete. They can only locate the

most discriminative part of objects. Many approaches have

been proposed to enlarge the activated region to cover a

large object area. For example, Jiang et al. [24] observed

that the attention maps produced by the classification net-

work focus on different object parts during training. There-

fore, they proposed an online attention accumulation (OAA)

strategy to combine the various activated regions. However,

as shown in Fig. 1, the existing works mainly concentrate

on enlarging the response maps for the salient region. Then

they utilize the saliency maps to extract background. Few

works focus on mining objects in the non-salient areas.

In this paper, we propose a non-salient region object

mining method for weakly supervised semantic segmenta-

tion to make up for the shortcomings mentioned above. In

contrast to the widely adopted center prior [5] for saliency

detection, the non-salient region is usually scattered in cor-

ners or near the edge of the image. Such a characteristic

of our protagonist requires the network to exploit the dis-

joint and distant surrounding information. While the tradi-

tional classification networks based on CNNs excel at mod-

eling local relations, they are inefficient at capturing global

relations between disjoint and distant regions. Therefore,

we introduce a graph-based global reasoning unit [13] to

strengthen the classification network’s capability in activat-

ing the object features outside the salient region.

On the other hand, though existing approaches can suc-

cessfully enlarge activated regions for objects, they in-

evitably extend the object area to the background. These

methods require the saliency maps to provide background

clues. While the saliency maps can correct the pixel labels

near conspicuous regions, they also remove the object labels

outside the salient area. We notice that although the naive

CAM, sparse and incomplete, does not have an accurate

boundary, it can provide useful clues for the objects in the

non-salient region. Therefore, we propose a potential ob-

ject mining module to discover more objects that are outside

the conspicuous region but activated in the naive CAM. Our

potential object mining module aims to reduce the pseudo

labels’ false-negative rate (in which case the object regions

are falsely labeled as background). This improves the qual-

ity of pseudo labels and encourages the segmentation net-

work to exert its self-correction ability. Such an ability of

the network inspires us to further take advantage of the pre-

diction of the segmentation network. Following [51], we

divide the training images into simple and complex sets ac-

cording to the number of categories in each image. The sim-

ple images with a single category of object(s) usually have a

clean background. Their objects often exist in the conspic-

uous region and can be correctly segmented. In contrast,

complex images (having two or more categories of objects)

are more prone to having objects outside the salient area.

Therefore, we propose a non-salient region masking mod-

ule for complex images to generate masked pseudo labels.

Our non-salient region masking module helps further dis-

cover objects in the non-salient region. Our contributions

can be summarized as follows:

• For weakly supervised semantic segmentation, we

leverage a global reasoning unit to capture global re-

lations among disjoint and distant regions, helping the

network activate object features outside salient areas.

• We propose a potential object mining module to dis-

cover more objects in the non-salient region, which

improves the quality of pseudo labels by reducing the

false-negative rate.

• We propose a non-salient region masking module with

a dilation policy to generate masked pseudo labels,

which leads to a more robust segmentation model to

further discover objects outside the salient region.

2. Related Work

2.1. Semantic Segmentation

Semantic segmentation is an important computer vision

task that assigns a semantic label to every pixel in an image.

Since the adaption of the modern classification network into

the fully convolutional network (FCN) [36, 45], deep learn-

ing has achieved great success in semantic segmentation

[3, 10, 61, 35, 12, 11, 37]. To address the size issue caused

by the down-sampling operation, early works [3] adopted

an encoder-decoder architecture to recover the spatial reso-

lution. Then dilated/atrous convolution [10] was proposed

for the expansion of the receptive field without loss of res-

olution. Recently, the pyramid pooling module and context

encoding [61] were introduced to capture the global seman-

tic context of the scene. Auto-DeepLab [35] presented a

network-level search space to allow efficient gradient-based

architecture search for semantic segmentation.

2.2. Weakly Supervised Semantic Segmentation

Weakly supervised semantic segmentation attempts to

learn a segmentation network with weaker annotation than

pixel-wise labels. It aims to alleviate the annotation bur-

den of segmentation tasks. Compared to bounding boxes

[14, 26, 43], points [4], and scribbles [33, 46], image-level

labels [29, 51, 21, 8, 23, 2, 52, 24] are the most widely

used weak annotations due to their easy availability. They
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Figure 2. The architecture of our proposed approach. We train a classification network to generate the class activation maps (CAMs)

and online accumulated class attention maps (OA-CAMs). A graph-based global reasoning unit is inserted into the classification network

to help activate the objects outside the salient region. After obtaining the initial label with background extraction (BE), we utilize the

potential object mining module (POM) to discover more objects missed in the initial label. We further leverage the non-salient region

masking module (NSRM) to generate masked pseudo labels for the training of the segmentation network. Best viewed in color.

are already given in existing large-scale datasets (e.g. Ima-

geNet [15]) or can be automatically generated through im-

age retrieval techniques. Existing image-level label based

approaches leverage the CAM to generate pixel-level seeds

for training the segmentation model. Considering the initial

seeds’ sparsity and incompleteness, researchers proposed

many approaches to expand the seeds to integral object re-

gions. For example, Kolesnikov and Lampert [29] intro-

duced a new loss function for weakly supervised training

based on three guiding principles: seed, expand, and con-

strain. Huang et al. [23] proposed to train a model start-

ing from the discriminative regions and progressively in-

crease the pixel-level supervision with the deep seeded re-

gion growing strategy. The work of RDC [52] leveraged the

dilated convolution to enlarge the receptive fields of convo-

lutional kernels. This helped transfer the object information

to the non-discriminative region. AffinityNet [2] realized

semantic propagation by a random walk with the seman-

tic affinity between a pair of adjacent image coordinates.

The recent work of SEAM [49] proposed a self-supervised

equivariant attention mechanism to provide additional su-

pervision for network learning. Apart from using intra-

image information, Sun et al. [44] incorporated two neural

co-attentions into the classifier to capture cross-image se-

mantic relations for comprehensive object pattern mining.

Zhang et al. [60] attributed the reason for the ambiguous

boundaries of pseudo-masks to the confounding context.

They presented a causal inference framework to remove the

confounding bias in image-level classification with an ef-

fective approximation for the backdoor adjustment.

3. The Proposed Approach

In this paper, we focus on the task of weakly supervised

semantic segmentation with image-level labels. Our frame-

work is illustrated in Fig. 2. Given a set of training images

with image-level labels, we train a classification network.

We leverage class activation maps to generate pseudo la-

bels for learning a segmentation network. Unlike existing

methods that mainly concentrate on refining pseudo labels

in the salient area, we propose to discover more objects in

the non-salient region for weakly supervised semantic seg-

mentation. To achieve this, we insert a graph-based global

reasoning unit into the classification network. This helps to

activate the object features outside the salient region. We

also adopt a potential object mining module (POM) and a

non-salient region masking module (NSRM) to improve the

quality of pseudo labels for non-salient region object min-

ing.

3.1. CAM Generation

A classification network is first trained to generate class

attention maps. As illustrated in Fig. 2, to strengthen the

classification network’s ability to capture global relations

among disjoint and distant regions, we introduce a graph-
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based global reasoning unit [13] before the final classifier.

The global reasoning module will help the network to ac-

tivate the object parts outside the salient region. The fea-

tures X ∈ ❘L×K generated by the encoder, with K being

the feature dimension and L = H × W locations, is first

projected from the coordinate space to a latent interaction

space. The projection function V = f (X) ∈ ❘
N×K is

formulated as a linear combination:

vi = biX =
∑

j

bijxj , (1)

where B = [b1, · · · , bN ] ∈ ❘N×L is the learnable projec-

tion weights, and N is the number of the features (nodes) in

the interaction space.

Then a graph convolution [28] is applied to capture the

relations between features in the new space:

Z = ((I −Ag)V )Wg. (2)

Ag denotes the N × N node adjacency matrix learned by

gradient descent during training. Wg denotes the state up-

date function.

After obtaining the node-feature Z ∈ ❘
N×K , reverse

projection Y = g (Z) ∈ ❘L×K is conducted to project the

feature back to the original space:

yi = diZ =
∑

j

dijzj , (3)

where D = [d1, · · · , dN ] = BT .

For the training of the classification network, we adopt

the multi-label soft margin loss as follows:

Lcls = −
1

C

C
∑

c=1

yc log σ (pc) + (1− yc) log [1− σ (pc)] .

(4)

Here, pc is the prediction of the network for the c-th class.

σ (·) is the sigmoid function, and C is the total number of

foreground classes. yc is the image-level label for the c-

th class. Its value is 1 if the class is present in the image;

otherwise, its value is 0.

We obtain CAMs by selecting the class-specific feature

maps generated by the final classifier. Following OAA

[24], we also generate the online accumulated class atten-

tion maps (OA-CAMs) to have more entire regions and

strengthen the lower attention values of target object regions

with their integral attention model.

3.2. Potential Object Mining

After obtaining OA-CAMs, the work of OAA [24] uses

them to extract object cues and saliency maps to extract

background cues. The class label of each pixel is assigned

by comparing the value of each OA-CAM. As shown in

Fig. 2, with the shape information provided by the saliency

map, the initial label is derived with quite clear object

boundaries after the background extraction (BE) process.

However, the initial label misses many object parts outside

the conspicuous area. Therefore, we propose to discover

more objects in the non-salient region. Though the OA-

CAM has a high recall of the object pixel, its precision is

low. In contrast, the CAM, widely leveraged to generate

initial seeds for proxy segmentation labels [29, 23], has low

recall but high precision. Therefore, we propose a potential

object mining (POM) module to discover the object region

activated in the CAM. We mine the potential object with a

class adaptive threshold Tc for class c that is present in the

image:

Tc =

{

MED(v) if ∃ (i, j) , s.t. lij = c

TQ(v) otherwise
. (5)

Here, v is the set of attention values of pixels in the CAM,

whose locations p are selected as follows:

p =

{

{(i, j)|lij = c} if ∃ (i, j) , s.t.lij = c

{(i, j)|aij > Tbg} otherwise
, (6)

where aij is the attention value in CAM at the position (i,j).

lij is the value in the initial label at the position (i,j), which

denotes the pseudo label of the pixel. As illustrated in Equa-

tion 5 and Equation 6, if the initial label contains class c,

we select those pixels in its CAM and choose the median

(MED) of their attention values as Tc. Otherwise, we select

pixels in its CAM with an attention value greater than the

background threshold Tbg and choose the top quartile (TQ)

of their attention values as Tc.

We then adjust the initial label as follows:

lij =

{

255 if ∃ c, (i, j) , s.t. lij = 0, aci,j > Tc

lij otherwise
. (7)

Here, ac denotes the CAM for class c. As illustrated in

Equation 7, the background pixels (labeled as 0) in the ini-

tial label with any CAM attention value greater than T are

labeled as 255 and ignored for training. We do not label

them for the corresponding potential class to avoid introduc-

ing wrong object labels. Such a strategy bypasses the neces-

sity to locate the object boundary outside the salient region.

We focus on reducing the false-negative rate of pseudo la-

bels, which will help discard the gradients generated by the

misleading information.

3.3. Non­Salient Region Masking

Our potential object mining strategy enriches pseudo la-

bels with more ignored pixels. It allows the segmenta-

tion network to predict the correct labels for these poten-

tial object regions during training. The improved quality of
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Figure 3. Our proposed non-salient region masking module.

pseudo labels can also encourage the segmentation network

to fix the other incorrectly labeled regions. Therefore, we

propose to further leverage the prediction of the segmenta-

tion model to generate pseudo labels of higher quality for

retraining.

We notice that simple images with only one category of

objects usually have a clean background. Objects in these

images often exist in the salient region and can be correctly

segmented by the segmentation network. However, com-

plex images (with two or more categories of objects) are

more prone to having objects outside the salient area. It re-

mains challenging for the segmentation network to detect

objects outside the salient region with pseudo labels only

containing object labels in the salient area. Therefore, we

propose a non-salient region masking (NSRM) module. It

combines the object information in the segmentation net-

work’s prediction and pseudo labels to generate masked la-

bels for complex images.

Our proposed non-salient region masking module is il-

lustrated in Fig. 3. Based on the assumption that object la-

bels within the salient region are correct with high probabil-

ity, we first expand the object region in the initial prediction

with the guidance of our pseudo labels. Then we extract

the object mask from the expanded prediction map. After

that, we expand the object mask with a dilation operation.

Finally, a masking operation is applied to the expanded pre-

diction map to get the masked pseudo labels. Note that the

dilation operation introduces a small portion of the back-

ground around the objects. It preserves the objects’ bound-

ary information, which is of great importance for a success-

ful segmentation network.

4. Experiments

4.1. Implementation Details

For the classification network, we adopt the VGG-16

model as our backbone, which is pre-trained on ImageNet

[15]. Following [24], we add three convolutional layers on

the top of the fully-convolutional backbone. A ReLU layer

follows each convolutional layer for nonlinear transforma-

tion. A 1 × 1 convolutional layer of C channels is adopted

as the pixel-wise classifier to generate attention maps. The

momentum and weight decay of the SGD [6] optimizer are

0.9 and 5 × 10−4. The initial learning rate is set to 10−3

and is divided by 10 after every 5 epochs. Following the

code of [24], we set the background threshold Tbg = 0.3 for

fair comparison. We train the classification network for 14

epochs with batch size = 5.

For the segmentation network, following [7, 62, 18, 9],

we adopt the DeepLab-v2 [10] framework. VGG-16 is pre-

trained on ImageNet [15]. For ResNet-101 [20], we report

results for models pre-trained on ImageNet [15] and MS-

COCO [34], respectively. The momentum and weight de-

cay of SGD optimizer are 0.9 and 10−4. The initial learning

rate is set to 2.5× 10−4 and is decreased using polynomial

decay with a power of 0.9. The segmentation network is

trained for 10,000 iterations with batch size = 10.

4.2. Datasets and Evaluation Metrics

Following previous works, we evaluate our approach on

the Pascal VOC 2012 dataset [16]. It contains 21 classes

(20 object categories and the background) for semantic seg-

mentation. There are 10,582 training images, which are

expanded by [19], 1,449 validation images, and 1,456 test

images. For all the experiments, we only adopt the image-

level class labels for training. Standard mean intersection

over union (mIoU) is taken as the evaluation metric for the

semantic segmentation task.

4.3. Comparisons to the State­of­the­arts

Baselines. In this part, we compare our proposed

method with the following state-of-the-arts approaches that

leverage image-level labels for weakly supervised seman-

tic segmentation: DCSM [41], SEC [29], AugFeed [39],

STC [51], Roy et al. [40], Oh et al. [38], AE-PSL [50],

WebS-i2 [25], Hong et al. [21], DCSP [8], TPL [27], GAIN

[31], DSRG [23], MCOF [48], AffinityNet [2], RDC [52],

SeeNet [22], OAA [24], ICD [17], BES [9], Fan et al.

[18], Zhang et al. [62], MCIS [44], IRN [1], FickleNet[30],

SSDD [42], SEAM [49], SCE [7], CONTA [60].

Experimental Results. We present our results for the

backbone of VGG and ResNet in Table 1 and Table 2, re-

spectively. As can be seen, our approach achieves better re-

sults than other state-of-the-art methods for both VGG and

ResNet backbones. Specifically, for the VGG backbone,

our segmentation results reach 65.5% and 65.3% on the val-

idation and test set, respectively. For the ResNet backbone,

we can get 68.3% on the validation set and 68.5% on the

test set. Though the methods of STC [51], WebS-i2 [25]

and Hong et al. [21] leverage additional training data, our

method outperforms them on the validation set by 15.7%,

12.1% and 7.4%, respectively. Compared to DSRG [23]

and CONTA [60], which also utilize the prediction of the

segmentation network to get refined pseudo labels for train-
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Methods Publication Val Test

DCSM [41] ECCV16 44.1 45.1

SEC [29] ECCV16 50.7 51.7

AugFeed [39] ECCV16 54.3 55.5

STC [51] TPAMI17 49.8 51.2

Roy et al. [40] CVPR17 52.8 53.7

Oh et al. [38] CVPR17 55.7 56.7

AE-PSL [50] CVPR17 55.0 55.7

WebS-i2 [25] CVPR17 53.4 55.3

Hong et al. [21] CVPR17 58.1 58.7

DCSP [8] BMVC17 58.6 59.2

TPL [27] ICCV17 53.1 53.8

GAIN [31] CVPR18 55.3 56.8

DSRG [23] CVPR18 59.0 60.4

MCOF [48] CVPR18 56.2 57.6

AffinityNet [2] CVPR18 58.4 60.5

RDC [52] CVPR18 60.4 60.8

SeeNet [22] NIPS18 63.1 62.8

OAA [24] ICCV19 63.1 62.8

ICD [17] CVPR20 64.0 63.9

BES [9] ECCV20 60.1 61.1

Fan et al. [18] ECCV20 64.6 64.2

Zhang et al. [62] ECCV20 63.7 64.5

MCIS [44] ECCV20 63.5 63.6

Ours - 65.5 65.3

Table 1. Quantitative comparisons to previous state-of-the-art ap-

proaches with VGG backbone.

ing, our approach can improve their results by 6.9% and

2.2%, respectively. The work of ICD [17] uses the addi-

tional superpixel to help recover the object boundary in-

formation during training. Our approach can still outper-

form it by 1.5% for the VGG backbone and 0.5% for the

ResNet backbone. Our results demonstrate the effectiveness

of mining the objects in the non-salient region for the task

of weakly supervised semantic segmentation. When train-

ing the ResNet based network with the COCO pre-trained

weights, we can further reach 70.4% and 70.2% on the val-

idation and test set, respectively.

4.4. Ablation Studies

Element-Wise Component Analysis. In this part, we

demonstrate the contribution of each component proposed

in our approach for weakly supervised semantic segmenta-

tion. The experimental results on the validation set of Pas-

cal VOC are given in Table 3. We notice that, by leverag-

ing the graph-based global reasoning unit (GR) to capture

global relations among disjoint and distant regions, we can

improve the segmentation result from 67.7% to 68.8%. By

introducing our proposed potential object mining module

(POM), we obtain another 0.2% performance gain. Note

that if we directly retrain the segmentation network with its

Methods Publication Val Test

DCSP [8] BMVC17 60.8 61.9

DSRG [23] CVPR18 61.4 63.2

MCOF [48] CVPR18 60.3 61.2

AffinityNet [2] CVPR18 61.7 63.7

SeeNet [22] NIPS18 63.1 62.8

IRN [1] CVPR19 63.5 64.8

FickleNet[30] CVPR19 64.9 65.3

OAA [24] ICCV19 65.2 66.4

SSDD [42] ICCV19 64.9 65.5

SEAM [49] CVPR20 64.5 65.7

SCE [7] CVPR20 66.1 65.9

ICD [17] CVPR20 67.8 68.0

Zhang et al. [62] ECCV20 66.6 66.7

Fan et al. [18] ECCV20 67.2 66.7

MCIS [44] ECCV20 66.2 66.9

BES [9] ECCV20 65.7 66.6

CONTA [60] NIPS20 66.1 66.7

Ours - 68.3 68.5

OAA* [24] ICCV19 67.4 -

SEAM* [49] CVPR20 63.2 -

Ours* - 70.4 70.2

Table 2. Quantitative comparisons to previous state-of-the-art ap-

proaches with ResNet backbone. * denotes model is pre-trained

on MS-COCO.

Methods Val

baseline 67.7

+ GR 68.8

+ GR + retrain 68.7

+ GR + POM 69.0

+ GR + POM + retrain 69.7

+ GR + POM + NSRM 70.4

Table 3. Element-wise component analysis with ResNet backbone.

GR: Global Reasoning, POM: Potential Object Mining, NSRM:

Non-Salient Region Masking.

prediction, the performance drops from 68.8% to 68.7%. In

contrast, with our potential object mining module, retrain-

ing the segmentation network can further improve the re-

sult to 69.7%. This highlights the importance of reducing

the false-negative rate of pseudo labels. Our potential ob-

ject mining module can directly improve the segmentation

results and help to exert the self-correction ability of the

segmentation network for a higher quality of pseudo labels.

With our non-salient region masking module (NSRM), we

further exploit the objects outside the conspicuous regions

and improve the segmentation result to 70.4%.

Some qualitative segmentation examples on the PAS-

CAL VOC 2012 validation set can be viewed in Fig. 4.

As can be seen, with the graph-based global reasoning unit
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baseline, (d) GR, (e) GR + POM, and (f) our full method. The first four columns of images contain objects of one category, and the other

five columns of images contain objects of two or more categories. Best viewed in color.

Methods Val

NSRM 70.4

NSRM all 68.8

NSRM - Object Expansion 70.2

NSRM - Masking 70.0

NSRM - dilation 68.5

Table 4. Ablation studies for NSRM with ResNet backbone.

(GR), the network can capture global relations and discover

objects in disjoint and distant regions (e.g. the potted plant

in the fifth column and person in the eighth column). As

shown in the last column, our method with the POM mod-

ule can further discover the car outside the salient region.

Besides, our full method with the NSRM module exerts

the segmentation network’s self-correction ability. It suc-

cessfully predicts the bus and potted plants in the second

and fourth columns, respectively. As shown in the fifth and

eighth columns, our robust method further mines the objects

outside the salient region.

We display the evolution of the labels we used for train-

ing the segmentation network in Fig. 5. As we can see,

with our potential object mining module, we discover more

object regions outside the salient area than the initial la-

bel. Our pseudo label can reduce the false gradients cal-

culated for wrong annotations. By leveraging the initial

prediction, our non-salient region masking module gener-

ates high-quality masked labels, allowing the segmentation

model to mine the objects in the non-salient region further.

Ablation Studies for NSRM. An in-depth study of our

proposed NSRM module is presented in Table 4. As we can

see, if we apply NSRM to all images without our simple

and complex image division, the results drop from 70.4%

to 68.8%. This highlights the importance of treating sim-

ple and complex images differently. When masking out the

non-salient region of pseudo labels for complex images dur-

ing training, we need to rely on the rich background infor-

mation provided by simple images. We notice that remov-

ing the object expansion operation will cause a 0.2% perfor-

mance drop. This shows that it is useful to utilize the pseudo

labels to expand the object prediction within the salient re-

gion. Masking out the non-salient region of the pseudo label

for training has a 0.4% performance gain. This shows that

the masking operation can encourage the segmentation net-

work to exert its self-correction ability. Note that if we do

not conduct the dilation operation for the object mask, the

performance directly drops to 68.5%. This highlights the

importance of preserving the background area around the

object. The background information, together with the ob-

ject region, provides essential boundary knowledge for the

network training.

Parameter Analysis. For the dilation operation in the

NSRM module, we conduct experiments to study the effect
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(a) Image (b) Ground Truth (c) Saliency Map (d) Initial Label (e)  Pseudo Label (f) Initial Prediction (g) Masked Label (h) Prediction

Figure 5. The evolution of labels for the PASCAL VOC 2012 training set. For each (a) image, we show the (b) ground truth, (c) saliency

map, (d) initial label, (e) pseudo label, (f) initial prediction, (g) masked label, and (h) final prediction. Best viewed in color.

Figure 6. The parameter sensitivity of the dilation kernel size r in

the non-salient region masking module. Results are reported on

the validation set using the ResNet backbone.

Figure 7. The parameter sensitivity of the number of feature nodes

N in the interaction space. Results are reported on the validation

set using the ResNet backbone.

of the dilation kernel size r. As shown in Fig. 6, we vary

the kernel size r over the range {2, 5, 10, 20, 30, 40, 50}. As

we can see, we get better performance when the kernel size

is between 5 and 30. A too large or small kernel size may

not improve the results very much. We conjecture that a

too large kernel size keeps too much background in the pre-

diction, which hinders the object mining in the non-salient

region. Meanwhile, a too small kernel size with little back-

ground blurs the boundary of objects, which impedes the

training of the segmentation network. In our experiments,

we empirically set r = 30.

For the graph-based global reasoning unit, we conduct

experiments to study the effect of the number of feature

nodes N in the interaction space. As shown in Fig. 7, we

vary N over the range {16, 32, 64, 96, 128}. We notice that

a too large number of the nodes N may not improve the per-

formance very much. In our experiments, we empirically

set N = 64.

5. Conclusions

In this work, we proposed a non-salient region object

mining approach for the task of weakly supervised seman-

tic segmentation. Specifically, we introduced a graph-based

global reasoning unit to help the classification network cap-

ture global relations among disjoint and distant regions.

This can strengthen the network’s ability to activate the ob-

jects scattered in the corners or near the edge of the im-

age. To further mine objects outside the non-salient re-

gion, we proposed to exert the segmentation network’s self-

correction ability. A potential object mining module was

proposed to reduce the false-negative rate in pseudo labels.

Moreover, we proposed a non-salient region masking mod-

ule for complex images to generate masked pseudo labels.

Our non-salient region masking module helps further dis-

cover objects in the non-salient region. Extensive experi-

ments on the PASCAL VOC 2012 dataset demonstrated the

superiority of our proposed approach.
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