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Abstract

Cardiac tagging magnetic resonance imaging (t-MRI) is

the gold standard for regional myocardium deformation and

cardiac strain estimation. However, this technique has not

been widely used in clinical diagnosis, as a result of the dif-

ficulty of motion tracking encountered with t-MRI images.

In this paper, we propose a novel deep learning-based fully

unsupervised method for in vivo motion tracking on t-MRI

images. We first estimate the motion field (INF) between

any two consecutive t-MRI frames by a bi-directional gen-

erative diffeomorphic registration neural network. Using

this result, we then estimate the Lagrangian motion field

between the reference frame and any other frame through

a differentiable composition layer. By utilizing temporal

information to perform reasonable estimations on spatio-

temporal motion fields, this novel method provides a use-

ful solution for motion tracking and image registration in

dynamic medical imaging. Our method has been vali-

dated on a representative clinical t-MRI dataset; the exper-

imental results show that our method is superior to con-

ventional motion tracking methods in terms of landmark

tracking accuracy and inference efficiency. Project page

is at: https://github.com/DeepTag/cardiac_

tagging_motion_estimation.

1. Introduction

Cardiac magnetic resonance imaging (MRI) provides a

non-invasive way to evaluate the morphology and function

of the heart from the imaging data. Specifically, dynamic

cine imaging, which generates a 2D image sequence to

cover a full cardiac cycle, can provide direct information

of heart motion. Due to the long imaging time and breath-

holding requirements, the clinical cardiac MRI imaging

protocols are still 2D sequences. To recover the 3D mo-
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Figure 1. Standard scan views (2-, 3-, 4-chamber views and short-

axis views) of cardiac MRI. (a) Tagging images. Number under

the figure means percentage of one cardiac cycle. (b) End-diastole

(ED) phase of cine images. Red and green contours depict the

epi- and endo-cardial borders of left ventricle (LV) myocardium

(MYO) wall. Blue contour depicts the right ventricle (RV). LA:

left atrium. RA: right atrium.

tion field of the whole heart wall, typically we need to scan

several slices in long axis (2-, 3-, 4-chamber) views and

short-axis (SAX) views, as shown in Fig. 1. There are two

kinds of dynamic imaging: conventional (untagged) cine

MR imaging and tagging imaging (t-MRI) [1]. For un-

tagged cine images (most recent work has focused on these

images), feature tracking can be used to estimate myocar-

dial motion [22, 35, 40, 57, 55, 54]. However, as shown

in Fig. 1 (b), due to the relatively uniform signal in the my-

ocardial wall and the lack of reliable identifiable landmarks,

the estimated motion cannot be used as a reliable indicator

for clinical diagnosis. In contrast, t-MRI provides the gold

standard imaging method for regional myocardial motion

quantification and strain estimation. The t-MRI data is pro-

duced by a specially designed magnetic preparation module
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called spatial modulation of magnetization (SPAMM) [5].

It introduces the intrinsic tissue markers which are stripe-

like darker tag patterns embedded in relatively brighter my-

ocardium, as shown in Fig. 1 (a). By tracking the defor-

mation of tags, we can retrieve a 2D displacement field in

the imaging plane and recover magnetization, which non-

invasively creates fiducial “tags” within the heart wall.

Although it has been widely accepted as the gold stan-

dard imaging modality for regional myocardium motion

quantification, t-MRI has largely remained only a research

tool and has not been widely used in clinical practice.

The principal challenge (detailed analysis in Supplementary

Material) is the associated time-consuming post-processing,

which could be principally attributed to the following: (1)

Image appearance changes greatly over a cardiac cycle and

tag signal fades on the later frames, as shown in Fig. 1 (a).

(2) Motion artifacts can degrade images. (3) Other arti-

facts and noise can reduce image quality. To tackle these

problems, in this work, we propose a novel deep learning-

based unsupervised method to estimate tag deformations on

t-MRI images. The method has no annotation requirement

during training, so with more training data are collected,

our method can learn to predict more accurate cardiac de-

formation motion fields with minimal increased effort. In

our method, we first track the motion field in between two

consecutive frames, using a bi-directional generative diffeo-

morphic registration network. Based on these initial mo-

tion field estimations, we then track the Lagrangian motion

field between the reference frame and any other frame by a

composition layer. The composition layer is differentiable,

so it can update the learning parameters of the registration

network with a global Lagrangian motion constraint, thus

achieving a reasonable computation of motion fields.

Our contributions could be summarized briefly as fol-

lows: (1) We propose a novel unsupervised method for t-

MRI motion tracking, which can achieve a high accuracy of

performance in a fast inference speed. (2) We propose a bi-

directional diffeomorphic image registration network which

could guarantee topology preservation and invertibility of

the transformation, in which the likelihood of the warped

image is modeled as a Boltzmann distribution, and a nor-

malized cross correlation metric is incorporated in it, for its

robust performance on image intensity time-variant regis-

tration problems. (3) We propose a scheme to decompose

the Lagrangian motion between the reference and any other

frame into sums of consecutive frame motions and then im-

prove the estimation of these motions by composing them

back into the Lagrangian motion and posing a global motion

constraint.

2. Background

Regional myocardium motion quantification mainly fo-

cuses on the left ventricle (LV) myocardium (MYO) wall.

It takes one t-MRI image sequence (usually a 2D video) as

input and outputs a 2D motion field over time. The motion

field is a 2D dense field depicting the non-rigid deforma-

tion of the LV MYO wall. The image sequence covers a full

cardiac cycle. It starts from the end diastole (ED) phase, at

which the ventricle begins to contract, then to the maximum

contraction at end systole (ES) phase and back to relaxation

to ED phase, as shown in Fig. 1. Typically, we set a refer-

ence frame as the ED phase, and track the motion on any

other later frame relative to the reference one. For t-MRI

motion tracking, previous work was mainly based on phase,

optical flow, and conventional non-rigid image registration.

2.1. Phase-based Method

Harmonic phase (HARP) based method is the most rep-

resentative one for t-MRI image motion tracking [37, 38,

28, 27, 17]. Periodic tags in the image domain correspond

to spectral peaks in the Fourier domain of the image. Isolat-

ing the first harmonic peak region by a bandpass filter and

performing an inverse Fourier transform of the selected re-

gion yields a complex harmonic image. The phase map of

the complex image is the HARP image, which could be used

for motion tracking since the harmonic phase of a material

point is a time-invariant physics property, for simple trans-

lation. Thus, by tracking the harmonic phase vector of each

pixel through time, one can track the position and, by exten-

sion, the displacement of each pixel along time. However,

due to cardiac motion, local variations of tag spacing and

orientation at different frames may lead to erroneous phase

estimation when using HARP, such as bifurcations in the

reconstructed phase map, which also happens at boundaries

and in large deformation regions of the myocardium [28].

Extending HARP, Gabor filters are used to refine phase map

estimation by changing the filter parameters according to

the local tag spacing and orientation, to automatically match

different tag patterns in the image domain [13, 50, 39].

2.2. Optical Flow Approach

While HARP exploits specificity of quasiperiodic t-MRI,

the optical flow (OF) based method is generic and can be ap-

plied to track objects in video sequences [18, 8, 7, 32, 52].

OF can estimate a dense motion field based on the basic

assumption of image brightness constancy of local time-

varying image regions with motion, at least for a very short

time interval. The under-determined OF constraint equa-

tion is solved by variational principles in which some other

regularization constraints are added in, including the im-

age gradient, the phase or block matching. Although efforts

have been made to seek more accurate regularization terms,

OF approaches lack accuracy, especially for t-MRI motion

tracking, due to the tag fading and large deformation prob-

lems [11, 49]. More recently, convolutional neural networks

(CNN) are trained to predict OF [16, 19, 20, 24, 26, 41, 31,
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47, 53, 51, 48]. However, most of these works were su-

pervised methods, with the need of a ground truth OF for

training, which is nearly impossible to obtain for medical

images.

2.3. Image Registration-based Method

Conventional non-rigid image registration methods have

been used to estimate the deformation of the myocardium

for a long time [46, 43, 30, 12, 34, 25]. Non-rigid reg-

istration schemes are formulated as an optimization pro-

cedure that maximizes a similarity criterion between the

fixed image and the transformed moving image, to find the

optimal transformation. Transformation models could be

parametric models, including B-spline free-form deforma-

tion [46, 34, 12], and non-parametric models, including the

variational method. Similarity criteria are generally cho-

sen, such as mutual information and generalized informa-

tion measures [43]. All of these models are iteratively opti-

mized, which is time consuming.

Recently, deep learning-based methods have been ap-

plied to medical image registration and motion tracking.

They are fast and have achieved at least comparable accu-

racy with conventional registration methods. Among those

approaches, supervised methods [42] require ground truth

deformation fields, which are usually synthetic. Registra-

tion accuracy thus will be limited by the quality of syn-

thetic ground truth. Unsupervised methods [9, 10, 23, 22,

56, 15, 6, 14, 36, 44, 45, 33] learn the deformation field by a

loss function of the similarity between the fixed image and

warped moving image. Unsupervised methods have been

extended to cover deformable and diffeomorphic models.

Deformable models [6, 9, 10] aim to learn the single direc-

tional deformation field from the fixed image to the moving

image. Diffeomorphic models [14, 22, 33, 45] learn the sta-

tionary velocity field (SVF) and integrate the SVF by a scal-

ing and squaring layer, to get the diffeomorphic deformation

field [14]. A deformation field with diffeomorphism is dif-

ferentiable and invertible, which ensures one-to-one map-

ping and preserves topology. Inspired by these works, we

propose to use a bi-directional diffeomorphic registration

network to track motions on t-MRI images.

3. Method

We propose an unsupervised learning method based on

deep learning to track dense motion fields of objects that

change over time. Although our method can be easily ex-

tended to other motion tracking tasks, without loss of gen-

erality, the design focus of the proposed method is t-MRI

motion tracking.

3.1. Motion Decomposition and Recomposition

As shown in Fig. 2, for a material point m which moves

from position X0 at time t0, we have its trajectory Xt.

X0
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X
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Φ
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Figure 2. Interframe (INF) motion φ and Lagrangian motion Φ.
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Figure 3. An overview of our scheme for regional myocardium

motion tracking on t-MRI image sequences. φ: Interframe (INF)

motion field between consecutive image pairs. Φ: Lagrangian mo-

tion field between the first frame and any other later frame.

In a N frames sequence, we only record the finite posi-

tions Xn(n = 0, 1, ..., N − 1) of m. In a time interval

∆t = tn−1 − tn−2, the displacement can be shown pic-

torially as a vector φ(n−2)(n−1), which in our work we

call the interframe (INF) motion. A set of INF motions
{

φt(t+1)(t = 0, 1, ..., n− 2)
}

will recompose the motion

vector Φ0(n−1), which we call the Lagrangian motion.

While INF motion φt(t+1) in between two consecutive

frames is small if the time interval ∆t is small, net La-

grangian motion Φ0(n−1), however, could be very large in

some frames of the sequence. For motion tracking, as we

set the first frame as the reference frame, our task is to

derive the Lagrangian motion Φ0(n−1) on any other later

frame t = n − 1. It is possible to directly track it based

on the associated frame pairs, but for large motion, the

tracking result Φ′
0(n−1) could drift a lot. In a cardiac cy-

cle, for a given frame t = n − 1, since the amplitude

‖ φ(n−2)(n−1) ‖ ≤ ‖ Φ0(n−1) ‖, decomposing Φ0(n−1)

into
{

φt(t+1)(t = 0, 1, ..., n− 2)
}

, tracking
{

φt(t+1)

}

at

first, then composing them back to Φ0(n−1) will make

sense. In this work, we follow this idea to obtain accurate

motion tracking results on t-MRI images.

3.2. Motion Tracking on A Time Sequence

Fig. 3 shows our scheme for myocardium motion track-

ing through time on a t-MRI image sequence. We first

estimate the INF motion field φ between two consecu-

tive frames by a bi-directional diffeomorphic registration

network, as shown in Fig. 4. Once all the INF motion
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Figure 4. An overview of our proposed bi-directional forward-

backward generative diffeomorphic registration network.

fields are obtained in the full time sequence, we compose

them as the Lagrangian motion field Φ, which is shown in

Fig. 5. Motion tracking is achieved by predicting the po-

sition Xn−1 on an arbitrary frame moved from the posi-

tion X0 on the first frame with the estimated Lagrangian

motion field: Xn−1 = Φ0(n−1)(X0). In our method, mo-

tion composition is implemented by a differentiable com-

position layer C, as depicted in Fig. 6. When training the

registration network, such a differentiable layer can back-

propagate the similarity loss between the warped reference

image by Lagrangian motion field Φ and any other later

frame image as a global constraint and then update the pa-

rameters of the registration net, which in turn guarantees a

reasonable INF motion field φ estimation.

3.3. Bi-Directional Forward-Backward Generative
Diffeomorphic Registration Network

As shown in Fig. 4, we use a bi-directional forward-

backward diffeomorphic registration network to estimate

the INF motion field φ. Our network is modeled as a gen-

erative stochastic variational autoencoder (VAE) [21]. Let

x and y be a 2D image pair, and let z be a latent variable

that parameterizes the INF motion field φ : R2 → R
2. Fol-

lowing the methodology of a VAE, we assume that the prior

p(z) is a multivariate Gaussian distribution with zero mean

and covariance Σz:

p(z) ∼ N (z;0,Σz). (1)

The latent variable z could be applied to a wide range of

representations for image registration. In our work, in or-

der to obtain a diffeomorphism, we let z be a SVF which

is generated as the path of diffeomorphic deformation field

φ(t) parametrized by t ∈ [0, 1] as follows:

dφ(t)

dt
= v(φ(t)) = v ◦ φ(t), (2)

where ◦ is a composition operator, v is the velocity field

(v = z) and φ(0) = Id is an identity transformation. We

follow [2, 3, 14, 33] to integrate the SVF v over time t =
[0, 1] by a scaling and squaring layer (SS) to obtain the final

motion field φ(1) at time t = 1. Specifically, starting from

φ(1/2T ) = p + v(p)/2T where p is a spatial location, by

using the recurrence φ(1/2t) = φ(1/2t+1) ◦ φ(1/2t+1) we

can compute φ(1) = φ(1/2) ◦ φ(1/2). In our experiments,

T = 7, which is chosen so that v(p)/2T is small enough.

With the latent variable z, we can compute the motion field

φ by the SS layer. We then use a spatial transform layer

to warp image x by φ and we obtain a noisy observation

of the warped image, x ◦ φ, which could be a Gaussian

distribution:

p(y|z;x) = N (y;x ◦ φ, σ2
I), (3)

where y denotes the observation of warped image x, σ2 de-

scribes the variance of additive image noise. We call the

process of warping image x towards y as the forward reg-

istration.

Our goal is to estimate the posterior probabilistic distri-

bution p(z|y;x) for registration so that we obtain the most

likely motion field φ for a new image pair (x,y) via maxi-

mum a posteriori estimation. However, directly computing

this posterior is intractable. Alternatively, we can use a vari-

ational method, and introduce an approximate multivari-

ate normal posterior probabilistic distribution qψ(z|y;x)
parametrized by a fully convolutional neural network (FCN)

module ψ as:

qψ(z|y;x) = N (z;µz|x,y,Σz|x,y), (4)

where we let the FCN learn the mean µz|x,y and diago-

nal covariance Σz|x,y of the posterior probabilistic distri-

bution qψ(z|y;x). When training the network, we imple-

ment a layer that samples a new latent variable zk using

the reparameterization trick: zk = µz|x,y + ǫΣz|x,y , where

ǫ ∼ N (0, I).
To learn parameters ψ, we minimize the KL divergence

between qψ(z|y;x) and p(z|y;x), which leads to maxi-

mizing the evidence lower bound (ELBO) [21] of the log

marginalized likelihood log p(y|x), as follows (detailed

derivation in Supplementary Material):

min
ψ

KL[qψ(z|y;x)||p(z|y;x)]

= min
ψ

KL[qψ(z|y;x)||p(z)]− Eq[log p(y|z;x)]

+ log p(y|x).

(5)

In Eq. (5), the second term −Eq[log p(y|z;x)] is called

the reconstruction loss term in a VAE model. While we

can model the distribution of p(y|z;x) as a Gaussian as in

Eq. (3), which is equivalent to using a sum-of-squared dif-

ference (SSD) metric to measure the similarity between the

warped image x and the observed y, in this work, we in-

stead use a normalized local cross-correlation (NCC) met-

ric, due to its robustness properties and superior results, es-
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pecially for intensity time-variant image registration prob-

lems [4, 29]. NCC of an image pair I and J is defined as:

NCC(I, J) =

∑

p∈Ω

∑

p
i

(I(pi)− Ī(p))(J(pi)− J̄(p))
√

∑

p
i

(I(pi)− Ī(p))2
∑

p
i

(J(pi)− J̄(p))2
,

(6)

where Ī(p) and J̄(p) are the local mean of I and J at posi-

tion p respectively calculated in a w2 window Ω centered at

p. In our experiments, we set w = 9. A higher NCC indi-

cates a better alignment, so the similarity loss between I and

J could be: Lsim(I, J) = −NCC(I, J). Thus, we adopt

the following Boltzmann distribution to model p(y|z;x) as:

p(y|z;x) ∼ exp(−γNCC(y,x ◦ φ)), (7)

where γ is a negative scalar hyperparameter. Finally, we

formulate the loss function as:

Lkl = KL[qψ(z|y;x)||p(z)]− Eq[log p(y|z;x)] + const

=
1

2

[

tr(λDΣz|x,y − logΣz|x,y) + µ
T
z|x,yΛzµz|x,y

]

+
γ

K

∑

k

NCC(y,x ◦ φk) + const,

(8)

where D is the graph degree matrix defined on the 2D im-

age pixel grid and K is the number of samples used to ap-

proximate the expectation, with K = 1 in our experiments.

We let L = D − A be the Laplacian of a neighborhood

graph defined on the pixel grid, whereA is a pixel neighbor-

hood adjacency matrix. To encourage the spatial smooth-

ness of SVF z, we set Λz = Σ
−1
z = λL [14], where λ is a

parameter controlling the scale of the SVF z.

With the SVF representation, we can also compute an in-

verse motion field φ−1 by inputting −z into the SS layer:

φ−1 = SS(−z). Thus we can warp image y towards image

x (the backward registration) and get the observation distri-

bution of warped image y: p(x|z;y). We minimize the KL

divergence between qψ(z|x;y) and p(z|x;y) which leads

to maximizing the ELBO of the log marginalized likelihood

log p(x|y) (see supplementary material for detailed deriva-

tion). In this way, we can add the backward KL loss term

into the forward KL loss term and get:

Lkl(x,y) =

KL[qψ(z|y;x)||p(z|y;x)] +KL[qψ(z|x;y)||p(z|x;y)]

= KL[qψ(z|y;x)||p(z)]− Eq[log p(y|z;x)]+

KL[qψ(z|x;y)||p(z)]− Eq[log p(x|z;y)] + const

= tr(λDΣz|x,y − logΣz|x,y) + µ
T
z|x,yΛzµz|x,y+

γ

K

∑

k

(NCC(y,x ◦ φk) +NCC(x,y ◦ φ−1
k )) + const.

(9)
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Figure 5. A composition layer C that transforms INF motion field

φ to Lagrangian motion field Φ. “W” means “warp”.

C

(b) Interframe (INF) motion field interpolation

+

(a) A differentiable composition layer

φ(n−2)(n−1)

Φ0(n−1)

φ(n−2)(n−1)

Φ0(n−2)

W

q3

q2q1

q0

p = X0

p′ = Xn−2

Xn−2 = Φ0(n−2)(X0)

Figure 6. (a) The differentiable composition layer C. (b) INF mo-

tion field φ interpolation at the new tracked position p′.

The second term spatially smooths the mean µz|x,y , as we

can expand it as µT
z|x,yΛzµz|x,y = λ

2

∑∑

j∈N(i)(µ[i] −

µ[j])2, where N(i) are the neighbors of pixel i. While this

is an implicit smoothness of the motion field, we also en-

force the explicit smoothness of the motion field φ by pe-

nalizing its gradients: Lsmooth(φ) = ‖▽φ‖
2
2.

Such a bi-directional registration architecture not only

enforces the invertibility of the estimated motion field but

also provides a path for the inverse consistency of the pre-

dicted motion field. Since the tags fade in later frames in a

cardiac cycle and there exists a through-plane motion prob-

lem, we need this forward-backward constraint to obtain a

more reasonable motion tracking result.

3.4. Global Lagrangian Motion Constraints

After we get all the INF motion fields in a t-MRI im-

age sequence, we design a differentiable composition layer

C to recompose them as the Lagrangian motion field Φ,

as shown in Fig. 5. From Fig. 2 we can get, Φ01 = φ01,

Φ0(n−1) = Φ0(n−2) + φ(n−2)(n−1)(n > 2). However,

as Fig. 6 (b) shows, the new position p′ = Xn−2 =
Φ0(n−2)(X0) could be a sub-pixel location, and because

INF motion field values are only defined at integer loca-

tions, we linearly interpolate the values between the four
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neighboring pixels:

φ(n−2)(n−1) ◦Φ0(n−2)(X0)

=
∑

q∈N(p′)

φ(n−2)(n−1)[q]
∏

d∈{x,y}

(1− |p′d − qd|),
(10)

where N(p′) are the pixel neighbors of p′, and d iterates

over dimensions of the motion field spatial domain. Note

here we use φ[·] to denote the values of φ at location [·]
to differentiate it from φ(·), which means a mapping that

moves one location Xn−2 to another Xn−1; the same is

used with Φ[·] in the following. In this formulation, we use

a spatial transform layer to implement the INF motion field

interpolation. Then we add the interpolated φ(n−2)(n−1) to

the Φ0(n−2) and get the Φ0(n−1)(n > 2), as shown in Fig. 6

(a) (see details of computing Φ from φ in Algorithm 1 in

Supplementary Material).

With the Lagrangian motion field Φ0(n−1), we can warp

the reference frame image I0 to any other frame at t = n−1:

I0 ◦ Φ0(n−1). By measuring the NCC similarity between

In−1 and I0◦Φ0(n−1), we form a global Lagrangian motion

consistency constraint:

Lg = −

N
∑

n=2

NCC(In−1, I0 ◦Φ0(n−1)), (11)

where N is the total frame number of a t-MRI image se-

quence. This global constraint is necessary to guarantee that

the estimated INF motion field φ is reasonable to satisfy a

global Lagrangian motion field. Since the INF motion es-

timation could be erroneous, especially for large motion in

between two consecutive frames, the global constraint can

correct the local estimation within a much broader horizon

by utilizing temporal information. Further, we also enforce

the explicit smoothness of the Lagrangian motion field Φ

by penalizing its gradients: Lsmooth(Φ) = ‖▽Φ‖
2
2.

To sum up, the complete loss function of our model is

the weighted sum of Lkl, Lsmooth and Lg:

L =

N−2
∑

n=0

[Lkl(In, In+1) + α1(Lsmooth(φn(n+1))+

Lsmooth(φ(n+1)n)) + α2Lsmooth(Φ0(n+1))] + βLg,
(12)

where α1, α2 and β are the weights to balance the contribu-

tion of each loss term.

4. Experiments

4.1. Dataset and Pre-Processing

To evaluate our method, we used a clinical t-MRI dataset

which consists of 23 subjects’ whole heart scans. Each scan

set covers the 2-, 3-, 4-chamber and short-axis (SAX) views.

For the SAX views, it includes several slices starting from

the base to the apex of the heart ventricle; each set has ap-

proximately 10 2D slices, each of which covers a full car-

diac cycle forming a 2D sequence. In total, there are 230

2D sequences in our dataset. For each sequence, the frame

numbers vary from 16 ∼ 25. We first extracted the region

of interest (ROI) from the images to cover the heart, then

resampled them to the same in-plane spatial size 192×192.

Each sequence was used as input to the model to track the

cyclic cardiac motion. For the temporal dimension, if the

frames are less than 25, we copy the last frame to fill the

gap. So each input data is a 2D sequence consists of 25
frames whose spatial resolution is 192× 192. We randomly

split the dataset into 140, 30 and 60 sequences as the train,

validation and test sets, respectively (Each set comes from

different subjects). For each 2D image, we normalized the

image values by first dividing them with the 2 times of me-

dian intensity value of the image and then truncating the

values to be [0, 1]. We also did 40 times data augmenta-

tion with random rotation, translation, scaling and Gaussian

noise addition.

4.2. Evaluation Metrics

Two clinical experts annotated 8 ∼ 32 landmarks on the

LV MYO wall for each testing sequence, for example, as

shown in Fig. 7 by the red dots; they double checked all

the annotations carefully. During evaluation, we input the

landmarks on the first frame and predicted their locations on

the later frames by the Lagrangian motion field Φ. Follow-

ing the metric used in [12], we used the root mean squared

(RMS) error of distance between the centers of predicted

landmark X ′ and ground truth landmark X to assess motion

tracking accuracy. In addition, we evaluated the diffeomor-

phic property of the predicted INF motion field φ, using

the Jacobian determinant det(Jφ(p)) (detailed definitions

of the two metrics in Supplementary Material).

4.3. Baseline Methods

We compared our proposed method with two conven-

tional t-MRI motion tracking methods. The first one is

HARP [37]. We reimplemented it in MATLAB (R2019a).

Another one is the variational OF method1 [11], which

uses a total variation (TV) regularization term. We also

compared our method with the unsupervised deep learning-

based medical image registration methods VM [6] and VM-

DIF [14], which are recent cutting-edge unsupervised im-

age registration approaches. VM uses SSD (MSE) or NCC

loss for training, while VM-DIF uses SSD loss. We used

their official implementation code online2, and trained VM

and VM-DIF from scratch by following the optimal hyper-

parameters suggested by the authors.

1Code is online http://www.iv.optica.csic.es/page49/

page54/page54.html
2https://github.com/voxelmorph/voxelmorph
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Method RMS (mm) ↓ det(Jφ) 6 0 (#) ↓ Time (s) ↓

HARP 3.814± 1.098 5950.4± 1709.4 124.3446± 21.0055
OF-TV 2.529± 0.726 80.3± 71.1 36.6764± 10.6163
VM (SSD) 3.799± 1.031 622.2± 390.7 0.0161± 0.0355
VM (NCC) 2.856± 1.185 11.4± 12.3 0.0162± 0.0351
VM-DIF 3.235± 1.144 1.7± 1.6 0.0202± 0.0332
Ours 1.628± 0.587 0.0± 0.0 0.0202± 0.0339

Table 1. Average RMS error, number of pixels with non-positive

Jacobian determinant and running time.

4.4. Implementation Details

We implemented our method with Pytorch. For the FCN,

the architecture is the same as in [14]. We used the Adam

optimizer with a learning rate of 5e−4 to train our model.

For the hyper-parameters, we set α1 = 5, α2 = 1, β = 0.5,

γ = −0.25, λ = 10, via grid search. All models were

trained on an NVIDIA Quadro RTX 8000 GPU. The models

with the lowest loss on the validation set were selected for

evaluation.

4.5. Results

4.5.1 Motion Tracking Performance

In Table 1, we show the average RMS error and the number

of pixels with non-positive Jacobian determinant for base-

line motion tracking methods and ours. We also show an

example in Fig. 7 (full sequence results in Supplementary

Material). Mean and standard deviation of the RMS errors

across a cardiac cycle are shown in Fig. 8. For HARP, which

is based on phase estimation, there could be missing land-

mark tracking results on the septal wall, due to unrealistic

phase estimations, as indicated by the arrows in Fig. 7. In

addition, depending on the accuracy of the phase estima-

tion, the tracked landmarks could drift far away although

the points of each landmark should be spatially close. OF-

TV performs better than HARP, but it suffers from tag fad-

ing and large motion problems. The tracking results drifted

a lot in the later frames. As shown in Fig. 8, the RMS er-

ror for OF-TV increased with the cardiac cycle phase. VM

(NCC) is better than VM (SSD), because of the robustness

of NCC loss for intensity time-variant image registration.

While VM-DIF uses the SSD loss, it is better than VM

(SSD) because of the diffeomorphic motion field that VM-

DIF aims to learn. However, VM-DIF is worse than VM

(NCC), indicating that NCC loss is more suitable for in-

tensity time-variant image registration problems than SSD

loss. VM and VM-DIF are worse than OF-TV, which sug-

gests that we cannot apply the cutting-edge unsupervised

registration methods to the t-MRI motion tracking problem

without any adaptation. Our method obtains the best per-

formance since it utilizes the NCC loss, bi-directional and

global Lagrangian constraints, as well as the diffeomorphic

nature of the learned motion field. The diffeomorphic at-
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F17

F18

HARP    OF-TV   VM (SSD) VM (NCC) VM-DIF    Ours

Figure 7. Motion tracking results on a t-MRI image sequence of

19 frames (best viewed zoomed in). Red is ground truth, green is

prediction. “F” means “frame”.
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Figure 8. Mean and standard deviation of the RMS errors across a

cardiac cycle for baseline methods and ours.

tribute is also reflected by the Jacobian determinant. Our

method maintains the number of pixels with non-positive

Jacobian determinant as zero, which indicates the learned

motion field is smooth, topology preserving and ensures

one-to-one mapping.

4.5.2 Ablation Study and Results

To compare the efficiency of tracking Lagrangian motion

and INF motion, we designed two kinds of restricted mod-

els. One is to do registration between the reference and any

other later frame, the other is registration between consecu-

tive frames: A1 (forward Lagrangian tracking) and A2 (for-

ward INF tracking). To explore the effect of bi-directional

regularization, we studied the forward-backward model: A3

(A2 + backward INF tracking). We then studied the effect

of explicit smoothness over the INF motion field: A4 (A3

+ INF motion field φ smooth). To validate our proposed

global Lagrangian motion constraint, we studied models

with every four frames and with full sequence global con-

straint: A5 (A4 + every 4 frames Lagrangian constraint)

and A6 (A4 + full sequence Lagrangian constraint). We

also studied the effect of explicit smoothness over the La-
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Model RMS (mm) ↓ det(Jφ) 6 0 (#) ↓

A1 2.958± 0.695 0.0± 0.0
A2 2.977± 1.217 0.0± 0.0
A3 1.644± 0.611 0.0± 0.0
A4 1.654± 0.586 0.0± 0.0
A5 1.704± 0.677 0.0± 0.0
A6 1.641± 0.637 0.0± 0.0
Ours 1.628± 0.587 0.0± 0.0

Table 2. Ablation study results.

grangian motion field: Ours (A6 + Lagrangian motion field

Φ smooth).

In Table 2, we show the average RMS error and num-

ber of pixels with non-positive Jacobian determinant. We

also show an example in Fig. 9 (full sequence results in

Supplementary Material). The mean and standard deva-

tion of RMS errors for each model across a cardiac cycle

is shown in Fig. 10. As we previously analyzed in Sec-

tion 3.1, directly tracking Lagrangian motion will deduce

a drifted result for large motion frames, as shown in frame

5 ∼ 11 for A1 in Fig. 9. Although forward-only INF motion

tracking (A2) performs worse than A1 on average, mainly

due to tag fading on later frames, bi-directional INF mo-

tion tracking (A3) is better than both A1 and A2. From

Fig. 10, A3 mainly improves the performance of INF mo-

tion tracking estimation on later frames with the help of in-

verse consistency of the backward constraint. The explicit

INF and Lagrangian motion field smoothness regularization

(A4 and ours) helps to smooth the learned motion field for

later frames with the prior that spatially neighboring pixels

should move smoothly together. However, the smoothness

constraints make it worse for the earlier (systolic) frames,

which warrants a further study of a time-variant motion field

smoothness constraint in the future. Our proposed global

Lagrangian motion constraint greatly improved the estima-

tion of the large INF motion (A6 and ours). As shown in

Fig. 9, beginning with frame 9, the heart gets into the rapid

early filling phase. INF motion in between frame 9 and

10 is so large that, without a global motion constraint (A3

and A4), the tracking results would drift a lot on the lat-

eral wall as indicated by arrows. What’s worse, such a drift

error will accumulate over the following frames, which re-

sults in erroneous motion estimation on a series of frames.

The proposed global constraint, however, could correct such

an unreasonable INF motion estimation and a full sequence

global constraint (A6) achieves better results than the seg-

mented every 4 frames constraint (A5). All models have

no non-positive Jacobian determinants, suggesting that the

learned motion fields guarantee one-to-one mapping.

4.5.3 Running Time Analysis

In Table 1, we report the average inference time for motion

tacking on a full t-MRI image sequence by using an Intel

F0
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F10

F11

F12

A1          A2          A3         A4          A5          A6        Ours

F9

Figure 9. Ablation study results on an image sequence of 19 t-MRI

frames. Red is ground truth, green is prediction.
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Figure 10. Mean and standard deviation of the RMS error during

the entire cardiac cycle for the ablation study models and ours.

Xeon CPU and an NVIDIA Quadro RTX 8000 GPU for

different tracking methods. While the unsupervised deep

learning-based methods utilize both CPU and GPU during

inference, conventional methods (HARP and OF-TV) only

use the CPU. It can be noted that the learning-based method

is much faster than the conventional iteration-based method.

Our method can complete the inference of the full sequence

in one second. In this way, we can expect very fast and

accurate regional myocardial movement tracking on t-MRI

images that can be used in future clinical practice.

5. Conclusions

In this work, we proposed a novel bi-directional unsuper-

vised diffeomorphic registration network to track regional

myocardium motion on t-MRI images. We decomposed the

Lagrangian motion tracking into a sequence of INF motion

tracking, and used global constraints to correct unreason-

able INF motion estimation. Experimental results on the

clinical t-MRI dataset verified the effectiveness and effi-

ciency of the proposed method.
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