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Abstract

Though machine learning algorithms are able to achieve
pattern recognition from the correlation between data and
labels, the presence of spurious features in the data de-
creases the robustness of these learned relationships with
respect to varied testing environments. This is known
as out-of-distribution (OoD) generalization problem. Re-
cently, invariant risk minimization (IRM) attempts to tackle
this issue by penalizing predictions based on the unstable
spurious features in the data collected from different envi-
ronments. However, similar to domain adaptation or do-
main generalization, a prevalent non-trivial limitation in
these works is that the environment information is assigned
by human specialists, i.e. a priori, or determined heuris-
tically. However, an inappropriate group partitioning can
dramatically deteriorate the OoD generalization and this
process is expensive and time-consuming. To deal with this
issue, we propose a novel theoretically principled min-max
framework to iteratively construct a worst-case splitting,
i.e. creating the most challenging environment splittings
for the backbone learning paradigm (e.g. IRM) to learn
the robust feature representation. We also design a differ-
entiable training strategy to facilitate the feasible gradient-
based computation. Numerical experiments show that our
algorithmic framework has achieved superior and stable
performance in various datasets, such as Colored MNIST
and Punctuated stanford sentiment treebank (SST). Further-
more, we also find our algorithm to be robust even to a
strong data poisoning attack. To the best of our knowl-
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edge, this is one of the first to adopt differentiable environ-
ment splitting method to enable stable predictions across
environments without environment index information, which
achieves the state-of-the-art performance on datasets with
strong spurious correlation, such as Colored MNIST.

1. Introduction

Most machine learning algorithms rely on the assump-
tion that the training data and test data are sampled from
the same distribution. This poses a fundamental problem
as in real scenario where machine learning systems have to
make decisions based on data sampled from unseen distri-
butions, i.e. out-of-distribution (OoD) data. In conventional
machine learning tasks, we collect a large dataset and ran-
domly split it into training and test parts, thus naturally forc-
ing the two to follow the same distribution. This procedure,
while convenient, can lead to an overly optimistic estima-
tion of the true generalization error. Indeed the model can
over-fit to this original distribution and poorly generalize to
a new test set collected in a slightly different environment.
The root of this limitation is the tendency for models to
use spurious environmental variations as discriminative fea-
tures, since minimizing the empirical risk forces the mod-
els to exploit all features including spurious features from
data that are not related to the explanation of the results.
For example, as shown in Figure 1, the spurious correla-
tion between the class sheep and the grassland background
may lead to worsen generalization performance on test sets
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where the background are desserts or highways, which also
reflects the Occam’s razor that the model tends to learn the
most simple rule for prediction.

Training accuracy:95% Test accuracy:1%

Learned feature

Figure 1. Example of spurious correlation.

To address this issue, several methods have been pro-
posed. Domain generalization approaches have demon-
strated good performance when testing on data with differ-
ent styles, such as photo or painting [5, 19, 20, 9]. How-
ever, as shown in our experiments and [3], domain gen-
eralization or adaptation methods can still easily fall into
the correlation-versus-causation trap because the common
design principle is to force the predictor to learn the con-
tours instead of the textures which is highly problem de-
pendent. As shown in our experiments, these methods are
unable to eliminate the effects of spurious features. On the
other hand, methods based on classic causal inference meth-
ods, such as deep global balancing regression strategy [17],
and causal inference via invariant prediction [24] have been
proposed. However, they are only tested on simple low di-
mensional regression tasks where the correlation between
each feature is not conspicuous. It is still unknown whether
they can generalize well on typical computer vision tasks
where image pixels are highly correlated.

Recently, to tackle the -correlation-versus-causation
dilemma, Shiori et al. proposed a distributionally robust
approach to optimize the loss on the worst-case environ-
ment where data with different properties are assumed to
be split into different environments [26]. Later, Martin et
al. demonstrated that optimizing on the worst-case environ-
ment could still lead to solutions over-fitted to spurious fea-
tures. Instead, the invariant risk minimization (IRM) was
introduced by monitoring the invariance across different en-
vironments [3]. In IRM, a regularization term is introduced
to avoid the performance degeneration in causal inference
methods caused by eliminating features, such as global bal-
ancing in [17]. Although algorithms like IRM look promis-
ing, similar to typical methods in domain adaptation or do-
main generalization, data need to be manually split into dif-
ferent environments to enable them to minimize the perfor-
mance discrepancies across environments. This fundamen-
tal restriction prevents these schemes to be practical. First,
how data arc split can largely influence the final general-
ization abilities. As shown in Figure 3, environment mis-

specification can lead to degenerated performances in IRM.
Second, sometimes, it is impossible to split data in continu-
ous environments. For example, it is hard to decide whether
grouping photos collected at dawn together with photos col-
lected in the day time or night time.

In this paper, based on theoretical analysis, we propose
a novel approach, adversarial invariant learning (AIL), to
iteratively construct worst-case environments/group split-
tings for IRM to learn the invariant features for prediction.
This optimized partitioning over the training samples forces
the network to train towards the robust representation across
this worst-case grouping, thus benefiting the OoD general-
ization. We demonstrate that the combination of the adver-
sarial partitioning and IRM is the key for eliminating effects
of spurious features and also being robust to data poison-
ing attacks, where data poisoning attack aims at breaking
the learning process by adding maliciously perturbed data
which adds wrong correlations between the data and labels.
The contributions can be summarized as follows:

1. Based on theoretical analysis, we formulate the OoD
generalization problem as maximizing the lowerbound
of the log likelihood of causal predictions.

2. For practical instantiation of AIL, we propose to adopt
unsupervised learning methods, such as variational
autoencoders (VAE, [15]) and K-means clustering to
automatically partition the data into different groups
based on the latent features learned in the initial phase
of the algorithm. This is followed by applying IRM to
learn an invariant predictor based on these newly gen-
erated data splits.

3. We unify the unsupervised and supervised learning
component with a min-max formulation and propose a
differentiable approach for updating VAE during train-
ing to dynamically create challenging environments
for the supervised learning component. Ablation stud-
ies show the adversarially trained VAE can signifi-
cantly improve the OoD generalization performance.

4. We demonstrate that our algorithm can achieve supe-
rior empirical performance compared with existing al-
ternatives in various benchmark datasets, such as Col-
ored MNIST and Punctuated Stanford Sentiment Tree-
bank (SST). We also show that our approach is robust
to data poisoning attacks.

2. Preliminary

We present a formal description of the problem setting.
First, as shown in Figure 2, we consider a data generating
process in the form of structured causal model, where X
is the collected data (e.g. images), T is the environment
variable, and S = f(X, T) represents the semantic features
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Figure 2. Data generating process. The semantic feature .S is both
affected by observable variable X and environment variable T.
The correlation between label Y and observable variable X can
be affected by T, thus leading to over-fitting.

resulted from a non-linear combination of X and T deter-
mining the label Y. From this model, T both affects X
and Y which is the cause for over-fitting to spurious en-
vironment features. For example, for image classification
tasks, most images of cars may have highway backgrounds.
The background information is the spurious feature brought
by the data collection environment. It has already been
demonstrated that the generalization abilities of deep neural
networks (DNN) trained on ImageNet can be severely im-
paired by changes in the data collection process [25], e.g.
the background. Given a collected dataset S = (x;,¥;);_1,
the objective is to train a DNN hg : R% — R for Q-class
classification that generalizes well under different environ-
ments.

Problem of empirical risk minimization. To formally
show the over-fitting issue of commonly-used empirical risk
minimization, we consider the conditional distribution of
p(x]t), t ~ p(t) is the prior distribution of the environment.
Classical empirical risk minimization (ERM) tries to mini-
mize the following risk function:

Rerm(0) = Ex v [{(ho(X),Y)]

- / t(ho(x), 3)p(x, y)dxdy

- / 6o (), y)p(yX)p(x[t, y)p(t)p(y)dxdtdy
1)

From this equation, the distribution of p(¢) can heavily in-
fluence the loss landscape with regard to 6. However, p(t)
may be quite different in training and test dataset. It is
demonstrated in [3] and confirmed in our experiment sec-
tion that manipulating p(¢) can generate OoD distributions
and even mislead the model to rely completely on environ-
mental spurious features for prediction.

Challenging settings. In previous works, the ¢ la-
bels containing environment information are assumed to be
known. The above problem may be mitigated by monitoring

the changes in ERM loss across environments. However, in
our setting, ¢ is a hidden variable that cannot be directly
observed. The spurious correlation between ¢ and Y can
be misleading for most methods relying on correlation. A
naive solution might be assigning a random ¢ to each data
point or label them heuristically. However, this misspec-
ification can lead to suboptimal performance as shown in
Figure 3.

0.61 ! * - o—e—s

0 40 80 120 160 200 240
Number of iterations

Figure 3. Performance of IRM under different rates of environ-
ment misspecification. Y-axis indicates the MSE between the cur-
rent solution and the true invariant solution across different envi-
ronments. Higher rate of misspecification can lead to failure of
convergence. When the rate is 0.5, two environments’ data are
uniformly mixed. More details are in the Appendix.

3. Proposed method
3.1. Theoretical analysis

From the above example, using the correlation-based
prediction P(y|x; @) can elicit severe over-fitting to spuri-
ous features. To derive the causal prediction P(y|do(x); )
that excludes the effects of environment variable T', we first
use the backdoor adjustment method [23] to translate the
causal inference problem in the context of classic statistical
learning:

Theorem 1. (Backdoor adjustment). Given the structured
causal graph in Figure 2 and neural network parameters 0,

p(yldo(x); 0) = >, p(ylx, S = f(x,t); 8)p(t).

The proof of this theorem can be found in the Appendix.
From this theorem, if p(¢) is known, we may be able to cal-
culate the causal prediction given image . However, as dis-
cussed before, only ptrqin(t) is known for training set and
Prest(t) can be quite different. To achieve robust general-
ization performance across possible variations of p(t), one
may consider optimizing only the worst distribution to max-
imize p(y|do(z)) drawn from p(¢) whereas this might lead
to over-fitting as only a small fraction of data can be used for
training. Instead, we consider maximizing the lower bound
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of p(y|do(zx); @) by decomposing p(¢) into series of distri-
butions that can be summed to the original distribution. We
name each of the distribution sub-distribution for clarity.
We first make the following assumption:

Assumption 1. The distribution of t in the training data

can be decomposed into K sub-distributions, which satisfies
n®) = % S0 Plrain(?)

Ptrain K k=1 ptrazn ‘

This assumption assumes pyrqin (t) is separable. We de-
note the series of sub-distributions {p%..;,,(t)} as P. Then,
we show the lower bound of likelihood can be represented
by the weighted sum of likelihood of each sub-distribution:

Theorem 2. (Lower bound of likelihood). If Assumption 1
holds and the Rényi divergence between pyyqin (t) and p(t)
satisfies: Doy (p(t)Hptrain(t)) < C, then:

log p(y|do(x); 0)] = log Y _ p(ylx, S = f(x,t); 0)p(t)

> mjn (i > logplylr, S = fa.); e>pfmm<t>>
k=1

K exp®
2

The proof of this theorem can be found in the Appendix.
This theorem indicates that maximizing the likelihood of
p(y|do(x); @) can be alternatively achieved by maximizing
its lower bound via finding series of sub environment vari-
able distributions that elicits the worst possible performance
on the prediction. Note that the constant C' determines how
close is the lower bound to the true log likelihood. This the-
orem provides a way to obtain the causally robust predictor.
We name this approach “Adversarial Invariant Learning”
(AIL). Then the loss function of AIL ¢(0) can be written as
a min-max formulation:

. 1
min mgxzk: KE[Z:: log p(ylz, S = f(x,1); 0)p}r i (t)]
+ AR(6.P) ©)

where A\ is the coefficient for regularization function
R(6,P) also absorbing the constant 1/ exp®. Next, we will
provide a reasonable instantiation of AIL as below.

3.2. Instantiation of AIL

The proposed method consists of an unsupervised com-
ponent for creating challenging sub-distributions of data
and a supervised learning component for learning an invari-
ant predictor that evolves together via an adversarial train-
ing scheme. In the unsupervised module, we model the in-
ner data structure with a generative model (i.e. variational
autoencoder) pre-trained on the unlabeled dataset, and then
later fine-tune with adversarial gradients to maximize loss
function to dynamically create challenging “assignments”

(e.g. by K-means clustering) of environments for the super-
vised learning component. We argue that the combination
of unsupervised and supervised module is necessary. As the
spurious correlation between irrelevant features and labels
are often the cause for degenerated generalization perfor-
mance on OoD data. In the supervised part, IRM is used
as the regularization function to achieve an invariant pre-
dictor across the environment splitting by the adversarially
trained VAE and clustering. It is worth noting that this is not
the only way to implement AIL. For example, the K-means
clustering can be substituted by Gaussian mixture model.
The invariant minimization regularization can also be re-
placed by other methods, such as risk extrapolation (ReX,
[16]). We leave more detailed discussions of the module
choice in the Appendix.

3.2.1 Bayesian variational clustering

In this module, we use the semantic representation learned
from a variational autoencoder (VAE, [15]) and conduct K-
means clustering within each class to split data into different
sub-groups.

Variational autoencoder We use VAE to model the data
generating process p(x|t). In VAE, given an input datum x,
it is first encoded into the latent code g, and then the latent
code g is decoded by DNN to reconstruct the input datum.
To train VAE, the negative evidence lower bound (ELBO)
is used as the loss function:

Cripo(Ovar) = —Dxi(q(g) || po(g)) + Eq(e) [10gp(x|g)j
“)

where Dy is the Kullback-Leibler divergence, po(g) is the
prior distribution of the latent code set to be a unit Gaus-
sian, and the second term is the reconstruction loss, ¢(g) is
the variational distribution for the true posterior of p(g|x),
which follows a Gaussian distribution with parameters de-
termined by VAE. The idea of VAE is to use an approximate
distribution ¢(g) to model the latent distribution of the data
generating process p(t|x). The learned latent semantic dis-
tribution ¢(g) for input data x is then used for inner-class
differentiable K-means clustering.

Inner-class differentiable K-means clustering Based
on the learned latent codes g, we use K-means clustering
within each class to split data into different environments.
We assumed the data can be split into 1" clusters for simplic-
ity. Then, we conduct T clusters K-means clustering within
each class for C classes. We found the inner-class cluster-
ing is necessary as data with different classes pose distinct
distributions that may cover the effects of environment vari-
able changes.

Implementing a differentiable clustering method is non-
trival. To allow adversarial gradient calculation for VAE
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(described in Section 3.2.3), we modify the original K-
means clustering to a differentiable version. Instead of as-
signing an integer to denote the class index, we calculate the
probability of a given datum x based on the cluster centers,

d - dmam
OZ(t|X) _ - exp( t(x) (X)) ,
Zt:l eXp (dt (X) - dmaw(x)) te
wheret =1,---,T (5)

where a(t|x) is the probability of a datum x belonging to
environment ¢, d;(x) is the distance of the latent code of the
datum to the ¢-th cluster center, d,,q.(X) is the maximum
distance, and e is the added parameter to improve numerical
stability. Through adversarial VAE updates, the clustering
step aims at creating worst possible data splittings for later
algorithmic paradigm to learn. Another advantage of the
adversarial updates is that the T' can be adaptively deter-
mined as when 7' is too large, some clusters will have zero
members in order to maximize the loss. Note that for sav-
ing computational time, we use this differentiable K-means
instead of Gaussian mixture model (GMM) as GMM needs
a few iterations to train before clustering every time. We
thus leave it for future work for more complex clustering
methods, such as GMM.

3.2.2 Invariant Risk Minimization Regularization

Based on the inferred a(t|x), we are able to apply the
IRM to learn an invariant predictor across different envi-
ronments. Recently, Martin et al. [3] proposed the IRM
method to achieve invariant prediction across environments
which is arguably the hallmark for causal inference [7, 1].
In IRM, given data collected in T" environments, it aims to
learn a stable feature extractor I' : X — H to transform
data X into a feature space H that is invariant across dif-
ferent environments and a classifier w : H — Y to predict
based on the feature. Formally, it can be written as:

T
. ¢ - . bt
min E R'(Wwol) st weargmin_, R (W' ol),

wH—Y t=1

fort=1,---,T 6)

where R! is the ERM risk of the ¢-th environment. How-
ever, there are several problems that may prevent IRM from
being practically useful:

1. Feasibility of solutions. This problem may not be fea-
sible and be hard to solve as requiring W to be simulta-
neously optimal for all environments is too demanding.

2. Multiple solutions. There might be multiple solutions
as well, as wo W o ¥~ ! oI will also be a solution when
¥ is an invertible transform. Instead, IRM sets w o I
as (w-w) oI by multiplying a scalar w to the classifier

w. As w can be absorbed in T', satisfying the condition
in Eq. 6 simply requires solving multiple optimization
problems.

Instead, in [3], the authors proposed to add a regulariza-
tion term ||V, [y=1 R (w - ®)||? to the original ERM loss,
where w € R and @ : X — Y is the parameters of the
neural network. ':

T
min_ > (RY(®) + | Vyjuo1 R (w - ®)[%) (D)

P:X—-Y

Note that this changes the original bi-level optimization
problem into a single level one with regard to model pa-
rameters ®. Now, based on the inner-class differentiable
K-means clustering result, we subsitute the original ERM
loss with the first term in Eq. 3:

T
pin, t; Ext vyt ot [l(ha(X),Y)]

+ M Vw1 Ext viar [l(w - he(X), Y)][? ()

where «(t|X) is the probability of the data belonging to
the ¢-th environment calculated in Eq. (5), X! and Y* are
data and labels split to the ¢-th environment.

3.2.3 Formulation of Adversarial Invariant Learning

Motivated from Theorem 2, to learn an invariant predic-
tor that can exclude spurious correlation in the datasets, we
consider a min-max game between an attacker and a learner
to maximize the lowerbound of the log likelihood of the
causal prediction. In this game, the attacker tries to maxi-
mize the loss by creating hard data splittings to mimic OoD
distributions and while the learner attempts to minimize the
loss to learn predictor that are robust to distribution shifts.
More specifically, the attacker is the adversarially trained
VAE and clustering in the unsupervised learning component
and the learner is the supervised DNN. As the distribution
of environment splitting «(¢|x) is determined by VAE, we
denote a(t|x) as avag(t|x), the objective function of this
min-max game is then,

[(he(X), Y)]+

min maxEx: vt ot
DXSY Oy Y O

T
(Z MVafwmtExe v ag, [ - ha(X), Y)] ||2> ©
t=1

Through this min-max formulation, we cast the original
problem of learning non-spurious structure from a single
dataset into a robust optimization problem to find a model

"The proof why fixing w as 1 is enough is in [3]
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parameter ¢ that can achieve good performance on worst
possible data splittings. This formulation could enforce the
classifier to be robust to the inaccurate splitting of the envi-
ronments. We will show in the ablation studies that this for-
mulation can significantly improve the generalization abili-
ties under a large distribution gap between training and test
environments in Section 4.4.

3.24 Algorithm

To solve the game formulated in Eq. (9), we propose the
procedure described in Alg. | in the Appendix. We first pre-
train VAE in the first several epochs and then use stochastic
gradient optimization with min-max optimization to achieve
equilibrium in the game.

Comparison with existing works Compared with distri-
butional robust optimization (DRO, [28]), our approach
optimizes for worst possible splitting of data into differ-
ent environments to improve the robustness, while DRO
methods only consider the worst-case perturbation near the
original data distribution. Deep global balancing regression
(DGBR, [17]) uses the bottleneck representations of an au-
toencoder (AE) as the input features for a multilayer per-
ceptron to predict labels and optimize at the same time for
reconstruction and prediction loss. This constrains the gen-
eralization ability as the AE’s features are learned for recon-
structing the inputs which may be quite different from fea-
tures useful for discriminative tasks. The domain general-
ization by solving jigsaw puzzles (JIGSAW, [0]) introduces
an auxiliary task by randomly scrambling image patches
and then predicting the correct ordering sequence to recon-
struct the original image (JIGSAW puzzle). However, solv-
ing the JIGSAW puzzle can only help the model to gener-
alize well when the distribution shift is not large [14]. And
thus, different from these approaches, our method in prin-
ciple achieves the generalization across multiple test envi-
ronments without knowing the environment index a priori.
More importantly, through adversarial learning over the en-
vironment splitting, our approach exhibits strong robustness
to malicious clustering, as shown in the experiment part.

4. Experiments

We compare AIL (proposed), invriant risk minimization
(IRM [3]), distributional robust optimization (DRO [28]),
deep global balancing regression (DGBR [!7]), domain
generalization by solving jigsaw puzzles (JIGSAW [6]),
and empirical risk minimization (ERM) methods. DGBR
is a widely used baseline method for causal inference in
the deep learning setting. JIGSAW is the state-of-the art
work for domain generalization research and it is one of
the very few methods that do not require domain (envi-
ronment) index. We evaluate these approaches on colored

MNIST dataset, punctuated SST-2 dataset, and data poison-
ing attacked MNIST dataset’>. We also leave more base-
line comparison experiments including recently published
papers and detailed experiment settings in the Appendix.

starts with a legend
with his usual intelligence and subtlety .

very good viewing alternative !

by far the worst movie of the year .
sit through

sometimes dry !

a $ 40 million version of a game .
gorgeous and deceptively minimalist

Figure 4. Left: Colored MNIST examples. Color is the spurious
feature. Right: Punctuated SST-2 examples. Mark is the spurious
feature. Better viewed when zoomed in.

4.1. Image recognition tasks

In this section, we conduct experiments based on the new
constructed MNIST dataset with a similar experiment pro-
tocol as in IRM>. The new dataset consists of data generat-
ing from three environments (two randomly mixed for train-
ing, one for test). Similar to the setting in [3], we follow
these steps to generate the colored MNIST datasets for each
environment: first, we assign a binary label ¢ to the image
(y = 0 for digits 0-4 and § = 1 for 5-9). We then flip labels
with probability p. The color type indexes are determined
by flipping y with probability e. These steps are the same
for generating both the training and test environments but
with different e values, which denote the environment shift
between training and test. For the training environments,
we set e = 0.1 and e = 0.2. For the test environment, we
set e = 0.9. The difference of e in the training and test data
poses great challenges for commonly-used machine learn-
ing algorithms as i.i.d assumptions cannot be satisfied. In
this case, z is the strokes of digits, which is the key feature
determining the true labels of digits. ¢ is the spurious fea-
ture color, which disturbs the model. We can adjust p to
control the correlation strength of the spurious feature color
to the label.

We train DNNs on the mixed colored MNIST dataset
with different methods and visualize the results in Figure 5.
We can observe that with the increase of p, AIL has de-
creased training accuracies but maintains a relatively stable
high accuracy on the test dataset that follows different dis-
tribution as the training dataset. This indicates that AIL is
able to react to the distribution shift in the training dataset
and generalize well despite the effects of spurious features.
Note that DGBR achieves quite stable performances as it
utilizes features generated by an autoencoder. Although

2Note that there are some quite recent work we wish to compare [12].
However, until the submission of this paper, the released code has not been
ready yet.

3https://github.com/facebookresearch/InvariantRiskMinimization
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DGBR improves the stability of predictions as in [17], it
heavily restricts the DNN’s generalization abilities. On the
other hand, domain generalization methods such as JIG-
SAW cannot deal with this situation, as they require the dis-
tance between the distribution of the target domain and the
training domain to be small [14].

1.0 1.0
S— —— AIL
0.8 \‘\,\H\‘ 0.8 DRO
g g | —**—_ — DGBR
30.6 50.6 —— JIGSAW
° —— AL ] e ERM
£o04 DRO ©0.4
5 —— DGBR 2
F0.2{ —— JIGSAW 0.2
—— ERM
0'8.10 0.15 0.20 0.25 0.30 %810 0.15 0.20 0.25 0.30
P p

Figure 5. Left: training accuracy. Right: test accuracy. When p
gets larger, the distribution difference between the training and test
dataset becomes larger. Better viewed when zoomed in.

4.2. Natural language processing tasks

Overly exploiting spurious features also results in a
large performance gap in natural language processing tasks
[11,21,22]. Here we conduct an experiment using the same
setting as in [8] on the SST-2 dataset. The task is to pre-
dict whether a given sentence expresses positive or negative
feelings in the SST-2 dataset as shown in Figure 4 Right.
The dataset consists of five environments (two for training
and three for test). Similarly, for generating data in each
environment, all punctuation marks in the middle of sen-
tences are removed, and then the labels are flipped with a
probability e. Next, sentences are paired with a punctuation
mark: positive with a period (.) and negative with an ex-
clamation mark (!). Finally, with probability p, labels are
flipped. Our implementation is based on “. In this experi-
ment, as sentences can have variable lengths, a pre-trained
vocabulary is used to embed each word in a sentence into
a vector living in a compact high-dimensional manifold. In
this task, we only evaluate ERM because the sum of the
embedded feature is not meaningful for the autoencoder in
DGBR. Likewise, DRO and JIGSAW are typically designed
for image processing tasks.

The results are shown in Table 1. From Table 1, we can
observe that ERM overly exploits all features including the
spurious feature mark to achieve good performance on the
training sets but with poor generalization performance on
the test sets. On the other hand, AIL achieves relatively
stable predictions across all environments.

4.3. Adversarial robustness to data poisoning attack

Data poisoning attack is an attack method in the training
phase of machine learning models, where the attacker adds

“https://github.com/kakaobrain/irm-empirical-study

Table 1. Punctuated SST-2 dataset results. 1 — e is the correlation
between the spurious feature-mark and the label. The setting of
e in the training and test environments are: e; = 0.2, ez = 0.1,
€3 = 0.7, €4 = 0.8, €5 = 0.9.

Settings ERM AIL
Training set (e1) | 82.16% | 60.45%
Training set (e2) | 90.57% | 63.99%

Test set (e3) 32.77% | 49.32%
Test set (e4) 28.52% | 50.90%
Test set (e5) 15.72% | 43.48%

Table 2. Adversarial robustness to data poisoning attack

Methods | Training accuracy | Test accuracy
ERM 72.01% 75.94%
DRO 52.41% 53.12%
DGBR 89.72% 50.58%

JIGSAW 86.00% 94.10%
AIL 89.16% 97.05%

malicious examples (“poisoned” examples) into the train-
ing dataset to change the behaviour of the trained model
at test time [13]. In this experiment, we focus on the case
where the attacker’s objective is to destroy the model’s per-
formance on the test dataset. Besides, to make the task even
more challenging, similar to the setting in [27], we initial-
ize the models with weights trained on the clean dataset and
then fine-tune the models’ last fully-connected layers on the
poisoned dataset. We evaluate the robustness of different
methods on the MNIST dataset. From the results shown
in Table 2, we can observe that AIL exhibits robustness to
even strong data poisoning attacks. The reason is as fol-
lows. Different from ERM that naively minimizes the total
loss on the training set, AIL can split the polluted data into
another environment to avoid over-fitting. It is worth not-
ing that JIGSAW is also robust to this attack but still more
vulnerable than AIL. This is because JIGSAW introduces
an auxiliary task to ensemble the scrambled image patches,
which prevents over-fitting the poisoned data.

4.4. Ablation study and discussion

Adversarial training For ablation studies, we first inves-
tigate the importance of adversarial splitting. We use the
colored MNIST experiment as an example. The results are
shown in Table 3. We denote the AIL without adversar-
ial splitting as AIL(w/o adv). We can see that under var-
ious settings of p, adversarial training can stably improve
the generalization performance. This is because adversar-
ial training can dynamically explore hard environments to
learn an invariant predictor across different environments.
To visualize the effects of adversarial training on data
splitting, we plot the clustering results of pre-trained VAE
and adversarially trained VAE on the same data in Figure 6.
We can observe that adversarially trained VAE attempts to
split the data in the worst possible way to train an invariant
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Table 3. Ablation study: effect of adversarial training.
Test accuracies under different settings of p.

Methods p=0.1 p=0.2 p=20.3
AlL(w/o adv) 65.04% 61.05% 55.47%
AIL 65.58 % 68.49 % 60.53%
Test accuracies under different settings of offsets 3.
Methods B =0.001 | 5=0.002 | 3 =0.003
AIL(w/0 adv) 60.77% 59.64% 58.48%
AIL 62.41% 62.05% 66.91%

predictor that is forced to be effective across environments
and robust to environment assignments.
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Figure 6. Left: clustering after pre-training VAE. Right: cluster-
ing after adversarially training VAE for one iteration.

Robustness to VAE parameters perturbations To check
whether adversarially trained VAE can exhibit robustness to
perturbations of VAE parameters, we add a constant offset
B to all VAE parameters after pre-training and report the
results in Table 3. As discussed in Section 3.2.1, there are
multiple solutions for optimizing the ELBO loss in VAE.
Different offsets at the initialization of VAE training can
elicit different solutions that are not necessarily all benefi-
cial for learning an invariant predictor. From Table 3, with-
out adversarial training to adaptively update VAE, perfor-
mance can be greatly degenerated. On the contrary, adding
perturbations to the AIL may even lead to improved perfor-
mances in some cases.

Robustness to cluster number misspecification Next,
we discuss the selection of the number of clusters 7T in
Bayesian variational clustering. The minimum number of
clusters T' is two. We increase 1" from two and observe that
the test accuracy will be stable under the increasing 71" as
shown in Table 4. This is because the min-max formula-
tion in our implementation naturally incorporates an adap-
tive scheme to maintain a reasonable number of clusters to
maximize the loss.

Comparison with IRM We also compare the perfor-
mance of AIL and the original IRM with environment in-
formation prior assigned by humans on Colored MNIST.
For fair comparisons, we adopt similiar test protocols as in

Table 4. Robustness to cluster number misspecification

Cluster number | Test accuracy | Cluster number | Test accuracy
T=2 66.76% T=6 62.79%
T=3 69.23% T=7 66.28%
T=4 66.79% T=8 67.75%
T=5 66.34% T=9 63.48%

[10]. The mean and standard deviation result is shown in

Figure 7. From Figure 7, we can observe that AIL consis-
tently outperforms IRM across different difficulty levels.
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Figure 7. Comparison between AIL and IRM.

5. Conclusion and future work

In this paper, we have proposed AIL as one of the first
algorithmic frameworks to adopt differentiable environment
splitting method to enable stable predictions across environ-
ments without environment index information. AIL indi-
cates a new promising research direction for OoD general-
ization. For future work, we will explore more generative
models to effectively represent features in the high dimen-
sional space and further improve the generalization perfor-
mances.
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